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Let me start by saying that I have very little experience at computing

heavy ion (HI) cross sections, by the DWBA or by other methods (excepc for

the very minor claim to have been involved with some of the earliest appli-
1 2

cations of the DWBA to HI inelastic scattering ' and to the "exact" calcu-

lation of finite-range effects in a HI transfer reaction ). This giv«s me

the advantage of having a detached attitude toward the subjectI

I do not wish to discuss in detail the relative merits of the DWBA

versus a semi-classical approach. Clearly, the DWBA (as we usually under-

stand it) is only applicable if the transition is predominantly a one-step

(first order) process (heavy arrow in Fig. 1). If processes involving more

than one step (inelastic or transfer, broken arrows in Fig. 1) are important,

more is required. For light ions, so-called coupled-channel DWBA (or CCBA)

calculations have been used, but the large number of partial waves often in-

volved for HI and the probable importance of finite-range effects make the

use of CCBA for HI rather difficult with currently available computing fa-

cilities (but see, however, the contributions to this eymposium from Ascuitto

and Glendenning, and Low and Tamura). (A further complication with heavy

ions is the possibility of excitations of both members of the pair.) Then we

must resort to something else, like the semi-classical coupled channels de~

scribed by Winther, et al.

Even when the DWBA is appropriate, there is no question of the value of

the semi-classical approach for gaining an understanding of the "physics" of
«

what is going on. Nonetheless, for detailed comparisons with data, my
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feeling is that, as long as the available computers will allow it, the usual

partial wave approach of the DWBA is worth doing so as to give more control

over the uncertainties in the calculation. I feel that as long as one can do

"exactly" a calculation for a given model, one should do so; any deficiencies

of the results can then be more readily identified with the basic physical

assumptions of the model used (in the case of DWBA, the assumption of one-

step and the use of optical potentials).

The application of the DWBA to HI reactions is a rapidly developing

field — some very interesting developments are being presented Co this sym-

posium — so rather than attempt a "survey" I will restrict myself to setting

the scene for others by outlining the formalism, defining some terminology,

and drawing attention to a few features which seem to be of current interest*

Consequently I have not attempted to compile an exhaustive list of references.

I also refer you to detailed discussions given in the proceedings of other
5—8

recent meetings.

First, notation; not very basic but sometimes a source of confusion.

Because the theory is an extension from that used for light ion reactions

(especially deuteron stripping), I have continued to use the same no-
9 10

tation. ' I must admit that it is not so mnemonic for heavy ions, where

target and projectile are comparable in size; in this respect, Goldfarb's

choice (G), based upon two heavy "cores" c. and c~» has advantages. Another

commonly used choice is due to Tobocman (T),1^ (but note a different version

is used in Ref. 13). These three are:

S: a(» b+x) + A + B( - A+x) + b, e.g. A(a,b)B

G: a1(- Cj+t) + c2 •*• a2(« c2+t) + c^ e.g. ^ ( a ^ e ^ ^

T: I(- A+N) + B •*• F(- B+N) + A, e.g. B(I,A)F.

The transferred particle is x, t, or N respectively. To avoid confusion for

myself, I shall continue to use my (S) notation.

Next, what is involved in the pWBA? The transition amplitude for the

A(a,b)B transfer reaction has the well-known form (of course, slight vari-

ations of this form have been introduced from time to time),

T » dr dr vx * tit. .r ) <Bb V Aa> vx * tie. r ^. ^l^* I ~ K H I "aA bB sfbBWbB ^J*BIVJ*1*' X ^ Si»At£»A'# v*/



(Here, and in what follows, I will retain explicitly two subscripts so as to

make perfectly clear which two particles the vectors refer to. This somewhat

clumsy notation is often simplified in the literature.) The x's are distorted

waves, generated from optical potentials, U . in the entrance channel and U, „
aA Dii

in the exit channel. The usual assumption is that the U are to be chosen so

as to reproduce the observed elastic scattering in the corresponding channels*

These model potentials U are almost invariably simple functions only of the

relative distance between the centers of the colliding pair and contain no

reference to internal degrees of freedom. It might be felt that this is very

unreasonable for two heavy ions, and certainly the true wave function is much

more complex when the ions begin to overlap. Fortunately the direct reactions

tend to take place while the ions are still well separated because of strong

absorption and/or Coulomb repulsion. In this region the optical potentials,

by definition, tend to give a good account of the wave function of relative

motion. A possible exception is that direct inelastic excitation (e.g.

Coulomb excitation) may occur as the ions approach one another. This would

appear as part of the absorption in the optical model, but these parts of the

wave function may still contribute significantly to the transfer process.

If the transfer itself may still be treated in first-order, the expression (1)

may be generalized to include the inelastic scattering in the distorted waves,
3

giving the so-called CCBA.

Another consequence of the reaction taking place while the ions are still

largely separated is the possibility of generating the tails of the optical

potentials needed by simple folding procedures. For example, we take an ef-

fective nucleon-nucleon interaction v(r,r') and construct the potentials

1- dr drf P.(r) p (r1) v(r,r'),

etc., where p.(r) is the density distribution of nucleus i. This seems to be

a reasonable procedure for the important tail of the real part of the po-

tential; the imaginary part still has to be treated phenomenologically, de-

termined by fitting to elastic scattering. (It is also an attractive idea to

use such potentials for inelastic scattering near the Coulomb barrier, where

we see interference between the Coulomb interaction and the tail of the

nuclear potential.) The shapes of such potentials in the outer region are



not necessarily the same as the commonly used Woods-Saxon.

The nuclear matrix element (or "transfer function") represents integra-
tion over internal coordinates which are independent of the channel coordi-
nates r , and r. _. Hence it remains a function of r , and r, _,

aA bB -^aA ""bB

<Bb|v|Aa> - G(r a A.r b B). (2a)

For a simple transfer between inert constituents, this transfer function is

<Bb|v|Aa> + •Jo^) V *a(rxb) (2b)

where the <j>'s represent the relative motions of the nucleon (or cluster) x

bound to the "cores" A or b. In a more realistic situation there will be

spectroscopic factors for the separations a •*• b + x and B -»• A + x, and, in gen-

eral, a sum of terms like (2b), but the overall structure.does not change.

In the post-interaction form, V becomes

where the last step represents the usual assumption that the dominant term is

the potential V, which binds b + x to form a. The corresponding assumption

for the prior-interaction form yields V £j V ., the potential binding A + x to

form B. (Before making this approximation, the post and prior forms of the

amplitude may be shown to be equal. If the potentials U .and U._ are similar,

as they would be if x were small compared to the heavy cores b and A, this

post-prior equality should be preserved approximately. Hence a comparison of

post and prior calculations may provide one test of the validity of any ad-

ditional approximations made. ) There is the possibility that the neglected

interaction terms may be important in some cases, such as for the transfer of
14clusters between light nuclei.

There is a measure of uncertainty over the choice of the interactions V

and the optical potentials U. Remembering that the amplitude (1) is an

approximation (a model, if you will), it is not clear that th«. optimum choic*



of interactions Is the simple one usually made. For example, in general the

V . could be complex. However, it is meaningless to start making arbitrary,
•" 15

uncontrolled, changes in these quantities without some very good reason.

Hence I would strongly recommend sticking to the usual assumptions until such

reasons come along.

Even when fitted to the elastic scattering, the optical potentials are

not unambiguous — we encounter the well-known ambiguities for strong-
absorption scattering. These potentials will differ in yielding different

wave functions x in the nuclear interior. Insofar as these interior regions

do not contribute to the transfer reaction, the various potentials may be ex-

pected to yield the same transfer cross sections.

Another assumption, not made explicit above, is that one may Ignore ex-

change effects due to antisymmetrization between the colliding nuclei (except

for those implicit in the phenomenological optical potentials). Again these
14

effects may be important for light nuclei. They may also result in the ex-

plicit appearance of transfer contributions to the elastic scattering of two

nuclei of similar mass,16 such as 12C + 13C or 160 + 12C.

When the transferred particle x is not a single nucleon. but rather a

cluster, it is usually assumed for computational convenience that V, (or V .)

can still be represented by a potential dependent only on the position of the

center of mass of the cluster. Some exceptions -to this have been reported.

The coordinates involved in the amplitude (1) are shown in Fig. 2. The

amplitude is an integration over two independent coordinate vectors; this is

part of the difficulty in evaluating it exactly. The other part results from

the need to express all the wave functions in terms of the same two vectors.

Exact evaluation tends to use the pair r . and r, _ because these enter the

distorted waves which one would prefer not to tamper with (but see the contri-

bution to this symposium by McMahan and Tobocman). Then the matrix element

(2), with V •*• V. (r , ) , must be re-expressed through the relations

°LraA "
where

and the letters denote the masses of the corresponding particles• The



technology for doing this is a little complicated and involves some multipole

expansions because, in general, the $'s are not scalars. It is well under-
9stood, but we will not go into it here.

When approximations are to be introduced, other choices of variables may

be moro convenient* For example, in terms of r. . and r . ,

JaA " JbA + a ~xb*

JfbB "~

(5)

The last term in each case is due to the center of mass of the composite system

being shifted (by "recoil") from the center of mass of the heavy core; this

shift is small when x is one (or a few) nucleons and a, B are heavy nuclei.

If we drop these terms from the arguments of the distorted waves,

we get the so-called no-recoil approximation, and the amplitude (1) can be

written

Tno recoil " I * £ ? * & • • ¥^bA> F<5bA> *2i Qbk'Sbi? <£bA <7>

which has the same form as the usual so-called zero-range DWBA amplitude (but

it does not involve a zero-range approximation)* With (2b) and (3), the no-

recoil transfer function F is, without further approximation,

A technique for evaluating (8) in general has been given by Sawaguri and
12Tobocman; an approximate treatment for use at "low" energies (below the

18Coulomb barrier) is also available.

Once F(r) is available, standard ("zero range") DWBA codes may be used to

evaluate (7). This is a great advantage. However It was pointed out long
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ago " that the no-recoil approximation (6) may easily cause large errors in

the phases of the distorted waves. One way to see this is to write the dis-

torted waves as

x(k,r)

vhere K(r) is the local momentum at the point r. Then (1) again reduces to the

form (7) except that the effective transfer function is now

where

F(r) * Fef£<r) - j A W X •JCrft'^Cr•>•.(«•>to- (10)

introduces the extra phase due to the recoil effects. The classical picture

of the transfers occurring predominantly for grazing collisions in which in-

itial and final orbits are well matched tells us that the important K . and
waA

K. _ are parallel and similar in magnitude, also that the important r are of

order of the sum of the two nuclear radii. Then the main contributions to the

overlap integral (10) will be for r'tf R , the radius of the nucleus a. The K

will be somewhat less than the asymptotic momenta k because of the Coulomb

barrier, but still of the same order. Consequently quite large phase shifts

may be involved, of the order of the momentum per nucleon times R . Further,

the phase shift will increase as the energy increases since the K will in-

crease.

The expectation that these recoil effects may be important is further sup-

ported by complete calculations of the amplitude (1) which do not use the

approximation (6) and some of which are reported to this symposium by DeVries.
20

Whether the full calculations can be avoided successfully, perhaps by the
21 'use of approximate corrections, remains to be seen. A number of authors11 22have tried very simple prescriptions ' which, even if not very accurate, did

give some indication that the recoil effects were important. A typical ex-

ample was to assume the transfer took place along the line of centers (es-

pecially for sub-Coulomb collisions), at the distance d of closest approach.

Hence in Eqs. (5) instead of neglecting r . we put it parallel to^r. . with-a



magnitude

where R is the radius of nucleus a • b + x. Then instead of the no-recoila
approximation (6) we have

For sub-Coulomb collisions these can be translated into effective wave

numbers k' and k/_, and for these collisions the approximation is moderately

successful. At higher energies and for light targets it is not so useful.

Part of the reason 16 that any colinear approximation like this automatically

neglects the unnatural parity terms to be discussed below.

The angular momentum selection rules are determined by the nuclear matrix

element or transfer function, Eq. (2) etc. Denote the spin of nucleus i by I.;

then the changes or transfers of angular momentum induced by the gain or loss

of the transferred particle x are defined as

and • (12)

<*>ab "«.a *»o ' a D 1 •* ab ~* a o

The difference L between the two spin changes J..

or

is taken from the orbital angular momentum of relative motion of the colliding

pair,

Reluctantly, a change of notation is introduced here, but I felt uncomfortable
with the notation I have previously used when a,b were light ions.9*10 The
correspondence with this other dotation is: I A - J^» Ig » JB, Ia - sa, Ib -
8b* JBA " J or i» Jai, • S or s, L - L or A.



waA .

(In light ion reactions it is this L-transfer which characterizes the angular

distributions.) Thus the transfer function G, Eq. (2), behaves under ro-

tations of the coordinate system like an angular momentum L (or a sum of such

terms if more than one L is allowed by the selection rules (12) and (13)).

Further, its parity v is determined by the internal parities ir. of the four

nuclei,

1 " YiVb' (15)

The selection rules (12)-(15) are general. Further selectivity may be

imposed by structure considerations. Suppose the transferred particle x is in

a "single particle" orbit with j »Jl +/s in nucleus a, and in an orbit with

j n - fc_ + s in B, if x has a spin s . Then we are restricted to JL. - j, and

JaA " Ja vhile

or

Further, the orbital character of L ensures that also

L - Z -JL or | a -Aj <.L £ A + V (17)
Are <«»a *"B ' a B' ~ — a B

The transfer function then has the form of Eq. (2b) with the <f>*s being the

corresponding single-particle wave functions. (Note that V is a scalar.)

The parity change is

St. +A_
« - (-) S • (18)

However, nota bene, in general we need not have ir • (-) . The transfer func-

tion (2) is a function of two variables and hence its parity is not tied to

Its rotational properties. This is no longer true when the no-recoil approxi-

mation is used; the transfer function (8) is a function of one variable, hence

a term with angular momentum L must be proportional to Y_.(r) and have parity
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IT « = ( - ) . This may be called "natural parity". Recoil effects allow "unnatu-

ral parity" terms with L such that T » (-) , A simple example of this occurs

when both $ and $_ are p-states and hencea o

We can form products with L - 0 and L » 2 with natural parity; e.g., the 6calar

L •* 0 is simply r . *r .. We can also form the unnatural parity L - 1 axial

vector r , * r ,. However, as soon as we make the two vectors parallel (or-v»xb w x A
integrate over the angle between them as in Eq. (8)) this unnatural parity term

vanishes. Consequently the no-recoil approximation loses these terms; DeVries

has more to say about that at this symposium.

The approximate treatment of recoil embodied in Eqs. (9) and (10) does

allow the unnatural terms to reappear, for example through the first, odd

parity, term in the expansion of the phase factor,

ê STi* - 1 + iQ^ 1 + ... . (19)

Keeping terms to this order (with the additional approximation JC B « J j , B *

K . x Jc .) has been suggested by Nagarajan as an approximate treatment of the

recoil effects. It may be appropriate at this point to clear up a misunder-
2 1 ' '• '

standing of semantic origin. Nagarajan states that an exact calculation of

recoil effects "will violate all selection rules (Eqs. (16)-(18)) and there is ''.

no limitation on the A-transfer". His statement is true for his definition cf ••

^-transfer; however, this is not the usual definition. It seems to me that V•','••

the useful ^-transfer refers to the rotational properties of the internal

nuclear matrix element or transfer function (2), and is the L defined in Eqs.

(13) and (17). This is the quantity of interest for nuclear spectroscopy, as

Eq. (17) shows in particular. Nagarajan's A-t**ansfer characterizes the ro-

tational properties of the effective transfer function (10); besides the angu- ',

lar momentum in the nuclear waVe functions this also receives contributions ":!'

from the relative motion (distorted waves) through the phase factor exp(l Q*r').Clearly this latter factor contains all partial waves from zero to lnfinitiy, ff

hence Nagarajan's comment. This comes about because with the no-xecoil form '•

(6) and (7) the distorted wavts describe the relative motion of A' with 'reŝ fecfc' ;•?: f

.to,]), instead of A with respect to the center of mass of a • b
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with respect to A instead of B • A + x). The relative angular momenta "lost"

in this way are then incorporated into the phase factor in the effective trans-

fer function (10).

In some transfer reactions with light ions, it has been found to be im-

portant to treat the form factor (transfer function) correctly in the tail

region. This is even more true for heavy ions because the transfers take place

at relatively large separations, and especially true for the transfer of

clusters. For single nucleon transfer, the shape of the tail of the transfer

function is largely determined by the separation energies, however its magni-

tude depends upon the short-range behuvior of the bound-state wave functions

and the inCcracfcion. It is at this point that the simple picture of an inert

core plus an active nucleon, which lies behind the form (2b), may not be ade-

quate. These problems are exacerbated when more than one nucleon is trans-

ferred and, again, have already been encountered for light ion reactions (e.g.

17 23
for 2-nucleon transfer). Work on these problems is only just beginning. '

In particular, when dealing with the transfer of a cluster like an "alpha

particle", it is tempting to think of the cluster as having an independent

structure like that of a free alpha while the transfer takes place; this allows

one to assign a definite form to the wave function for the center of mass of

the cluster. But this is almost certainly wrong. To what degree it is wrong

we do not yet know.
24

la this context, the new approach of Bonche and Giraud is of interest.

They use a generator-coordinate description of the distorted waves, within the

framework of Che DWBA. This is equivalent to a two-center shell model de-

scription and apparently it greatly simplifies the calculation of the transfer

function. Present calculations assume the transferred cluster lies at the

center of mat>s of the two heavy cores, which is probably not adequate for accu-

rate results. A more complete description of this method has just been

published.24
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Figure 1. A direct (one-step)
transfer (broad arrow) and some
possible multi-step processes
(broken lines) Involving exci-
tat ions in A and B.
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