skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A feasibility study of space-charge neutralized ion induction linacs: Final report

Technical Report ·
DOI:https://doi.org/10.2172/456328· OSTI ID:456328

Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of {open_quotes}multicusp{close_quotes} accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
456328
Report Number(s):
SAND-97-0344; ON: DE97004163; TRN: 97:012001
Resource Relation:
Other Information: PBD: Mar 1997
Country of Publication:
United States
Language:
English