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ABSTRACT

STATE ESTIMATION IN DISCRETE-TIME

LINEAR SYSTEMS WITH QUADRATIC FORM OBSERVERS

James Parish Shipley, Jr.
Department of EECS

The University of New Mexico, 1972

The problem considered in this dissertation is that of estimating

the state of a system with a linear plant equation but having a measure-

ment function which is a quadratic form in the state. It is first de-

monstrated by constructive proof that the problem has a solution if the

controls have large enough magnitude, and some requirements on the

minimum size of the control are discussed.

Three algorithms for estimating the state are obtained, one using

the technique of maximum likelihood, the other two utilizing a more

general Bayesian approach. In addition, a first-order approximate

conditional mean filter is included for comparison.

It is demonstrated by structural comparisons and numerical results

that the algorithm for finding an approximate maximum of the posterior

density function is the overall best in terms of speed, storage, practi-

cability, and accuracy. It is also shown that good state estimates can

be generated for a large class of problems using any of these algorithms

if the control largeness conditions are satisfied.

Finally, some extensions are discussed, the main one being the

application of the technique of finding an approximate maximum of the

posterior density function to systems with more general nonlinear

observers.

xi



Chapter 1

itnmomiCTios

At the present time, the trend in nonlinear filter theory »«ems to

be the development of general algorithms applicable to a$ large * class

of nonlinear systems as possible. This is an admirable goal and one that

reflects the urgent desire to know all the answers, to be prepared for

every eventuality. To a large extent, this approach has been successful

as witness the huge number of books and papers on nonlinear filter theory

available today.

However, it is always possible that a specific problea has sose

characteristic which nay be used to advantage and which would be lost

in a general treatment. It may also be true that gentralixations can be

made from these findings that have some bearing on a larger class of

problems.

It was with these last two ideas in mind that this topic was chosen.

In addition, the problem has some roots in practical application, as

discussed in Section 1.2.

1.1 Statement of the iiPrqblem

Consider a discrete-time system with linear dynamics described by

the difference equation

x(k+l) - Fx(k) + Bu(k) • G»(k) k « 0,1,... (1.1.1)

where k is the time index

x(k)eEn is the system state

u(k)eEB is the known control input



w(k)eE is the unknown plant noise

F is the nxn state transition matrix

B is the nxm control distribution matrix

G is the nxi plant noise distribution matrix.

The initial state x(0) is assumed to have a gaussian probability

density function with mean zero and covariance matrix P(0). Similarly*

the plant noise sequence {w(k)} is taken to be zero-mean, gaussian, and

white with covariance matrix given by

= S(k)6kj (1.1.2)

where 6, , is the kroner.ker delta, and the prime indicates matrix trans-

position. Clearly, S(k) is £x£.

Observations are made of.a function of the system state according to

z(k+l) - x/(k+l)Qx(k+l) + v(k+l) k - 0,1,... (1.1.3)

where z(k+l)eE is the scalar measurement

v(k+l)eE is the measurement noise

and Q is the nxn measurement matrix.

As with the plant noise, the sequence {v(k)} is assumed to be zero-

mean, gaussian, and white with covariance matrix

E{v(k)v(j)} « T(k)6kj (1.1.4)

In this case, the covariance matrix T(k) is lxl, i.e., a scalar.



Since Q is the kernel of a quadratic form, it is only necessary,

from a modeling viewpoint, to consider those matrices Q that are

symmetric. Notice also that there is no measurement at time step k • 0.

The desired result is an estimate of the current state based on all

the known control inputs and available measurements. Thus the problem

is one of filtering for state estimation.

It should be pointed out that the system time-invariance and zero-

mean statistics properties are not fundamental to what follows. Removal

of these restrictions is straightforward but tedious.

Finally, throughout this work it is assumed that equations 1.1.1-4

describe the system exactly; that is, there is no modeling error.

1.2 Origin of the Problem

This problem was abstracted from a portion of the Van de Graaff

beam control problem at Los Alamos Scientific Laboratory, Los Alamos,

New Mexico. The original task was to focus and position the ion beam

using only a Faraday cup for measurements. Although some focusing

information can be obtained, the Faraday cup is primarily a position-

measuring device. Under suitable conditions the Faraday cup current is

proportional to the distance of the beam centroid from the center of

the cup. Thus the measurement is related to the distance of the "state"

(i.e., beam position) from the origin of "state" space represented by

the center of the Faraday cup. In practice the measurement is much

more complicated than this because of focusing - positioning interactions,

non-uniformity of the beam across its cross-section, the relative geo-

metries of the beam and cup, edge effects, scattered radiation, etc.

However, it is felt that solution of the problem stated in the previous



section is a first step toward more effective control of the Van de

Graaff beam.

Of course, the results obtained in this thesis are not limited

in application to Van de Graaff generators, but nay be useful in any

situation where a bean (particle, optical, or otherwise) must be

positioned based on only a measurement of the distance of the bear,

from a reference point. Another application that cones immediately

to mind is the infrared tracking of objects in the sky with a telescope.

Using the observed intensity of the infrared emission of the object as

an indication of'the distance of the object from the center of the

telescope field of view, the algorithms derived here will provide an

estimate of the object position relative to the center of the field of

view. This position information can then be used to provide pointing

corrections to the telescope drive mechanism.

1.3 Previous Work on This Problem

It appears that quadratic form observers have never been treated

in any detail in the literature. Many special cases have been treated,

however; the favorite one seems to be a scalar system, either linear or

nonlinear, with an observer of the form

z(k) » x2(k) + v(k) (1.3.1)

with the same notation as in Section 1.1. Sorenson and Alepach [24>]

work some examples using such a system and conclude that "When there is

no plant nonlinearity, it is impossible from the available measurement

data to discriminate between the true value of the state and the negative

of that value." This is a true statement for the problem they have posed

since there is no control input in the model. It will be shown that if



a control input is available, then the control must not be Identically

zero if the system is to be observable.

The idea of using a known signal input to aid system identifica-

tion is not new, of course. The general problem of signal design has

received soae attention, but the goal is usually optimum signal re-

covery or system identification again. However, the technique of using

non-zero controls in nonlinear state estimation problems is at least

not well known, if known at all.

1.4 Summary of the Dissertation

After having jttated the problem in Section 1.1, it is legitimate

to ask whether it can be solved. The purpose of Chapter 2 is to

obtain some sufficient conditions under which it can and to discuss

sone possible necessary conditions. The most striking result is that

the control input cannot be identically zero in contrast to completely

linear systems. To the best of the author's knowledge, this idea does

not appear in the literature.

Armed with this information, it is not difficult to derive the

algorithms of Chapters 3 and 4. Chapter 3 on the maximum likelihood

estimator is a straightforward extension of the results of Chapter 2,

although a bit of finesse is required to put the algorithm in a form

amenable to implementation. Chapter 4 attacks the estimation problem

from a Bayesian point of view, first obtaining an approximate form for

the posterior density function. Two methods of generating state

estimates from this density function are derived, one requiring the

solution of a nonlinear matrix algebraic equation, the other not even

needing the error covariance matrix.



Chapter 5 gathers all the results into tabular form for easy

reference. Also Included for comparison are first- and second-order

approximate conditional mean filters. Differences and similarities

among the structures of the various filters are then pointed out.

The function of Chapter 6, Numerical Results, is to provide the

results of tests on the algorithms under simulated actual conditions.

Some conclusions are then drawn about the relative merits and any

particular difficulties of the algorithms.

The last chapter summarizes the dissertation and indicates some

possible areas for future research.



Chapter 2

SOME RESULTS ON OBSERVABILITY

2.1 Introduction

It makes little sense to try to estimate the state of a noisy

system based on some subset of control inputs and measurements if the

corresponding deterministic system is not observable in terms of the

same inputs and measurements. Therefore, the first concern is to

determine if some (hopefully) finite sequence of controls and measure-

ments contains enough information to yield an exact state estimate for

the noise-free system. In what follows a constructive proof is given

that this is indeed the case, for proper choice of control, for the

deterministic analog of equations 1.1.1 and 1.1.3, and a method is

given for reconstructing the state.

The conditions for state reconstruction that will be derived are

sufficient but not necessary. A heuristic discussion is given of

necessary conditions (i.e., lower bounds) on the control required.

The special case of an incremental model is treated, and some examples

illustrating the main points of the chapter are presented.

2.2 A Constructive Proof of Complete Observability

Let the state and measurement be determined by

x(k+l) - Fx(k) + Bu(k) (2.2.1)

z(k+l) - x7(k+l)Qx(k+l) (2.2.2)



with x(0) unknown. Equation 2.2.1 can be used to write x(k+l) in

terms of x(0) and the control sequence {u(0), u(l), ..., u(k)}.

:(k+l) = Fk+1x(0) + Z l^BuGt-i) (2.2.3)
i=0

By the properties of the state space description, if the state at

any one time and all the controls are known, then the state at any

other time is also known. Therefore, it is sufficient to find x(0).

For notational simplicity, let

A k •
U(k,0) = Z FLBu(k-i) (2.2.4)

i=0

and in general

A j i
U(k,j) ̂  Z F1Bu(k-i) (2.2.5)

i=0

This last equation will be useful in developing the filtering estimator

in Chapter 3. Using 2.2.3 and 2.2.4,

x(k+l) = Fk+1x(O) + U(k,O) (2.2.6)

substituting 2.2.6 into the first n measurement equations,*

[Fx(O) + U(0,0/Q[Fx(0) + U(0,0)] = z(l)

[F2x(0) + U(l,O)]'Q[F2x(O) + U(l,O)] = z(2) (2.2.7)

[Fnx(0) + U(n-l,0)]/Q[FnxC0) + U(n-l,0)] = z(n)

See Appendix A for a more complete discussion of the problems involved
in the solution of 2.2.7 for x(0).



Performing the multiplications,

x7 (OF'QFxCO) + 2U'(0,0)QFx(0) + ll' (0,0)QU(0,0) = z(l)

(2.2.8)

x/(0)F/nQFnx(0) + 2U/(n-l,0)QFnx(0) + u'(n-l,O)QU(n-l,O) = z(n)

Now make the following definitions:

Z* = [2(1) z(2) ... Z(n)]' (2.2.9)

U* = [u'(Q,0)QU(0,O) ... u'fr-l.OQlKn-l.O)]' (2.2.10)

X*[x(0)] = [x'(0)FAQFx(0) ... x/(0)F/nQFnx(0)]/ (2.2.11)

A7 - [F'QtKO.O): ... :#F'
nQU(n-l,0)l (2.2.12)

Putting these into 2.2.8 and rearranging,

Ax(0) = -|{Z* - U* - X* [x(0)]} (2.2.13)

By construction, the matrix A is nxn and if it is nonsingular, 2.2.13

can be written in the form

x(0) = | A"1 {Z* - U* - X*[x(0)]} (2,2.14)

Conditions for the existence of A~ will be discussed later. Observe

that 2.2.14 has the form x = P(x); in such an equation, a solution, if

it exists, can be found by a successive approximation technique if P

is a contraction mapping. In order to make these ideas more precise,

the following definition and theorem from Kantorovich and Alsidov [12],

p. 697, are stated.



Definition Given the equation x = P(x) for xefi, 2 £ E , il closed.

P is a contraction if

d[P(Xl),P(x2)] <ad[X;L,x2] ?Xl,x2e Q

where 0 ̂  a < 1 and d is the metric on E .

Theorem If P is a contraction mapping in Q, a unique solution

x* of the equation x = P(x) exists in fl and can be

obtained as the limit of a sequence {x }, where

X Q + 1 = P(xn) n = 0,1, ...

and x is any element of ft. The rate of convergence

of {x } to x* is given by

f
Applying these ideas to 2.2.14, let

P(x) = j A~Hz* - U* - X*(x)J (2.2.15)

and d[P(X;L),P(x2)] £ IP(X l) - P(x2)»

= j lA~1{X*(x2) - X*(X;L)}t (2.2.16)

As shown in Appendix A, any set of n measurement equations such as

2.2.13 has 2 solutions in general. The problem in applying the above

theorem and definition is to find conditions on the control so that P

is a contraction mapping in a region ft containing x*, the original

solution to 2.2.13, and which also contains a convenient known starting

point for the iterations, x . Since ft as defined above is difficult

to deal with quantitatively, the approach is to define a new set tf

in which it can be shown that P(x) is a contraction for proper choice of

control sequence and which also contains x* and x . By this definition,

j/ C ft, and x* can be found by the iterative procedure of the theorem

10



starting from x . With these ideas in mind, let

if = {x£En : Hx-x*ll < r , r > 0 } (2.2.17)

That is, Si! is a hypersphere of radius r centered at x*. It is first

necessary to show that P maps Of into itself. This will be the case if

Ux* - P(x)B < r Vxetf (2.2.18)

Or, from 2.2.15,

ix* - j k~l{Z* - U* - X*(x)}i < r Vxetf (2.2.19)

But by definition, x* = P(x*) so that 2.2.19 becomes

IA'-'-CZ* - U* - X*(x*)} - A ^ Z * - U* - X*(x)}l < 2r

Vxetf (2.2.20)

Simplifying,

lA"1{X*(x) - X*(x*)}I < 2r VxeJ/ (2.2.21)

i s the condition for P to map tf into i t se l f . By the properties of

norms (Bellman [ 3 ] , p. 162), 2.2.21 i s satisfied i f

I A " 1 ! ! X*(X) - X*(x*)I < 2r Vxefl7 (2.2.22)

Or, rearranging,

Reference to equations 2.2.11 and 2.2.12 reveals that A is a linear

function of the control sequence, while X* does not depend on the control.

Therefore, by choosing the sequence of controls large enough in some

sense, 2.2.23 can be made to hold.

Next, it is necessary to show that P is a contraction on J/, i.e.,

that

Up(X;L) - P(x2)i < aHX;L - x2« Vxetf (2.2.24)

with 0 < a < 1.

A similar development to that above results in

11



, 2alx. - xJ

with 0 ̂  a < 1. Since x*eS2/ by hypothesis and a < 1, satisfaction of

2.2.25 implies that 2.2.23 holds also, so that the only condition on

the control is obtained from 2.2.25.

A more explicit relationship results if a particular norm is

selected. A useful norm for convergence proofs is the X.^ norm:

| (2.2.26)

where x is the i component of the vector x. The corresponding matrix

norm is then determined by (Bellman [3]= p. 162),

8AR A«J* z|AlJ| (2.2.27)

where A., is the element in the i row and j column of the matrix A.

Then,

(2.2.28)

and Ix^I^^Kx^x/l (2.2.29)

where again the superscript i denotes the i component of the vector

(x^-x,). Let

«X*(x2) - x*^ - JF^W Vx2 -

Hx*(x2) - x*(Xl)H

Or, using 2.2.28 and 2.2.29,

. 2 1 (2.2.31)

12



Suppose that the maximum in the denominator occurs for j = ct, so that

J " k T l̂ -x'H ̂  V ^ ^ ) (2.2.32)

(x2-x1)
i

, -1 < -T7 TQT ̂  1 i » 1,2, ...,nBut

with equality holding for i = a.

Therefore,

J<2a"T £ ItF'V^Wl (2.2.33)
k»l

where [F/iQFiJk is the k
th row of F^QF1.

Using Schwarz's inequality

Again, [F' Qr ]•.. is the element in the k row and j column of F/ Qr .

Remembering that x? >x, Ê V ,

Ix2+x1l = I (x2-x*) + (Xĵ -x*) + 2x*l

< lx2-x*R + Ix^x*! + 2lx*l

< 2r + 2lx*l

Inserting all the foregoing in 2.2.25,

I A-i| < a /max y maxrr^i i, ii-l f7 .
"A ' ̂  r+lx*l i i ._, j | [ F Q F ^ j ^ (2.2.35)

with 0 < a < 1 is a sufficient condition for P to be a contraction in j/.

There remains the problem of a suitable starting point x . Recall

from the theorem that x must lie within ft. A convenient x is the origin
o o "

which can be made to lie inside S/ , and thus ft, by choosing r large

enough, namely r - Hx*H. If this is done, the condition on the control
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sequence that makes P be a contraction on j / and x = 0 be an element

of SYis

| A - l | < a { « x I max ) [ F / i Q F i | } - 1 ( 2 2
/ r 1 k=l J J

with G < a < 1 and r > Ux*H

Notice that if 2.2.36 is not satisfied, the iterative procedure

may diverge or converge to another solution of 2.2.13. However, this

latter situation has never occurred in a considerable number of examples.

On this basis and the form of 2.2.13, it is speculated that if the pro-

cess converges at all, it converges to x*, but a proof has not been

found.

In any case, if there is some a priori knowledge about Hx*l, an

upper bound say, then 2.2.36 will be easy to satisfy. Even if there is

no such information, one way to sequentially check the solution is to

substitute it into subsequent measurement equations extrapolated to time

zero. If the solution does not satisfy all these equations, it is not

x* and another try can be made with larger controls.

These results have proven the following theorem:

Theorem For a discrete-time system described bj 2.2.1 and 2.2.2

with Z*, U*, X* and A defined in 2.2.9, 10, 11, and 12

respectively, the state x(0) is reconstructible if A

exists and satisfies 2.2.36. Furthermore, x(0) can be

found by means of the successive approximation equation

xi+1(o) = f A ' ^ Z * - u* - x*[Xi(0)]} i = 0,1, ...

with x (0) = 0.

14



2.3 Conditions for the Existence of A

By definition,

u/(0)B/QF

u /(0)B /F /QF2 + u'

A = (2.3.1)

n-1

i=0

It is difficult to make any statements about the singularity

of A for a general control sequence. However, it is possible to

investigate the properties of A for a particular choice of control.

In this vein, notice that u(0) cannot be the zero vector if A~

exists, since then the first row of A is all zeroes. If u(0) f 0,

but u(l) = u(2) = ... = u(n-l) = 0, then the nonsingularity of A is

equivalent to saying that the sequence of n-vectors

u tUyJS Qr, ..., u \\))D r Ĉr / {Z.3.ZJ

is linearly independent.

Another convenient control sequence is u(0) = u(l) = ... = u(n-l)

= c, a constant. The condition for the existence of A is then the

sequence of n-vectors

{C'B'QF, C'B'[F+Ij'QF , ..., C'B'JF + ... + I]7QF } (2.3.3)

is linearly independent. It is clear that for the case of scalar control,

if 2.3.3 does not hold for a particular choice of c, then it does not

hold for any c.

There may be other equally useful control sequences, particularly

if the control is not scalar. Each case must be investigated separately

as to the existence of A
-1

15



2.4 An Example

In order to illustrate some of the preceeding points and to gain

some insight into the physical significance of some of the results,

consider the following two-dimensional system:

z(k+l) = x' (k+1) C 3 •

u(k) (2.4.1)

(2.4.2)

and suppose that x(0) = [1 -I]' (2.4.3)

Observe that this system is not completely controllable and the control

is a scalar. First, see if 2.3.2 is valid.

B'QF = [0 1]

Similarly,

1 1"

1 2

"2 0"

0 1

[2 2]

= [4 2]

so that

A = u(0)

and A
-*1

'2 2"

.4 2.

2 -2'

Therefore, 2.3.2 holds if u(0) $ 0. The required value of u(0) can be

determined from the condition 2.2.36.

2
max [4+2]

16



F'QF

"4 2"

2 2

(16 4

4 2

Therefore,

max E max UF'V*],

Let the best (conservative) estimate of llx*ll be 2, and suppose

a - .5. Then, the condition on u(0) is

^ - [20]"1 = 6.25 x 10"3

2|u(0)|

Therefore,

2(2)

lu(0)l > 240

in order to satisfy 2.2.29. Applying u(0) = 240,

(240)

239

and z(l) = 115,202

x(2) =

239

and z(2) = 116,170

so that Z* = [115,202 116,170]'

U(0,0) = Bu(0) - [0 240]'

U(l,0) = FBu(0) = [0 240]'

Hence U'(O,O)QU(O,O) = 115,200 = U7(1,O)QU(1,O)

"115,200"

and U* =

.115,200.

17



Therefore, using the successive approximation equation,

xx(0) = jh
1^* - U*} =

" 1.

-1.

x2(0) = Xl(0) - yA"
1 X*[Xl(0)]

'1.00833 "

-1.006250.

".00848155"

r.00636334.

008333

006250

".9998518"

-.9998867.

This answer is within .02% of the true answer in only two iterations.

Several things are apparent from this example. First, the con-

dition 2.2.36 dictates a relatively large control. Second, the

correction term to x.(0) in the computation of x_(0) is very small

compared to x.(0). This corresponds to choosing the coefficients in

2.2.14 so that the equation is "almost linear," i.e., the nonlinearity

represented by the last term in 2.2.14 is negligible.

It is also felt from this example that 2.2.36 will generally

result in a very conservative requirement on the control. In order

to verify this statement for this problem, suppose u(0) = 10 instead

of 240. Then,

z(l) = 202

2

.-1

+

"0

_1_

(10) =

"2

.9.

x(2) = z(2) = 250

so that Z* " [202 250]'

U(0,0) = Bu(0) = [0 10]'

18



U(1,O) = F''Bu(O) = [0 10]'

Hence, U7 (0,0)QU(0,0) = u'(l,0)QU(l,0) = 200

and U* [200"]

200j

•i:
, , 1.200

Therefore, x,(0) = •£ A {Z* - U*}
1-1.150

X o \V) — X , KJJ) r, A

!

'1.200"] f'2940! ("-9060"]

r1.150j L-.2219J L--9281J

It appears that the iterative procedure is also converging to

the correct answer for the much more reasonable control u(0) = 10.

These results suggest that it may not be practical to use 2.2.36

to determine the magnitude of the control in a real problem. It is

probably better to try a particular control sequence to see if it

works, especially if there are constraints on the magnitude of the

control or state. In any case, the object in developing 2.2.36 was

merely to show that x(0) could be reconstructed from the available

controls and measurements, not to determine conditions on the controls

in a practical problem.

2.5 A Special Case

An interesting special case occurs for F = I. This is sometimes

called an incremental model and can be used to put the equations for

a static system in canonical state variable form.

It is clear that neither 2.3.2 nor 2.3.3 can be satisfied since

each of the vectors differs by no more than a scalar factor. However,

it is still possible to show that the system is observable under
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certain conditions. Making the substitution F = I, 2.2.8 can be

written

x/(0)Qx(0) + 2U/(0,0)QX(0) + u' (O,O)QU(O,O) = z(l)

x'(0)Qx(0) + 2U/(n-l,0)Qx(0) + u'(n-l,0)QU(n-l,0) = z(n) (2.5.1)

x'(0)Qx(0) + 2U7(n,0)Qx(0) + u'(n,0)QU(n,0) = z(n+l)

where one extra measurement equation has been added and

k
U(k,0) = B • Z u(k-i).

Subtracting the first equation from the second, the second from the

third, etc., and using the definition of U(k,0),

2^(1)8'Qx(0) + u/(l)B/QB[2u(0) + u(l)] = z(2) - z(l)

(2.5.2)

n-1
2u/(n)B/Qx(0) + u/(n)B/QB[2 I u(i) + u(n)] = z(n+l) - z(n)

i=0

Rearranging,

VCDB'Q"

*

.u/(n)B/Q_

z(2) -

- z(a)_

u/(l)B/QB[2u(0) + u

. n-1
u'(n)B'QB[2 E u(i) + u(n)]

i=0

(2.5.3)

This equation is linear in x(0) and has a unique non-trivial solution

if

U*"1 A

.u/(n)B/Q_

-1

(2.5.4)

exists. This leads to the following theorem:
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Theorem U* is nonsingular and the incremental system

is completely observable if,

a) the vectors u(l), u(2),..., u(n) are linearly

independent, and

b) (B'Q)"1 exists.

Proof If ( B ' Q ) " exists and the vectors u(l),...,u(n)

are linearly independent, then the vectors

u' (I)B' Q, ..., u' (n)B' Q

are also linearly independent since this property

is invariant under a nonsingular linear trans-

formation (B'Q in this case). Hence, U* has n

linearly independent rows and thus is nonsingular.

Notice that requirement a) implies that u(k)eEn, while b) insures

that B is nxn and nonsingular. A necessary condition for the validity

of b) is that the system with F = I be completely controllable, as

can be seen from the controllability criterion; i.e., the matrix

C = [B-IB;««.'In B]

must have rank n.

2.6 Remarks on Necessary Conditions on the Control in the
Stochastic Case

Return now to the noisy system described by equations 1.1.1

and 1.1.3. Obviously, the same measurement value is obtained whether

x(k) or -x(k) is used in the measurement equation. Hence, if the

uncertainty in the state is large enough compared to the magnitude

of the state, the sign of the state will not be apparent from the

controls and measurements. It is difficult to see how any estimation

scheme could be very successful under such conditions.
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The probability of occurrence of this event can be made small by

choosing the control large compared to the state uncertainty; i.e.,

the state must be kept "far enough" away from the origin by the

control. The quantity that measures the uncertainty in the state

x(k) at time k-1 is the one-step prediction error covariance P(klk-l),

for which expressions are derived in the next two chapters. Therefore,

as a practical rule of thumb, it is felt that the matrix product

Bu(k-l) should have no component with magnitude smaller than the

standard deviation of the corresponding one-step prediction error

component. That is,

I [Bu(k-l)]±| > {[PCklk-DJ^r
7* i = l,...,n (2.6.1)

where [Bu(k-l)]. is the i component of the column vector Bu(k-l)

and [P(klk-l)].. is the ifc diagonal element of the square matrix

P(klk-l).

It is shown in Chapter 6, Numerical Results, that a constant

control which does not satisfy 2.6.1 for k small but does for k large

exhibits poor transient response. Better results are obtained for

somewhat larger controls.

2.7 Summary

This chapter forms the basis for the results found in the

following two. The most interesting point is that observability

requires a control input that is not identically zero in contrast

to filtering in completely linear systems. This idea appears to

be unknown in the literature.
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Some sufficient conditions on the control are derived and it is

shown by example that they may be very conservative. Some possible

necessary conditions are discussed and a practicable rule is formu-

lated as equation 2.6.1.
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Chapter 3

MAXIMUM LIKELIHOOD STATE ESTIMATION

3.1 Introduction

The method of maximum likelihood is quite old and has been dis-

cussed by many authors. A good general treatment is contained in Lee

[15], p. 56. The basic idea is to define a likelihood function, nor-

mally the probability density of the measurements conditioned on some

subset of the past and present states. This likelihood function is

then maximized with respect to the states to give the values that are

most likely to yield the set of observed measurements.

In this chapter, a sequential estimator is formulated using the

above technique for the dynamic system described by equations 3.2.1

and 3.2.2. At each time step an implicit nonlinear relation for the

maximum of the likelihood function is obtained. In order to avoid

having to solve this nonlinear equation, an approximate solution is

developed and some conditions for consistency are discussed. Finally,

a scalar example is presented.

3.2 Development of the Likelihood Function

In general, there are two major approaches used in the literature

to solve the filtering problem. One is to develop an algorithm that

estimates only the current state: a so-called point estimator. The

other is to estimate the entire sequence of states from time zero to

the present; this has been labeled a trajectory estimator and provides

a current state estimate by extracting the last estimate in the

sequence. Bryson and Frazier [4], Cox [5], and Rauch, Tung and
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Striebel [20] have rudimentary discussions on the relationship between

these two approaches but give no reasons for choosing one rather than

the other.1 Indeed, it appears that little work has ever been done on

the relative merits of the two viewpoints, except in the case of lin-

ear systems.

A detailed development of the two likelihood functions will give

some insight into how the two approaches compare. First, the system

equations are repeated for convenience:

x(i+l) = Fx(i) + Bu(i) + Gw(i) (3.2.1)

i = 0,1...

z(i+l) = x7(i+l)Qx(i+l) + v(i+l) (3.2.2)

Consider now the point estimator. An appropriate likelihood function

is

Li[x(k)] = p[z(i),...,z(k)|x(k)] (3.2.3)

where k is the present time step and p(*|*) is a joint conditional

probability density function.

By the properties of density functions

p[z(D z(k)|x(k)]

•p[x(0) x(k-l) |x(k) ]dx(0) • Wx(k-I) (3.2.4)

Under the assumption that the sequence {v(i)} is independent,

(3.2.5)

1Actually, the references cited deal with what Sage [23] calls maximum
a posteriori (MAP) state estimation. However, the principles are the
same as for maximum likelihood state estimation, and the terminology
of Rauch, Tung and Striebel [20] is appropriate.
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But p[z(i)|x(i)] is clearly gaussian since v(i) is.

Furthermore,

E{z(i)|x(i)} = E{x' (i)Qx(i) + v(i)|x(i)} = x7(i)Qx(i) (3.2.6)

and,

var {z(i)|x(i)> = E{[z(i) - x'

= E{v2(i)|x(i)} = T(i) (3.2.7)

so that

- - 2
(i)] = [27TT(i)] 2exp{W> -2T^±)(*a)] > (3.2.8)

and

z(k)|x(0)....,x(k)]

\ I [Z(i)-^(i)Qx(i)]
2
} (3.2>9)

1=1 l i=l T C i ;

The second term under the integral in 3.2.4 may be rewritten in the

form

p[x(k)|x(k-l),...,x(0)] .
p[x(k)] (3.2.10)

From the fact that the state is a Markov process, it follows

that

(3.2.11)
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so that

_ p[x(0)]p[x(l)lx(0)]'"p[x(k)lx(k-l)1p[x(O) x( ;

(3.2.12)

Furthermore, p[x(i)|x(i-l)] is gaussian since the plant noise

sequence is, and

l) + Bu(i-l) + Gw(i-l)|x(

= Fx(i-l) + Bu(i-l) (3.2.13)

and,

var {x(i)|x(i-l)} «

- GS(i-l)G' (3.2.14)

so that,

_ 1.

p[x(i)|x(i-l)] = [(2ir)ndetGS(i-l)G/] 2

• exp{- -kx(i) - Fx(i-l) -

»[x(i) - Fx(i-l) - Bu(i-l)]} (3.2.15)

It follows that

p[x(0),...,x(k-l)|x(k)] = p [ x ( k ) ] II [(2TT)ndetGS(i-l)G/] l

k
• exp{- •£ Z [x(i) - Fx(i-l) - Bu(i-1)]/[GS(i-l)]-1

i=l

•[x(i) - Fx(i-l) - Bu(i-l)]} (3.2.16)

Equations 3.2.9 and 3.2.16 may now be substituted into 3.2.4 and

integrated (in principle) to yield p[z(l) z(k)|x(k)]. Note,
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however, that the integrand in 3.2.4 is a fourth-order exponential in

x(i), i = l,...,k, and that it probably cannot be evaluated in closed

form. However, it may be possible to obtain approximate solutions to

it by numerical methods or investigation of special cases.

Proceeding to the trajectory estimator, one logical likelihood

function is

L2[x(0),...,x(k)] = p[z(l),...,z(k)]x(O),...,x(k)] (3.2.17)

An expression for this has already been obtained and is given by

equation 3.2.V. Rather than maximizing 3.2.9 directly, the normal

method is to work with the logarithm of it. Therefore, the problem

of finding the state trajectory that maximizes 3.2.9 is equivalent to

minimizing

k / 2

[(i) - x (i)Qx(i)] ,_ _
(3.2.

with respect to the sequence of states {x(i), i = l,...,k}.

Obviously, L' is minimized if the state trajectory is chosen so

that1

i = l,2,...,k (3.2.19)

However, there are additional constraints in the form of equation

3.2.1, and these constraints are stochastic in nature because of the

*It is possible that the measurement noise can cause z(i) to lie out-
side the range of the function x/(i)Qx(i) for some i, so that 3.2.19
has no real solutions (e.g., z(i) < 0 for Q positive definite). This
problem can always be resolved by setting z(i) = 0 . In any case, the
probability of such an event is low if the control sequence is chosen
in accordance with the ideas in Chapter 2.
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presence of the plant noise. It is not possible in general to satisfy

both 3.2.1 and 3.2.19 nor is it possible to know if they are satisfied

since the plant noise is unknown. Clearly, any solution to 3.2.1 and

3.2.19 will necessarily be approximate.

One approach to such problems is to replace the stochastic con-

straints with deterministic ones obtained by substituting the expected

value of the plant noise (in this case, zero) for the value of the

plant noise. This is a workable approach, and a good one for com-

pletely linear systems, and is related to the Certainty Equivalence

Principle (Aoki [1], p. 52) of stochastic control theory. However, it

will be shown in subsequent sections that when 3.2.1 is substituted

into 3.2.19, quadratic forms in the plant noise are obtained due to

the quadratic form observer. In such terms it seems more reasonable

to use the second moment of the plant noise.

The result of this discussion is that a trajectory estimator can

be found by solving a set of deterministic simultaneous equations

quite similar to those developed in Chapter 2 in connection with the

question of observability.

It is still not clear whether or not the point estimator is

inherently better than the trajectory estimator. As Cox [5] and Rauch,

Tung and Striebel [20] point out, they are identical for linear systems,

but not necessarily so for nonlinear systems. That is, for nonlinear

systems, the most likely state does not necessarily lie on the most

likely trajectory= It might seem that the point estimator would be

somewhat better since it uses the complete probability density function

of the plant noise, whereas the trajectory estimator incorporates only
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the first two moments. However, as many authors have pointed out,

this can also be construed as a disadvantage for the point estimator

since it requires complete knowledge of the plant noise distribution,

while the trajectory estimator needs only the lcean and covariance

which are normally relatively easily determined. This is of no impor-

tance in this work since the plant noise is assumed to be gaussian,

but it is a factor if extensions of these ideas are made.

Maximum likelihood estimation as developed by Fisher in 1912

(Deutsch [7], p. 135) is an embodiment of the idea that estimates

should satisfy the equations which govern the observation process when

the actual observed values are substituted. This is the real motiva-

tion behind the choice 3.2.18 for the likelihood function. From this

viewpoint, it is clear that the discussion preceding 3.2.18 and the

corresponding discussion concerning the point estimator are merely

devices for treating maximum likelihood estimation in a more general

way that includes Fisher's ideas as a particular subclass of maximum

likelihood estimators. Thus it may be said that the result of using

3.2.18 is a classical maximum likelihood estimator.

The most compelling reason for choosing the trajectory estimator

is its immediately apparent relative computational tractability. It

has already been shown in Chapter 2 ueder what conditions a solution

exists for a set of equations similar to those of 3.2.1 and 3.2.19.

On the other hand, as pointed out during the development, the point

estimator requires integration of a fourth-order exponential in the

state which probably cannot be done in closed form.

Considering these factors, it was decided to use the trajectory
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estimator approach to obtain a maximum likelihood state estimation

algorithm. The remainder of the chapter is devoted to that goal.

One final point needs to be made before the material in the next

section. It is clear from the above discussion, and the fact is used

in Section 3.5, that equations 3.2.1 and 3.2.19 can be solved approxi-

mately for any state x(i), where i = l,...,k. Therefore, in order to

provide continuity with Chapter 2 and to make the results therein more

easily applicable, the development of the algorithm begins in Section

3.3 by finding an estimate of the initial state x(0) that approximately

satisfies 3.2.1 and 3.2.19. For this development an expression for

x(i) in terms of x(0) and the control and plant noise sequences is

necessary and is given by

i-1 .
x(i) = Fxx(O) + I FJBu(i-j-l)

j=0

i-1 .
+ 1 F3Gw(i-j-l) 1=0,1,... (3.2.20)

j=o

3.3 Calculation of the Initial State Estimate

In this section, the likelihood function Li given by equation

3.2.18 along with the constraints 3.2.1 are used to calculate an esti-

mate of x(0) based on the first n measurements. Later sections show

how to update this estimate to the present time step and make the cal-

culation sequential.

For notational ease, it is convenient at this point to make some

definitions similar to equation 2.2.4. In connection with 3.2.20, let

A k

U(k,0) = I FSuCk-l) (3.3.1)
i=0
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and
kA

W(k,O) = Z F^wCk-i) (3.3.2)
i=0

Putting 3.2.20, 3.3.1, and 3.3.2 into 3.2.19 with k = n,

[Fx(0) = U(0,0) » W(0,0)]/Q[Fx(0) = U(0,0) + W(0,0)]

I (3.3.3)

[Fnx(0) = U(n-l,0) + W(n-l,0)]'Q[Fnx(0) + U(n-l,0), + W(n-l,0)] = z(n)

Upon multiplyir _, out the terms in the brackets, the equations will

contain terms like

2u' (k,0K;:,k,0)

2v/ (k,0)QFnx(0)

and \f (k90)QW(k,0)

since the plant noise is unknown, w(i) is replaced by its expected

value, 0, in the first two expressions:

2U/ (k,0)QW(k,0) •*• 2U' (k,0)QE{W(k,0)}

k
= 2U'(k,O)QE{ E F Gw(k-i)}

i=0

k
= 2U/(k,0)Q Z F G£{w(k-i)}

1=0

= 0 (3.3.4)

where a •* b indicates that a is replaced by b.

Similarly, 2 ^ (k,0)QFnx(0) -»• 0 (3.3.5)

However, the third expression can be written in the form

= trace {QW(k,0)l/(k,0)}

+ trace {QE[W(k,0)W(k,0)]}
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k k .
But E[W(k,O)W/(k,0)] = E{ E E F^

i=0 j=0
(k-j)G/F/3}

k k .
= Z Z FXGE{w(k-i)w/ (k-j)}G'F'3

i=0 j=0

= E F
i=0

- Y(k,O)

by the assumptions on the statistics of the plant noise.

Hence, w'(k,0)QW(k,0) -» trace {QY(k,0)>

Utilizing these results in 3.3.3 and rearranging,

(3.3.6)

(3.3.7)

2u'(0,0)QF

2U7(n-l,0)QFn

x(0ln) =
'z(l)

z(n)

V(O,O)QU(O,O)

u'(n-l,0)QU(n-l,0)

"x/(0ln)F/QFx(0ln)

x/(0ln)F/nQFrix(0|n)
(3.3.8)

trace QY(O,O)

trace QY(n-l,O)

where x(0) in 3.3.3 has been replaced with x(Ol n) (following the

notation of Meditch [16]) since the solution to 3.3.3 is an approxi-

mation to the solution of 3.3.3 based on the first n measurements.

The equation 3.3.8 is identical in structure to equation 2.2.13

with the exception of the constant matrix

Y* = [trace QY(O,O),..., trace QY(n-l,0)]' (3.3.9)

on the right hand side which does not depend on x(0|n). Therefore,

the conditions for convergence of the successive approximation technique

to the solution x(0l n) of 3.3.8 are exactly the same. That is, the

sequence of approximations defined by

xi+1(0ln) = jkHz* - h- - Y* - X* [̂ (Oln)]} i = 0,1,... (3.3.10)
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with x (Oln) = 0 , Y* given by 3.3.9 and Z*, U*, X*, A defined in

equations 2.2.9 - 12, respectively, converges to the true solution

of 3.3.8 if the conditions on A in Chapter 2 are satisfied.

3.4 Sequential Form of the Estimator

So far, all that has been obtained is an estimate of the initial

state based on the first n measurements. The problem now arises of

what to do with the next measurement. It could be incorporated into

equation 3.3.8 and the pseudo-inverse used to arrive at an analog

of 3.3.10. However, this has the difficulty of increasing the

dimension of 3.3.10 by one with each new measurement, thus changing

the form of the estimation equation and eventually making calculation

of the pseudo-inverse unwieldy. Furthermore, the procedure is not

sequential. The purpose of this section is to alleviate these prob-

lems.

At time step k = n+1, an estimate of x(0), x(0ln), is available

and an estimate of x(l) can be calculated from it:

x(lln) = Fx(Oln) + Bu(0) (3.4.1)

where again the notation x(kl j) is that of Meditch [16] and denotes

an estimate of x(k) based on the first j measurements. This equation

can be combined with the measurement at n+1 in the following fashion.

Write the (n-KL)st measurement in terms of x(l):

[Fnx(l) + U(n,l) + W(n,l)]/QFnjc(l) + U(n,l) + W(n,l)] = z(n+l)

- v(n+l) (3.4.2)

where use has been made of the measurement equation

z(n+l) = x'(n+1)Ox(n+1) + v(n+l) (3.4.3)

Performing the multiplications and rearranging,
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2[U(n,l) +W(n,l)]'QFnx(l)

- x/(l)F/nQFnx(l)

Now form the partitioned matrix equation

[U(n,l) + W(n,l)]/QFn

+ I

(3.4.4)

[]
|_ 0 J (3.4.5)

o j

[U(n,l) + W(n,l)]'Q[U(n,l) + W(n,l)] - x7 (l)F/nQFnx(l)J

where x(l) is an estimate of x(l) based on x(0l n) and the (n+l)st

measurement. Notice that v(n+l) has been replaced by its mean value,

0, since it is unknown. Now let

A A r i i
1 [[U(n,l) +W(n,m'Q**J

is obviously of full rank. Then,

Cl) a Fx(Oln) + Bu(0) + I

(3.4.6)

+ W(n,l)]

(3.4.7)

The calculation of the matrix inverse c&n be avoided by using the

matrix inversion lemma (see, for example, Sage and Melsa [23], p.

499).

(A^Aj) = I + F/nQ[U(n,l) + W(n,l)] [U(n,l) + Wfa.Dl'QF11 (3.4.8)

by the definition of A.. Applying the matrix inversion lemma,

35



F/nQ[U(n,l)

l}"1

]'QFn,l) + W(n,l)]'QFn (3.4.9)

The required inverse has been reduced to simple division. Sub-

stituting 3.4.9 into 3.4.7 and simplifying and rearranging,

x(D sa 2(11 n) + | K(n+l){z(n+l) - 2[U(n,l)+ W(n,l)]'QFnx(ll n)

- [U(n,l) + W(n,l)]'Q[U(n,l) +W(n,l)] - S7 (l)F/nQFnx(l)} (3.4.10)

with K(n+1) = F/nQ[U(n,l) + W(n,l)]

,l) + W(n,l)]'QFVnQ[U(n,l) + W(n,l)] + l}" 1 (3.4.11)

As before, since W(n,l) is unknown, it is convenient to replace the

expressions in which it occurs with easily calculated expected values.

The resulting relations are taken as the definition of the maximum

likelihood estimate of the state at time 1 based on the first n+1

measurements, i.e.,

= x(lln) +jK(n+l){z(n+l) - 2l/ (n,l)QFnx(ll n)

U' (n,l)QU(n,l) - x7 (ll n+1)F'nQFnx(ll n+1)

n-1 .
- trace Q Z F GS(n-i)G'F/X} (3.4.12)

i=0
with

K(n+1) = F ^ ^

n-1 .
+ trace [QFnF/nQ Z F ^ S ^ - ^ G ' F 7 1] + l}"1 (3.4.13)

i=0
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Reasoning by induction, the maximum likelihood estimate of x(k)

based on the first k+n measurements is given by

x(k| k+n) = x(k| k+n-1) + y K(k+n){z(k+n)

- 2u'(k+n-1,k)QFnx(k| k+n-1)

- u' (k+n-1,k)QU(k+n-1,k)

n-1
- trace Q E F1GS(k+n-i)G/F/

i=0

- x(kl k+n)F/nQFnx(kl k+n)} (3.4.14)

where

K (k+n) = F7 nQU (k+n-1, k) {u' (k+n-1, k) Q F V nQU (k+n-1, k)

n-1
+ trace [QFnF/nQ I F1GS(k+n-i)G/F/1] + I}" 1 (3.4.15)

i=0

Equations 3.4.14 and 3.4.15 form the sequential estimate for x(k|k+n).

However, observe that x(kl k+n) appears on both sides of 3.4.14; at

this point, it is possible to develop an iterative procedure for

solving for the estimate. Such a solution has several disadvantages,

the main one being that x(kl k+n) is a fixed lag estimator of x(k)

with lag n. The purpose of the next section is to remove this

objection.

3.5 Construction of the Filtering Estimator

Equations 3.4.14 and 3.4.15 can be updated to time step k+n

using 3.2.20. However, in order to accurately describe the system

behavior, it is necessary to go back to equations 3.4.10 and 3.4.11

and include the plant noise. Generalizing from 3.4.1,
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x(k+nl k+n-1) = Fnx(k| k+n-1) + U(k+n-l,k) + W(k+n-1,k) (3.5.1)

and

x"(k+nl k+n) = Fnx (kl k+n) + U (k+n-1, k) + W (k+n-1, k) (3.5.2)

Inserting these into 3.4.10 at time step k,

x"(k+n| k+n) = x(k+n| k+n-1) + ^ F°K(k+n)

• {z (k+n)-2 [U (k+n-1) +

• [x(k+n| k+n-1) - U(k+n-l,k) - W(k+n-l,k)]

- [U(k+n-l,k) + W(k+n-l,k)]/Q[U(k+n-l,k) + W(k+n-l,k)]

- [x(k+nl k+n) - U(k+n-1,k) - W(k+n-l,k)]/Q

• [x(k+n|k+n) - U(k+n-l,k) - W(k+n-l,k)]} (3.5.3)

where K(k+n) is given by 3.4.11 with n replaced by k+n-1. As before,

since the plant noise is unknown, the expressions in which W(«,*)

appears are replaced by expected values that are relatively easy to

calculate. To denote this change, x (-1 •) is replaced by x (»| • ) ,

so that after simplifying,

x(k+nl k+n) = x(k+nl k+n-1) + j FnK(k+n)

• {z(k+n) - 2U7(k+n-1,k)Q[x(k+nl k+n-1) - x(k+nlk+n)]

-x'(k+nl k+n)Qx(k+nl' n)} (3.5.4)

K(k+n) = F/nQU(k+n-l,k){U/(k+n-l,k)QFnF/nQU(k+n-l,k)

n-1 . . __
+ trace [QFVnQ Z F1GS(k+n-i)G/F/1] + 1} l (3.5.5)

i=0
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and x (k+nl k+n-1) = Fx(k+n-ll k+n-1) + Bu(k-fn-l) (3.5.6)

Again, equations 3.5.4, 5, and 6 are taken as the defining relations

for the maximum likelihood state estimate. These equations are clearly

preferable over 3.4.14 and 3.4.15 from a filtering viewpoint since

they provide an estimate of the current state rather than a fixed

lag estimate.

Note that x(k+n| k+n) appears on both sides of 3.5.4. Therefore,

either a method will have to be given for solving for the state

estimate or an approximate algorithm developed. The purpose of the

next section is to obtain such an approximate algorithm.

The derivations of equations 3.5.4, 5, and 6 show that the time

index k ranges over the positive integers starting at k = 1. The

algorithm is started with x(n|n), which is obtained by updating

x(0| n) using 3.4.1 n times, while x(0l n) is found using the method

given in Section 3.3.

3.6 An Approximate Solution to the Estimator Equation

As already mentioned, 3.5.4 is a nonlinear implicit equation

in the current state estimate. It may be difficult and time-consuming

to find the solution. Therefore, it is useful to try to find an

approximate solution to 3.5.4.

The possibility that immediately suggests itself is to replace

x(k+nl k+n) on the right side of 3.5.4 with the one-step predicted

estimate x (k+nl k+n-1). Then the approximate solution to 3.5.4 is

xA(k+nl k+n) = xA(k+nl k+n-1) + \ F^Ck+n)

•{z(k+n) - x' (k+nl k+n-1)Qx.(k+nl k+n-1)} (3.6.1)
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x.(k+nl k+n-1) = Fx (k+n-ll k+n-1) + Bu(k+n-l) (3.6.2)
A A.

and K(k+n) still given by 3.5.5. The subscript A on the state

estimates indicates that they are only approximate solutions to

3.5.4. It remains to be shown whether or not the estimator is

consistent. Let

and

e(k+nl k+n-1) - x(k+n) - x .(k+nl k+n-1) (3.6.3)
A

e(k+n|k+n) = x(k+n) - xA (k+nl k+n) (3.6.4)

These are the one-step prediction error and filtering error

respectively. Then, using 3.6.1,

"I A

e(k+n| k+n) = e(k+n| k+n-1) - j FnK(k+n)

•{z(k+n) - x^ (k+nl k+n-1)QxA(k+nik+n-1)} (3.6.5)

recalling that

x7(k+n)Qx(k+n) + v(k+n) = z(k+n)

3.6.5 can be written

e(k+n| k+n) = e(k+n! k+n-1) - j FnK(k+n)

•{v(k+n) + [x(k+n) + xA(k+nl k+n-1)]'Qe(b Kil k+n-1)} (3.6.6)

where use has been made of the property of quadratic forms that

Xl / Q xl ~ x2 Q x2 " *xl + X2^'Q^X1 ~ X2^ (3.6.7)

Rearranging 3.6.6,
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e(k-hnlk+n) = ji-^^defn) [x(k+n) + $A(k+nl k+n-1)]
7

A(

•e(k+n| k+n-1) - |FnK(k+n)v(k+n) (3.6.8)

To simplify notation, let

^ - I - l-F^Ck+n) [x(k+n) + xA(k+ni k+n-1) ]'Q (3.6.9)

The one-step prediction error is related to the filtering error at

the previous time step by

e(k+nl k+n-1) = Fe(k+n-ll k+n-1) + Gw(k+n-l) (3.6.10)

Therefore, the difference equation for the filtering error is

e(k+nlk+n) = Bk+nFe(k+n-ll k+n-1) + Bfc+nGw(k+n-1)

- •|FnK(k+n)v(k+n) (3.6.11)

If the system matrices, the control input, and the noises are

all finite, then the last two terms in 3.6.11 look like finite dis-

turbance inputs. In this case, the most desirable error propagation,

i.e., maximum decrease of the magnitude of the error on the average

at each step, is obtained by insuring that the eigenvalues of

B,_. F lie as close as possible to the origin; in particular* they

must lie inside the unit circle. This will be the case if

"Bk+nF|l<1 (3.6.12)

At this point, it is not clear whether or not a control sequence

exists such that 3.6.12 is satisfied in general. Also, since 3.6.12

should be checked at each time step, it is unwieldy to use it to
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determine the proper control. Therefore, perhaps a better method

of investigating the consistency of 3.6.1 is a simulation. This is one

of the purposes of Chapter 6, Numerical Results.

3.7 A Scalar Example

The following example is intended to point out the amount and

kind of computation required to estimate the state of a' simple

system using the previous algorithm.

Let the system be described by

i x(k)+ u(k) + w(k) (3.7.1)

k = 0,1, ...

| x2(k+l) (3.7.2)

with x(k) a scalar. Suppose that x(0) = -1, and arbitrarily choose

u(k) = 1, k = 0,1,... . Let the plant noise covariance be constant

at S = .01, and further suppose that the particular plant noise

sample function for this example is w(k) = 0, k = 0,1,... . There-

fore,

x(2) = |(i) + 1 = | z(2) =

x(3) = f(|) + 1 = f z(2) =

,,. 1.13. . , 29 ... 341
x(4) - 2(g-> + 1 » i6 z<*> =

First, the initial state estimate x(0) must be calculated.
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U(0,0) = u(0) = 1

Z* = z(l) - |

Y(0,0) = .01

trace QY(0,0) = Y* = .005

A = 2U'(0,0)QF = 2(1)(.5)(.5) = .5 A"1 = 2

Using these values in 3.3.10,

3^(011) = -|(2){.125 - 1 - .005} = -.880

x2 (Oil) = x^Oll) - | A'
1X*[x1(2ll)]

=,-.880 - (-.880)(.125)(-.880) = -.880 -.0969 = -.9769

x3(0| 1) = X;L(0| 1) - | A"
1X*[x2(0| 1)]

- -.880 -(-.9769)(.125)(-.9769) = -.880 -.1192 - -.9992

apparently, x(0| 1) is approaching the value -1 as expected-.- There-

fore, take x(0l 1) = -1. The state estimate at k = 1 is found from the

update equation.

x(ll 1) = Fx(0l 1) + Bu(0) = |(-l) + l = | = £A(1| 1)

The next step is to calculate the•subsequent state estimates. To

do this, the filter gain K(«) must be determined. Notice that, since

the system is time-invariant and the control is constant, K(*) is

also time-invaixant. From 3.5.5

K = -|(|) (1) { (1) (|) X|) <|) (|) (1) + (|) (|) (|) (|) (. 01) + I}" 1

= ^d.063125)"1 ss .235

xA<2l 1) = FxA(ll 1) + Bu(l) = -}(|) + 1 = f-

xA(2l 2) = | + I ( I ) ( .235){ | | - | | > - f
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etc. The last two answers are obtained via the approximate algorithm

in Section 3.6. In the noiseless case, the accuracy of the first few

estimates is directly dependent on the ability of the algorithm to

accurately calculate x(Oln). It is also apparent why a constant

control is so attractive for a time-invariant system; the filter

gain only has to be computed once.

3.8 Summary and Conclusions

In this chapter, the technique of maximum likelihood has been

used to derive a nonlinear implicit equation, 3.5.4, for the current

state estimate. It is possible to solve this equation directly using

methods well known in the theory of nonlinear equations (see e.g.,

Ostrowski [18], Saaty [21], or Stern [26]). However, any such

solution will be expensive in terms of time and computational effort.

Therefore, an approximate algorithm (Section 3.6) has been obtained

to circumvent this difficulty. The consistency of this estimator

is still in doubt, and is one of the topics covered in Chapter 6,

Numerical Results.

The forms of the estimators, 3.5.4 and 3.6.1, and the equation

for the filter gain, 3.5.5, exhibit a property that is recurrent

throughout this thesis. That is, the control cannot be identically

zero for these algorithms. Otherwise, K(k) = 0 and there is no

measurement feedback to correct the one-step predicted estimate.

Under this condition, there is little reason to expect the state

estimates to be very good except, possibly, in the case of small

noise. Even then, divergence will occur after a long enough time

if the plant noise is not identically zero.
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Practically speaking, the implementation of the results of

this chapter is somewhat cumbersome, due mainly to the fact that a

different procedure is used to calculate the estimate of x(0) than

the other state estimates. Furthermore, no state estimate is

available until time sttp n. The object of the next chapter is

to eliminate these difficulties.
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Chapter 4

A BAYESIAN APPROACH TO STATE ESTIMATION

4.1 Introduction

In this chapter, a more general approach to the problem of

state estimation is taken in an effort to make better use cf

available data. The basic groundwork has been laid in a paper by

Ho and Lee [8].

Assume that some set of measurements Z*(k) = [z(l), z(2),...,

z(k)] is given, and it is desired to determine the best (in some

sense) estimate of the current state x(k) based on these measure-

ments. The Bayesian approach is to determine the a posteriori

conditional density function p[x(k)| Z*(k)], since it contains all

the pertinent statistical information. Knowing p[x(k)l Z*(k)],

various estimates of x(k) can be determined. Two of these are

the conditional mean (CM) estimate given by

JW(k!k) - f x(k) p[x(k)IZ*(k)] dx(k) (4.1.1)

and the maximum a posteriori (MAP), or most probable, estimate which

is the mode of p[x(k)l Z*(k)] and is calculated frm

3p[x(k)IZ»(k)]f mQ f, .

with

32p[x(k)IZ*(k)]| , < o (4 1 3 )
1 \v fir\ le\ K.H.X.J)

3x2(k) lxMAP(kik)

In problems with nonlinear dynamics and/or observers, it is
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usually impractical if not impossible to calculate the conditional

mean because the posterior density function is not representable in

closed form. A more insidious difficulty is that such density

functions are not reproducing; that is, the form of the density

function, hence the form of the estimator, changes with time.

This makes sequential implsmentation extremely difficult. In such

cases it is common to make the ad hoc assumption that p[x(k)l Z*(k)]

has a reproducing form, usually gaussian. It will become apparent

that the problem cf state estimation with quadratic form observers

possesses all of these difficulties, but some measure of progress

can still be made.

4.2 Calculation of the Posterior Density Function

For the convenience of the reader, the system model is restated

in abbreviated form.

x{k+l) - Fx(k) + Bu(k) + Gw(k) (4.2.1)

z(k+l) - x' (k+l)Qx(k+l) + v(k+l) (4.2.2)

The initial state x(0) is zero-mean and gaussian with covariance

P(0). The plant noise sequence (w(k)} and measurement noise sequence

{v(k)} are also zero-mean and gaussian, and in addition are white

with respective covariances S(k) and T(k). It is further assumed

that the initial state and noises are all independent.

The following result, which depends on Bayes' rule and recognition

of the fact that the process described by 4.2.1 is a Markov sequence,

is derived by Ho and Lee [6], and in slightly different form by Sage
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and Melsa [23], p. 274. The posterior density function can be

written in the recursive form

Plx(fc+i;iz (K+L)} p[z(k+i)|z*(k)]

•Jp[x(k+l)lx(k)]p[x(k)|Z*(k)]dx(k) (4.2.3)

with

p[x(0)|Z*(0)] = p[x(O)] (4.2.4)

First, the posterior density function will be computed explicitly

for the first two time steps. Then, using these results, a form for

the density function at later times will be assumed. By the state-

ment of the problem, x(0) has a zero-mean gaussian distribution

with covariance P(0). Therefore,

1 , .
p[x(O)] - [(2ir)ndetP(0)]' 2 exp{- y yf (0)?~L(0)x(0)} (4.2.5>

Since x(l) - Fx(0) + Bu(0) + Gw(0), p[x(l)!x(0)] is gaussian

because w(0) is. Moreover

Efx(l)lx(0)} - Fx(O) + Bu(0) (4.2.6)

and var{x(l)lx(O)} = E[{x(l) - E[x(l)l x(0)]}{x(l) - E[x(l)l x(0)]}'l x(0)3

«* GS(O)G' (4.2.7)

so that

- [(2TT)ndetGS(O)G/]

•exp{- | [x( l ) - Fx(O) - BuWl'lGSWG'rhxU) - Fx(O) - Bu(O)]} (4.2.8)

Tfore precisely, p[x(l)l x(0),u(0)] is gaussian. However, u(0)
[and later u(k)] may be treated like any other known system
parameters and not included in the list of conditioning variables.
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A similar relationship holds at all other times also:

p[x(k-KL)lx(k)] = t(2TT)ndetGS(k)G/]" I

•exp{- -|[x(k+l) - Fx(k) - Bu(k)]' [GS(k)G' rtxCk+l) - Fx(k) - Bu(k)]}

(4.2.9)

The density function p[z(l)lx(l)] is also gaussian, since

z(l) = x'(l)Qx(l) + v(l) and v(l) is gaussian.

E{z(l)lx(l)} = E{x'(l)Qx(l) + v(l)lx(l)} = x' (l)Qx(l) (4.2.10)

from the assumption that (v(k)} has zero-mean.

var{z(l)lx(l)> = E[{z(l) - x'(l)Qx(l)}2l x(l)] = E{v2(l)} = T(l) (4.2.11)

Therefore,

A 1 2
2 exp{- ̂ y [z(l) - x'(l)Qx(l)r} (4.2.12)

Again, a similar equation is true for all time:

1 , 2

p[z(k) |x(k)] = [2T7T(k)]~ 2 exp{- - ^ y [z(k) - x' (k)Qx(k)] ^ (4.2.13)

The density p[z(k+l)iZ*(k)] can be found (conceptually) from

p[z(k+l)| Z*(k)] - J*p[x(k+l),z(k+l)l Z*(k)]dx(k+1)

- Jpfz(k+l)| x(k+l)] Jp[x(k+l)l x(k) Jp[x(k)l Z*(k)]dx(k)dx(k+1) (4.2.14)

p[z(l)!Z*(0)] = p[z(l)] =/ptz(l)lx(l)] Jp[x(l)lx(0)]p[x(0)]-dx(0)dx(l)

= [2TrT(l)]" 2 [(27T)ndetGS(0)G/]~ 2 [ (2ir)ndet.P(0) ] " 2 (4.2.15)

CO

- 0 0

/exp{-

CO

/exp{- | tx(l) - Fx(0) - BuWl ' lGSWG'f^xd) - Fx(0) - Bu(O)]
0

- | x ' (0)P"1(0)x(0)}dx(0)dx(l) (4.2.16)



The second integral can be evaluated by completing the square in

the exponent on x(0). When this is done

_ 1 I
p[z(l)|Z*(0)] - [2TTT(1)] 2{(2iT)ndet[FP(0)F/ +GS(O)G/]}~2

CO

•/exp{- - ^

-co

~ - Bu(0)]'[FP(0)F' - Bu(O)]}dx(l) (4.2.17)

The integral in 4.2.17 has no closed form solution, but it does have

the property that it is not a function of x(l). This fact will be

useful in what follows. It is now possible to write down the density

function p[x(l)l Z*(l)]:

•exp {- |

I

4- GS(O)G']}" 2

- Bu(0)]/[FP(0)F/ + GS(O)G' rtxCU - Bu(0)]

*' (l)Qx(l)]2}

(4.2.18)

The next density function required is p[x(2)| Z*(l)] which

can be calculated from the rule

p[x(2)IZ*(l)] = fp[x(2)lx(l)]

p[z(l)U*{0)1 t(2ir)ndet[FP(0)F/

/exp{- I f i ]

I I
GS(O)G;]}" 2 [(2ir)ndetGS(l)G/J~ 2

—03

- Bu(O)]'[FP(O)F'

- \ [x(2) - Fx(l) -

- Bu(O)]

- Fx(l) -

(4.2.19)

It is believed that this integral cannot be evaluated in closed
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form. In order to continue then, it is necessary to make some assump-

tions concerning the form of the density functions at later time steps.

A common approach, and the one used hy Sage and Melsa [23] , p. 466,

in their derivation of approximate conditional mean filtering for

nonlinear systems, is to assume that p[x(k)l Z*(k)] is gaussian.

However, 4.2.18 shows that this assumption may not be very good for

this problem, at least at time step k = 1. In fact, p[x(l)l Z*(l)]

may not even be unimodal. Therefore, an equally reasonable and

perhaps more accurate assumption is that p[x(2)l Z*(l)] is gaussian

since p[x(l)l Z*CO)] is. Under this assumption, only the conditional

mean and covariance of x(2) given Z*(l) are needed to determine

p[x(2)l Z*(l)]. Approximations to these statistics are not difficult

to calculate using 4.2.19. The conditional mean is

E{x(2)IZ*(l)} = / / x(2)p[x(2)|Z*(l)]dx(l)dx(2)
x(2)

= / f x(2)p[x(2)|xa>]p[xa)IZ*(l)]dx(l)dx<2) (4.2.20)
x(2) x'd)

Interchanging the order of integration,

E{x(2)IZ*(l)} = / p[x(l)IZ*(l)] / p[x(2)lx(l)]dx(2)dx(l)
x(l) x(2)

(4.2.21)

The second integral is easily evaluated from equation 4.2.9 to give

E{x(2)IZ*(l)> = Ja) [Fx(l) + Bu(l)]p[x(l)[Z*(l)]dx(l) (4.2.22)

Therefore, by the definition of conditional mean,

E{x(2)l Z*(l)> - FE{x(l)l Z*(l)} + Bu(l) (4.2.23)

As with the integral in 4.2.19, it is believed that E{x(l)l Z*(l)}
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cannot be found analytically. Assume for the moment, however, that

an estimate of E{x(l)l Z*(l)}, call it x(ll 1), is available by what-

ever means. One of the functions of the next section is to show

how to calculate x(*l •), Then,

E{x(2)l Z*(l)} = x(2| 1) = Fx(l| 1) + Bu(l) (4.2.24)

In a similar fashion,

var (x(2)iZ*(l)} 5= f p[x(l)l Z*(l) ] / [x(2) - E{x(2)| Z*U)>1

x(D x(2)

•[x(2) - Ej[x(2)IZ*(l)}]/p[x(2)lx(l)]dx(2)dx(l) (4.2.25)

After carrying out the indicated operations,

var{x(2)| Z*(l)} = Fvar{x(l)IZ*(l)}F/ + G S d ) ^ (4.2.26)

But, var{x(l)l Z*(l)} ̂  P(l| 1)

= E{[x(l) - x(lU)][x(l) - xdiDl'lZ*^} (4.2.27)

so that

var{x(2)| Z*(l)} = P(2| 1) = FP(ll 1)F7 + GS(1)G/ (4.2.28)

Therefore, p[x(2)l Z*(l)] is approximately given by

p[x(2)|Z*(l)] s K ; L exp{-|[x(2) - S(2l 1) J
/P~1(2| 1) [x(2) -&(2\ 1)]} (4.2.29)

where K. is an appropriate normalization constant. Using 4.2.29, it is

apparent from the development of p[x(l)|z*(l)J that p[x(2)|z*(2)J has

the approximate form

p[x(2)iZ*(2)] = K 2 exp{- 2T^2)"[Z(2) - x
/(2)Qx(2)]2

- x (2|1)]/P"1(2|l)[x(2) - S(2| 1)]> (4.2.30)
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where again K_ is a normalization constant. It is not much of an

inductive leap now to make the formal assumption that

p[x(k)!z*(k-l)] - K3 exp{-|[x(k) - £(klk-l)]
/P"'1(k|k-l)

•[x(k) - £(klk-l)]} (4.2.31)

with P(klk-l) = FPCk-llk-DF' + GS(k-l)G' (4.2.32)

and P(k!k) - E{[x(k) - x(klk)][x(k) - x(k| k)]'l Z*(k)} (4.2.33)

and x(k!k-l) = Fx(k-ll k-1) + 3u(k-l) (4.2.34)

all of which imply that

p[x(k)IZ*(k)] = K4 exp{- 2rfk)-[z(
k) " x'(k)Qx(k)]2

(4.2.35)

Equations 4.2.31-35 form the core for the remaining develop-

ments in this chapter. Notice that by the arguments already used in

connection with 4.2.19 that it will not be possible to calculate

E{x(k)l Z*(k)} using 4.2.35. In this regard, these assumptions are

not as nice as those used by Sage and Melsa £23] , p. 466, in their

derivation of the approximate conditional mean filtering algorithm.

However, equations 4.2.31-35 may lead to more accurate or easily

implementable algorithms if some other estimate is used.

4.3 Calculation of the Maximum A Posteriori State Estimate

One way to generate the quantity x(kl k) needed for the density

functions derived in Section 4.2 is to use 4.1.2 and 4.1.3 to obtain

the maximum a posteriori (MAP) estimate of x(k). Applying 4.1.2,

-l) = 0 (4.3.1)
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where

l c-llk-1) + Bu(k-l) (4.3.2)

+T7 |rP(k|k~l)QxMAp(k|k)

Or, rearranging

[z(k) - x^pCkl^Q^Cklk)] (4.3.3)

where use has been made of the technique of taking the derivative of

the logarithm of p[x(k)|z*(k)].

Equation 4.3.3 is a nonlinear algebraic equation in x\̂  (k|k)

that may be difficult to solve, particularly if its solution is not

unique. This will be the case if p[x(k)|z*(k)] is multimodal which

is entirely possible. For this reason 4.3.3 will not be very useful

from a practical standpoint. For the purpose of comparison, in the

chapter on numerical results a standard function minimization routine

will be used to try to find the global minimum of the exponent in

4.2.35 at each time step. It will be seen that such a procedure is

very expensive in terms of computer time and may require a large number

of iterations. It therefore is important to develop some alternative

algorithm that is more feasible computationally.

4.4 A Geometric Approach to Estimating the State

The aim of this section is to find an approximation to the value

of x(k) that yields the maximum in 4.2.35 and is easy to calculate.

Consider the exponent in 4.2.35 at time step k; call it f(x), dropping

the time indices for convenience.

f (x) = |r [z " x'Qx]2 + 7 [x " ̂ P " 1 ^ - 2] (4.4.1)

As already discussed, minimizing f(x) is the same as maximizing
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p[x(k)|z*(k)]; therefore, an approximation to the minimum of f(x)

is desired. f(x) can be written as the sum of two functions of x:

f(x) = f-^x) + f2(x) (4.4.2)

where f^x) = |^ [z - x'Qx]2 (4.4.3)

and f2(x) = | [x - xj'p^Cx - x] (4.4.4)

Both fj and f2 are non-negative functions of x. One approach to

finding an approximate minimum of f(x) is to calculate the minima of

f.(x) and f_(x) and choose an intermediate value as the estimate of

the minimum of f(x)-

The minimum value of f.(x) occurs at all x such that the equation

J/QX = z (4.4.5)

is satisfied, if any such x exists. The only possibility of non-

existence of solutions to 4.4.5 occurs when measurement noise causes

the value of z to lie outside the range of the function x Qx (e.g., a

negative z for positive definite Q). This pathological case can always

be rerolved by setting z = 0. If Q is positive or negative definite,

this results in x = 0, a unique solution to 4.4.5.

Equation 4.4.5 is that of a hyper-conic section in state space.

Different types of surfaces are formed according to the definiteness

of Q. If Q is positive definite, the surface is a hyper-ellipsoid;

if it is negative definite, a hyper-hyperboloid, etc.

The minimum value of f„(x) always occurs at x = x. For the two-

dimensional case, the functions x /Qx= z,x = x, and x/Qx = z (where

z is given by x7 Qx" = z) with z and x given typical values and Q

positive definite are plotted in Figure 4.4.1.
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x Qx = z

Figure 4.4.1 2-D Illustration of x7Qx = z, x7 Qx = z, and x = x

In the figure the dotted line xx is normal to the x7 Qx = z

surface. Therefore, the length of xx is the shortest distance from

x to the surface. It is reasonable to expect that x*, the minimum

of f(x), lies somewhere close to this line segment. If x* is assumed

to lie on xx between x and x, then it can be written

x* = ax + (l-a)x (4.4.6)

where a is a scalar, a e[0,l). The normal of unit length perpendicular

to x/Qx = z at x is given by

r _ 7(x7Qx - g) 1
HV(x/Qx - z)H

1 X = X

Observe that x, which is unknown, appears on the right side of this

equation. Using this equation and referring to Figure 4.4.1,

x » x + c7h (4.4.8)

or x = x + cQx = (I + cQ)x (4.4.9)

where c is a scalar that can be determined from the fact that x7Qx = z

in the following manner. If (I + cQ) exists, then

x = (I + cQ)" 1^ (4.4.10)

- ToxT (4.4.7)
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x' (I + cQ)' V l + cQ) 1and x' (I + cQ)' V l + cQ) 1x = z (4.4.11)

In principle, this equation can be solved for c and 4.4.10 used

to calculate x. However, 4.4.11 has no nice closed form solution for

c and it requires the existence and calculation of (I + cQ) . The

following development is designed to circumvent these problems.

Instead of calculating x, find a value x , if it exists, that

satisfies x 'QX = z and lies on the normal to the surface x?Qx = z

passing through x. The unit normal to x Qx = z at x is given by

* x ~* x

Usint this relation and Figure 4.4.1, x is given by

x° = x + bh (4.4.13)

where again b is a scalar that can be determined from the fact that

o/ „ o
x Qx = z.

xO/Qx° = (x + bh)'Q(x + bh) = z

Or, bh'Qh + 2bh/Qx + [x'Qx - z] = 0 (4.4.14)

This is a scalar quadratic eqaation for b; i ts solution by the quadratic

formula is

-> 1/2
_ -h7Qx ± {[t/Qx]2 - h'Qhtx'QS - z]}

As already mentioned, x may not exist; that is, the normal to x'Qx * z

at x may not intersect the x'Qx = z surface. In this case, 4.4.15

will result in a complex number for b. One method of resolving this

problem is to modify b so that the resulting x is real and as close to

the calculated complex x as possible. This is easily done by simply

setting the imaginary part of b to zero. However, this may result in

state estimates that are further away from x than the distance
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between the surfaces x* Qx = z and x'Qx = z. This can be partially

corrected by taking the absolute value of the quantity under the

radical in 4.4.15, thus always making b real. Choice of the root of

minimum absolute value in 4.4.15 yields a state estimate that is

closer to x.

In any problem for which x and x are reasonably close together,

such as low noise systems, the case of complex b is not very important

from a practical point of view. The pathological situation occurs

only for a relatively small set of x and z. If desirable, the one-

step predicted estimate (for a plant controllable over some sequence)

can be made to lie near one of the eigenvectors of Q by use of the

control input. Since ths surfaces of constant z all have coincident

normals (namely, the eigenvectors) where they intersect the eigenvectors,

x always exists for such x.

In all cases, the root of smallest absolute value should be

chosen in 4.4.15. One reason has already been discussed. The other

reason is that the remaining root, for b real, corresponds to the

intersection of the line xx with another point on the hyper-surface

which is of no interest.

Finally, after calculating b and h, x* can be found front 4.4.6

and 4.4.13 with x replaced by x .

x* - ax + (l-a)(x + bh)

- x + (l-a)bh (4.4.16)

All that remains is a rational choice for the scalar a. From

equation 4.4.1, a should be chosen according to the relative un-

certainties in the measurement z and the one-step predicted estimate
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x. That is, if 1x8 » ipB, then x* should be much closer to £ than

to x, and! vice-versa. In practice, however, P is not known with

any great degree of accuracy, if at all. Furthermore, calculation

of P increases the complexity of the algorithm. Therefore, a guess

for a, say a ** y, may yield as good results as a value of a based on

calculation of P. In the chapter on numerical results, this algorithm

is implemented with a • r- and the results of a simulation compared

with those of an approximate conditional mean filter and the

maximum likelihood filter developed in the preceeding chapter.

Although the foregoing arguments are baned on a two-dimensional

picture, the results carry over to the n-dimensional case with only

one minor modification. The surfaces xr Qx » z and x Qx • z are

no longer conic sections but hyper-ccitic sections.

Reinserting the time indices and summarizing,

*AMAP(k'k) " Sjwupfrlfc-l) + a~a)b{k)h(k) (4.4.17)

Bu(k-1) (4.4.18)

b(k> ' ĥ

± W (k)QxAMAp(k|k-l)}
2 - h'(k)Qh(k)

I11"^ " Z(k)}1 ^ (4.4.20)

where the root with minimum magnitude is used.

Finally,

I * } (4.4.21)
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4.5 Calculation of the Approximate Error Covariance Matrix

In order that P(kjk-l) may be used to find a, and for purposes

of comparison, a method is presented here for its approximate calcu-

lation. Since.

P(kjk-l) = FP(k-l|k-l)F/ + G S ^ - l ) ^ (4.5.1/

it is only necessary to compute P(k-l|k-l), the error covariance of

x(k-l) conditioned on Z*(k-1).

By construction, x* given by 4.4.16 is an approximate solution

to 4.3.3 which is repeated for convenience (without the MAP sub-

script) .

x(k|k) = x(k|k-l) +=7T7 [z(k) - #(k|k)QS(k|lO]P(k|k-l)Qx(k|k)

T ( k ) (4.3.3)

If x* is close to a solution of 4.3.3 then the following results will

yield an approximate answer for the covariance of the error x(k)-x*(k),

Let

e(k+l|k+l) = x(k+l) - x(k+l|k+l) (4.5.2)

so that

e(k|k) - xGO - x(k|k) = Fx(k-l) + Bu(k-l) + Gw(k-l)

-Fx(k-ljk-l) - Bu(k-l)

f [z(k) " x
= Fe(k-l|k-l) + Gw(k-l) (4.5.3)

- ^ y [z(k) - x/(k|k)QS(k|k)]P(k|k-l)Q5(k|k)

But

z(k) - x(k|k)Qx(k|k) = x/(k)Qx(k) + v(k) - x' (k(k)Qx(kJk)

= [x(k) + xCkl^j'QeCkjk) + v(k) (4.5.4)
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Inserting 4.5.4 into 4.5.3,

I + ^ y P(k|k-l)Qx(k|k)[x(k) + x*(k|k)]'Qe(k|k)

= Fe(k-l|k-l) + Gw(k-l) - ̂ )V(k)P(k|k-l)Qx(k|k) (4.5.5)

Since x(k) is unknown, it is replaced with the best available

estimate of x(k), x(k|k).

i(k|k) = B'^FiCk-llk-l) + Gw(k-l) - ̂ x- v(k)P(k|k-l)Q£(k|k)}
k i W (4.5.6)

where Bfc = I + ̂ - P(k|k-l)Qx(k|k)x/ (k|k)Q (4.5.7)

and the bar over the error indicates that x(k) has been replaced by

x(k|k).

Note that B, has no random components at time step k. The error

covariance is defined as

P(k|k) = E{[e(k|k) - E{e(k|k)|z*(k)}][e(k|k) - E{e(k|k)|z*(k)}]'|z*(k)}

(4.5.8)

Now E{e(k|k)|z*(k)} = E{x(k) - x(kjk)|Z*(k)}

» E{x(k)|z*(k)} - x(kjk) (4.5.9)

Recall that the conditional expectation in (4.5.9) is not calculable.

Therefore, in order to arrive at an approximation for P(k|k), it is

assumed that

x(k|k) s*E{x(k)|z*(k)} (4.5.10)

so that

P(k|k) s E{i(k|k)i
/(k|k)|z*(k)} (4.5.11)

Assumption 4.5.10 may be very good if the function 4.4.1 is unimodal

and not too unsymmetrical. Otherwise, 4.5.10 can be considerably in

error since the solution to 4.3.3 lies on one of the extrema of

4.4.1, while E{x(k)|z*(k)} and x*(k) do not necessarily. In any case,
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using 4.5.11,

P(k|k) s B" 1 E{[Fe(k-l|k-l) + Gw(k-l) - -—v(k)P(k|k-l)Qx(k|k)]

•[Fe(k-l|k-l) + Gw(k-l) - ̂ - v(k)P(k|k-l)Qx(k|k)]/|z*(k)}

•B^" 1 (4.5.12)

Using the assumed independences of the plant and measurement noises

P(k|k) as Bk~
1{FP(k-l|k-l)F/+ GS(k-l)G/+ JTTT P(k|k-l)Qx(k|k)x/ (k|k)Q

•P(k|k-1)}B/^1 (4.5.13)

Or

P(k|k) = B~1{I +^j-P(k|k-l)QS(k|k)x/(k|k)Q}P(k|k-l)BJc"
1 (4.5.14)

Using equation 4.5.7,

P(k|k)

(4.5.15)

Calculation of the matrix inverse can be avoided by use of the matrix

inversion lemma

=>Pfk|k) = P(k|k-1) - 4P(k|k-l)Qx(k|k)[4x/(k|k)QP(k|k-l)Qx(k|k) + T(k)]"1

• x/(k|k)QP(k|k-l) (4.5.16)

and

P(k|k-1) = FP(k-l|k-l)F/+ GS(1C-1)G' (4.5.17)

Equations 4.5.16 and 4.5.17 are approximate recursive relations for

the error covariances of XMApO1!'*) an{* x * 0 0 , tne solutions to 4.3.3

and 4.4.16 respectively. If the error covariance of x*(k) is desired,

then x*(k) should replace x(k|k) in 4.5.16.
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4.6 Some Remarks on Error Propagation

Equation 4.5.6 is the difference equation that describes approx-

imately the trajectory of the state estimation error. It is important

to notice two things: 1) 4.5.6 is a linear difference equation,

and 2) the last two terms on the right hand side appear as distur-

bance inputs. If these disturbances are finite, then the approximate

error will decrease on the average if the unforced part of 4.5.6 is

uniformly asymptotically stable-in-the-large. Since

e(k|k) = B^FiCk-llk-l) (4.6.1)

is the unforced part of 4.5.6 and is linear, uniform asymptotic

stabili'cy-in-the-large is equivalent to the stability of the origin

(see, e.g., Aoki II], Kalman and Bertram [11], or Kushner [13]and [14]).

Therefore, a necessary and sufficient condition for the stability

of 4.6.1 is that the eigenvalues of B, F all lie inside the unit circle.

This will occur if

IB^FB < 1 (4.6.2)

Or, using the properties of norms,

IFI < B B ^ B " 1 (4.6.3)

is a sufficient condition for the stability of 4.6.1. Recalling the

definition of B. , 4.5.7, it is clear thit IB!"1!!"1 is indirectly

controllable by u(k-l); i.e., by making u(k-l) large, x(k|k) can

be moved as far as desired away from the origin. Thus, 4.6.3 can be

satisfied for large enough control.

Of course, 4.6.3 is structured such that the required u(k-l)

cannot be computed ahead of time. A particular u(k-l) must be used

to obtain x(k), z(k), and x(k|k). Then these values can be inserted
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into the right hand side of 4.6.3 to ascertain whether or not it is

true. A better procedure is to try to find a u(k-l) such that the

resulting x(k|k) is very likely to satisfy 4.6.3- This can be done

by replacing x(k|k) with x(k|k-l) = Fx(k-l|k-l) + Bu(k-l). Then a

candidate for u(k-l) can be substituted into 4.6.3, to see if it

holds before applying it to the system. If it does not, then another

u(k-l) can be tried, etc., until 4.6.3 is satisfied.

In actual practice, such a calculation may not be necessary.

In the first simulation in the chapter on numerical results, it is

found that a constant control, in this case a scalar of u(k) = 1

for all k, is sufficient for the algorithm to be statistically

consistent. It is entirely possible that some such convenient control

will work in the general case.

4.7 A Scalar Example

Consider the problem posed in Section 3.7. Remember that

x(k+l) = I x(k) + u(k) + w(k) (4.7.1)
2

z(k+l) = Ix2(k+1) (4.7.2)
2

with x(0) = - 1 , u(k) = 1 for a l l k, and S(k) = .01 but w(k) = 0. The

last group of assumptions i s made to allow the t r i a l of equation 4.5.3.

a) Calculation of MAP estimate using 4.3.3

«MApCl|O) = Bu<0) = 1

P(l|0) = f<l)f + .01 = .26

- 1 + 200(.26) 1

x^dll) = 1 + 3.25 x^dlD - 13
The solution to this cubic equation is approximately x^ (ljl) = .558
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and was obtained by trial and error. The next step is to calculate

P(ll 1) using 4.5.16.

P(l|l) = .26 - 4(.26)2(|)2(.558)2[4(.558)2(|)2(.26) + .01]"1

= .26 - .2314 = .0286

P(2| 1) = -|-(.O286) + .01 = ,01715

1) = |-(.558) + 1 = 1.279

2) = 1.279 + 200(.01715) (1)3^,(21 2) [.78125 - 1 ^ ( 2 1 2 ) ]

= 1.279 + 1.3398 3^(212) - .8575 3^,(21 2)

The solution to this cubic is approximately xMA_,(2l 2)=1.2578. Com-

parison with the example in Chapter 3 shows that the first two state

estimates are close to the two values of the states and appear to be

getting closer with time,

b) Calculation of the approximate MAP (AMAP) estimate using 4.4.16.

0) = Bu(0) = 1

h = 1 so that

Then, using a = r a s will be done in Chapter 6,

b(2) = - J- so that
o2> - r 1 - \= r = I which is exact
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For this example at least, the approximate MAP (AMAP) estimator

gives estimates that are about as good as those of the MAP estimator.

In addition, the AMAP computational procedure is much simpler,

primarily because of the need to solve a cubic equation for the MAP

estimate. Also, the MAP estimate requires calculation of the error

covariance, while the AMAP does not.

4.8 Summary and Conclusions

In this chapter, an approximate form for the posterior density

function of the state conditioned on the measurements is obtained

based on logical considerations. After noting that finding the

value of the state directly that maximizes this density function

is a difficult problem, a simple approximation to this maximum is

derived, along with conditions on the control for estimator con-

sistency. Finally, a scalar example is included to demonstrate the

relative computational difficulties of the MAP and AMAP estimators.

The AMAP estimator is very appealing because of its simplicity.

It should be somewhat faster than a linearized Kalman filter since

it requires no error covariance calculation.
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Chapter 5

ALGORITHM TABULATION AND STRUCTURAL COMPARISONS

5.1 Introduction

The purpose of this chapter is twofold; first, the basic problem

is restated and each of the algorithms discussed are tabulated for

handy future reference. In addition, first- and second-order approxi-

mate conditional mean filters (Sage and Melsa [23], p. 466) are

presented for comparison. Second, the differences and similarities

among the algorithms are brought out with a special view toward

computational difficulties.

5.2 Problem Restatement

The original problem is restated in tabular form in Table 5.2.1.

Table 5.2.1 Problem Statement

Plant
Dynamics

Observation

Initial State
Statistics

Plant Noise
Statistics

Measurement
Noise
Statistics

Desired
Result

x(k+l) = Fx(k) + Bu(k) + Gw(k) k = 0,1, ...

z(k+l) = x/(k+l)Qx(k+l) + v(k+l), Q = o/

E{x(0)} = 0 var{x(0)} - P(O)
gaussian

E{w(k)} = 0 for all k var{w(k)> = S(k)
gaussian, white

E{v(k)} = 0 for all k var{v(k)} = T(k)
gaussian, white

An estimate of the current state based on all the
known control inputs and available measurements.
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5.3 Algorithm Tabulation

The next four tables contain the three algorithms obtained in

this thesis plus the first- and second-order approximate conditional

mean filters of Sage and Melsa [23], p. 466.

Table 5.3.1 The Maximum Likelihood (ML) Filter Algorithm

Main Filter
Equation k+n-1)

| FnK(k+n){z(k+n)

k+n-1 k+n-1)} k = 1,2, . . ,

Subsidiary
Equation

K(k+n) = F/nQU(k+n-1,k)

• {u' (k+n-1,k)QFV nQU(k+n-1 ,k)
n-1 . •» i

+ trace QFnF/nQ E F GS(k+n-i)G/F/ + l}~X

U(k,0) = I F1Bu(k-i)
i=0

k+n-1) = F x ^ (k+n-ll k+n-1) + Bu (k+n-1)

I n i t i a l i -
zation

x(n-lln) = Fn+1x(0ln) + I F V O I -
i=0

xi+1(Ol n) = j A~1{Z* - U* - Y* - 7L*[x±id n)]}

i = 0 ,1 , . . . x (Oln) = 0
o

A'' = [F' QU (0,0) • • F' nQU (n-1,0) ]

U* = [^(O.OQU^.O), . . . , U /(n-l,0)QU(n-l,0)] /

Y* = [trace QY(O,O) trace QY(n-l,0)]'

X*[x] = [xVQFx x /F /nQFnx] /

k
Y(k,0) = E F1GS(k-i)G /F / i

i=0
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Table 5.3.1, continued

Control
Constraints

Text Reference

Table 5.3.2

Main Filter
Equation

Subsidiary
Equations

Initiali-
zation

Control
Constraints

Text Reference

For initialization, A exist and satisfy 2.2.36,
(This generally results in a very conservative
control policy.)

After initialization, the control should be somewhat
larger than the plant noise (Section 2.6).

Chapter 3 and parts of Chapter 2

The Maximum A Posteriori (MAP) Filter Algorithm

• 1 7 ̂lf ̂ •— V ^lf 1 IT ̂ rtv f If 1 If ̂ 1*

P(kjk-l) = FP(k-l|k-l)F/ + GSCk-DG'

P(k|k) - P(k|k-1) - 4P(k|k-l)QxMAp(k|k)

• {^[Ap(k|k)QP(k|k-l)Qx^Ap(k!k) 4- T(k)}"1

• x^Ap(k|k)QP(k|k-l)

^ ( k j k - l ) = Fi^Ck-llk-l) + Bu(k-l)

3^,(010) = E{x(0)} = 0

P(0|0) = P(0)

II Fil <l| B. || where

Bfc = I + ̂j P(k|k-l)Qx(k|k)>/(k|k)Q

i.e., the control must be chosen large enough so
that the above holds in order for the error to
decrease on the average at each time step.

Chapter 4
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Table 5.3.3 The Approximate Maximum A Posteriori (AMAP) Filter
Algorithm .

Main Filter
Equation

ae£G,l}

Subsidiary
Equations

h(k)

b(k) 1 {. h'(k)Qx <kl k-1)
h' Ck)Qh{k) *****

where the root with minimum magnitude is used

Initiali-
zation

Control
Constraints

Sane as the HAP Filter

Text
Reference

Chapter 4

Table 5.3.4 The Second-Order Approximate Conditional Mean Filter
Algorithm

Kain Filter
Equation

k) - xCM(k! k-1) + K(k){*<k}

jjdtJ k-DQx^Ckl k-1) - trace QP(klk-l)}
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Table 5.3.4, continued

Subsidiary
Equations

Initiali-
zation

Control
Constraints

Text Reference

xCM(k|k-l) - Fx^k-ll k-1) + Bu(k-l)

K(k) - —• P(k| kjQx^kl k-1)

P(klk-l) - FP(k-llk-l)F/+ GS(k-I)G'

P(klk) - P(klk-l) - 4P(kl k-l)QjLM(kl k-1)
CM

•{4xCM(kl k-l)QP(k! k-l)QxCM(ki k-1)

+ T(k) + eCklk-lH^xJ^klk-DQPCklk-l)

e(klk-l) - I UP(klk-l)]..[P(k|k-l)].,
i.J.k.i-1 i k j £

+ [P(ki k-l)]i£[P(kl k-D Jjk)Q1;.Qu

*CM (O|O) " E { x < ° > } " °
P(Ol 0) - P(0)

None. See the discussion in Section 5.4.

See Sage and Melsa [23], p. 466.

The first-order algorithm is obtained by setting to zero the terms

trace QP(klk-l) in the main filter equation and 9(kl k-1) in the error

covariance.

5.4 Structural Comparisons

First of all, notice that the form of the estimate is the same in

all cases in that it consists of a correction to the one-step predicted

estimate based on the latest measurement. The only real differences

lie in the calculation of the correction and in the initialization for

the maximum likelihood estimator.
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The MAP algorithm is the only one that requires the current

state estimate in the calculation of the correction terms; that is,

the MAP estimate is a solution to a matrix nonlinear algebraic equation.

This unpleasant fact of life is caused by assuming that p[x(k)l Z*(k-1)],

rather than p[x(k)l Z*(k)], is gaussian.

In all except the AMAP filter, the correction term can be

broken down into the product of a filter gain matrix and a measure-

ment residual; i.e., the correction term has the form

K[z - S'Qx] (5.4.1)

where x is the appropriate state estimate. For the maximum likeli-

hood estimator, K is a function of the past n controls but is inde-

pendent of the state estimate. This is very convenient from a

computational point of view since all the filter gains can be found

as soon as a control sequence is chosen. This is not the case with

the MAP and first-order conditional mean filters where K depends on

either the one-step predicted estimate or the current estimate of

the state.

The correction term structure for the AMAP filter is different

in that it looks like a vector with magnitude and direction calculated

separately. However, the magnitude and direction both depend on the

one-step predicted estimate as before. The computational procedure

is very simple requiring only two different matrix-vector products,

four dot products, and the solution of a scalar quadratic equation.

Most of the simplicity comes about because there is no need to

calculate the filtering error covariance matrix if a value is arbi-

trarily assumed for the scalar a. In the next chapter it will be
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shovn that the AMAP filter works quite well in all the cases con-

sidered if a= •»• is used.

The maximum likelihood filter also does not require calculation

of the error covariance, but it has the disadvantages that (1) no

state estimate is available until time step k=n, (2) a relatively

large amount of storage is required for the various matrix products

and past controls, and (3) the estimator structure changes at step

n because of the initialization procedure.

It is interesting to note that the error covariance matrix for

the MAP and AMAP filters is nearly identical to that for the first-

order conditional mean filter, the only difference being that the

filtered state estimate is replaced by the one-step predicted state

estimate in the latter. Again, this is due to the differing assump-

tions on the forms of the posterior density functions. This means

that the orders of calculation are slightly different. For the MAP

and AMAP filters, the current state estimate is computed first, followed

by the error covariance (if desired for the AMAP filter). The order

is reversed for the first-order conditional mean filter.

Finally, it should be remarked that, as already proved for the

maximum likelihood algorithm, identically zero control sequences are

not allowed for any of these algorithms. Examination of the tables

shows that such a control sequence yields zero estimates for all time

for the MAP and first-order conditional mean filters, and undefined

estimates for the AMAP filter. No mention of this possibility is made

by Sage and Melsa [23] in their formulation of the first-order conditional

mean filter.
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Table 5.A.I shows the relative merits of the various algorithms

with respect to two characteristics that are important in any practical

implementation: memory required and computational speed. These

results are based on experience gained in obtaining the data in the

next chapter. The algorithms are ranked on a scale of one to four

with one indicating best, four worst.

Table 5.4.1 Relative Merits of the Algorithms

Memory Required Speed

Maximum Likelihood 4 1

MAP 3 4

AMAP 1 2

1st Order CM 2 3
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Chapter 6

NUMERICAL RESULTS

6.1 Introduction

In this chapter the algorithms developed in Chapters 3 and 4

are tested, both to ascertain the validity of the statements made

herein, and to be able to make comparisons between algorithms. The

next section contains the main results of the chapter; a randomly-

generated model is used to test the relative merits of the algorithms

and some different control sequences are investigated. In addition,

some cases with marginal (small) controls are examined and the effects

of larger noise are observed. Section 6.3 considers in less detail

a model similar to that in Section 6.2 except that the kernel of the

quadratic form is the unit m?.trix.

It is not the purpose of this chapter to exhaustively test the

algorithms; that is an enormous task. The idea is to give some in-

sight into the relative merits of the filters and whether they are

useful for several different problems. This chapter should not be

viewed as a substitute for performing a simulation on the problem at

hand. It is incumbent on the user of these ideas to protect himself.

6.2 General Third-Order Model Investigation

In this section a randomly-generated third-order problem is

examined with regard to each of the algorithms of Chapter 5, various

control sequences, and various noise magnitudes.

6.2.1 Description of the First Simulation Model

A third-order system model was chosen with the following values:
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F »

B =

G =

.502

-.365

..344

[1.093

.406

.735

-.064

2.720

.543

-.290

.549_

-1.113]'

I,, the third-order unit matrix

P(0) was not

S(k) = S - .

T(k) *

Q -

* T « .

1.317

1.063

1.025

used

01I3

01

to generate

1.063

.461

.407

x(0).

1.025"

4.07

1.258

It is easily, but tediously, verified that Q is symmetric but

not positive definite. The numbers in the F, B, and Q matrices were

obtained with a random number generator. The values for F came from

a gaussian, zero-mean distribution with a variance of one, those for

B from a similar distribution with a variance of four. The Q-matrix

values came from a uniform distribution on (0,1.5).

Each of the averages plotted below is calculated from the results

of 100 runs with different noise sequences but fixed x(0). Eight

different values for x(0) are chosen, one in each octant of the three-

dimensional system. This is done in order to observe the effect of

different starting points on the algorithms.

Three different types of control sequences are also investigated

as to their effect on filtering error. The first type of control

sequence is u(k) equal to a constant, in this case u(k)=l. The second

type is a dither about a constant, namely u(k)=l.l+(-l)v(.2). This is
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a control commonly used in systems with a dead zone, or hysteresis,

for stabilization. The third type of control is oscillatory,

These three control sequences can be shown to result in state

trajectories (see Section 6.2.2) such that equation 4.6.1 is stable,

that is, the matrix B. F has all its eigenvalues inside the unit

circle. In fact, for this problem, it is not possible to choose

a control such that 4.6.1 is unstable. The reason for this may be

seen from the following arguments. First, F has no eigenvalues

outside the unit circle, as is apparent from the state trajectories

in Section 6.2.2. Remembering that B, is given by

—j P(kl k-l)Qx(kl k)x'(kl k)Q (4.5.7)

it is clear that since the second term on the right side of 4.5.7 is

positive semidefinite, B, has no eigenvalaes inside the unit circle

(there may be some on the boundary) and therefore, B, has none

outside. Hence, B. F has all its eigenvalues inside the unit circle

and 4.6.1 is stable, no matter what control sequence is chosen.

Therefore, the lower bound on the magnitude of the control is

not given by the arguments in Section 4.6, but by those in Section 2.6

that the control should be somewhat larger than the state uncertainty.

This is the case fur all three control sequences as can be seen by

referring to Section 6.2.9. The effects of smaller controls will be

considered later.

6.2.2 Typical State Trajectories

Figures 6.2.2.1, 2, and 3 show typical state trajectories for
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each of the three control sequences starting from x(0)=[l -1 -I]'.

Such plots are also available for other starting points. Since there

is no essential difference between any of them, only the ones for

this x(0) are given. Note that, for this system, the oscillatory control

generally results in the state being closer to the origin. This may be

important in cases where there are state constraints.

6.2.3 The Maximum A Posteriori Algorithm

This algorithm is obtained by attempting to solve the estimator

equation 4.3.3. This was done using a standard Fortran subroutine to

find the maximum of the density function in 4.2.35.

Graphs of the results are shown in Figures 6.2.3.1-6. Again,

only the values for one starting point, x(0)=[l -1 -1]' are shown,

since there is no fundamental difference between the values for any of

the starting points. This will be the case throughout this numerical

study.

It is evident that there is not much difference in filtering

error between using u(k)=l and u(k)=l.l±.2. Figures 6.2.3.1 and 3

indicate that there is some residual error even after twenty time

steps and that this error is constant in sign; i.e., the estimate is

biased.

A different problem occurs for the oscillatory control. At time

step 9, the subroutine for the solution of the estimation equation is

not able to find the solution within the number of iterations allowed.

Consequently, there is a discontinuity in the estimation error at this

point. Note that this has the effect of nearly erasing the data available

from steps previous to 9. That is, the filter essentially has to start
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o/er. It should also be remarked that this algorithm is extremely-

expensive in terms of computer time.

6.2.4. The Approximate Maximum A Posteriori Algorithm

In this section the results for the most useful of all the algo-

rithms are discussed. Figures 6.2.4.1-6 are plots of the average

error and average squared error for the three control sequences.

Again, there appears to be little difference between using

u(k)=l and u(k)=*l.l±.2. However, this algorithm seems to yield a

much more nearly unbiased estimate as evidenced by the bipolar

behavior in Figures 6.2.4.1 and 3. The oscillatory control sequence

still gives a biased estimate (Figure 6.2.4.5).

This algorithm has slightly smaller ultimate (at time step 20)

error, but the MAP algorithm has a little better transient response

as measured by the average squared error in Figures 6.2.4.2, 4, and

6.1

6.2.5. First-Order Conditional Mean Filter

In order to make comparisons, a first-order approximate condi-

tional mean filter was simulated using the same starting points and

control sequences. Whereas the first two control sequences resulted

in more-or-less unbiased estimates for the AMAP filter, this is not

true for this algorithm. The more nearly unbiased behavior occurs

for the oscillatory control. Examination of the best average squared

error performances for the two algorithms shows that they are nearly

Note: The scalar a in equation 4.4.12 was arbitrarily chosen to be
.5 for this simulation.
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ĉ̂
?^

n

O, O,

m
CO

m
•u

+

7T



x(o}.ci -j-a
u(k)=(-l)kI k«O,L..

I I I I I I I I I I

5 10 15
TIME STEP

Figure 6.2.4.5 Approximate Maximum A Posteriori Filter Average Error, u(k)•=(-!)k+1



3

1
AVERAGE SQUARED ERROR

ft

I

o
0)
ft
CD
rj
H-
O
H-

3

CO

8
8.

C

H

T

o, O ,

m

m

O

T

C X

gs
II H

X -

n

X X X

CM r\> —

!• II



identical. Figures 6.2.5.1-6 contain the results in graphical form.

Further comparisons with larger noise will be made in another section.

6.2.6. Remarks on the Second-Order Conditional Mean Filter

The second-order filter gives grossly inaccurate state estimates

as can be seen by comparing the numbers for the true value of x- and

the estimated value of x-, the first component of the state, in Table

6.2.6.1.

Table 6.2.6.1 Comparison of x.. and the Second-Order Conditional Mean

Estimate of x.

Time Step True Value of x-

3.14502

4.29209

5.16390

5.85287

6.36879

Estimated Value of x.

1584.11

-9147.05

13230.9

1835.18

9785.34

1

2

3

4

5

The reason for this misbehavior can be seen if the graphs of

Figures 6.2.6.1-3 are examined. These are plots of the calculated

(using equation 4.5.16) error variances for the three components of

the state, and of the measured average squared error. If the filter

equations truly describe the situation, then these two graphs should

be nearly coincident in every case. Note, however, that the calculated

value is at worst some two orders of magnitude greater than the measured

value for each component. It is apparent from Table 5.3.4 that this

can have a large effect on the state estimate since the second order
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correction term has the form

- trace QP(k+ll k+1)

This will also cause the quantity G(k+l| k) given in Table 5.3.4 to

be too large, thus making the calculated error covariance at the

following step too large.also.

For these reasons, the second order filter is not useful for this

particular problem. It may be possible to find a more accurate method

of calculating the error covariance. Denham and Pines discuss this

problem and its possible solution with an iteration filter in reference

6.

6.2.7 The Maximum Likelihood Algorithm

It was found empirically that the constant control u(k)=l

k=0,is ... was sufficient for the iterative solution for the initial

state to converge. Therefore, this control was used in the simula-

tion. The results are shown in Figures 6.2.7.1 and 2 for the same

starting point as the other algorithms. Note that no information is

available until time step 3.

It is apparent from Figure 6.2.7.1 that there is a residual bias

present in the estimate similar to that in the other filters. However,

the magnitude of the bias is generally less. This is consistent with

the notion that maximum likelihood estimators frequently result in

unbiased estimates.

The average squared error performance, given in Figure 6.2.7.2,

is slightly inferior for long times, but generally better, in some

cases by two orders of magnitude, for time steps less than 5.
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6.2.8 Further Comparison of the Approximate Maximum A Posteriori,
First-Order Conditional Mean, and Maximum Likelihood Algorithms

In this section comparisons are made among the three most interesting

algorithms for larger noises. For this reason, a new control sequence of

u(k)=10 k=0,l, ... is chosen. Furthermore, in each of the following

graphs, only the first component of the state is plotted. The remaining

components behave in a similar manner. Again, the same initial state

is chosen as before.

Figures 6.2.8.1 and 2 compare the three algorithms for the same

plant noise as before, but with T(k), the measurement noise covariance,

one hundred times greater, T(k)=l. Evidently, the measurement noise

increase has little effect on the ultimate quality of the state estimate.

The transient response is changed slightly.

Figures 6.2.8.3 and 6.2.8.4 are the same graphs as 6.2.8.1 and

6.2.8.2, respectively, except that the measurement noise covariance

is T(k)=.01 and the plant noise covariance matrix is S(k)=I , the

third-order unit matrix. It is obvious that the increase in plant noise

has a much more detrimental effect on the quality of the state estimate

than a corresponding increase in measurement noise.

6.2.9 The Effect of Small Controls

This section is a confirmation of some of the ideas in Section 2.6.

First, a control sequence u(k)=.l for all k that does not satisfy 2.6.1

for k small but does for k large is tried. The results of one run using

the first-order conditional mean and approximate maximum a posteriori

algorithms are plotted in Figures 6.2.9.1-3. The matrix P(ll 0)

calculated from the equation P(ll 0) = FP(O)F/+ GS(0)G'
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has the value

P(ll 0) =

" .722

-.042

.448

-.042

.768

-.332

.449

-.332

.424

and Bu(0) - [-1698 .2720 -.1113]'

Equation 2.6.1 is clearly not satisfied at time step k=0. The effect

of this as shown in Figures 6.2.9.1-3 is striking. The filter transient

responses are very poor, particularly for the first-order conditional

mean estimator. This points out another advantage of the AMAP algorithm.

Next, three similar graphs are plotted for u(k)=.01 in Figures

6.2.9.4-6. These graphs show vividly the kinds of problems encountered

when the controls are too small. Observe that the first-order conditional

mean filter has very large error for k smaller than about 10, and the

signs of the estimates of both algorithms are incorrect for most of the

observation interval* However, the AMAP estimate looks much more like

a mirror image of the true state than does the first-order conditional

mean estimate.

The results in Sections 6.2.4 and 6.2.5 were obtained with u(k)=l

for all k so that

Bu(k) « [1.698 2.720 -1.113]'

Therefore, assuming that the state uncertainty decreases with time,

equation 2.6.1 is satisfied for all time. It would appear that the

conditions of Section 2.6 are justified, at least for this problem.

The maximum likelihood estimator does not work for these small

controls because of the breakdown of the initialization procedure.

Therefore, those results are not presented.
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6.3 Investigation of a Third-Order System with Q = I

This section considers in less detail the same problem as

Section 6.2 except that Q = I_, the third-order unit matrix. The

only control sequence used is u(k)=l k=0,l, ..., for which the

conditions of Section 2.6 are clearly still satisfied. The simulations

were done for the same eight initial states as before, and again only

the results for x(0)=[l -1 -1]' are plotted.

The average error and average squared error performances are

shown in Figures 6.3.1 and 2, respectively, for the first-order conditional

mean filter, these for the approximate maximum a posteriori filter in

Figures 6.3.3 and 4, and those for the maximum likelihood estimator in

Figures 6.3.5 and 6. Note that in general the transient response is

poorer than that for the problem of Section 6.2. It is speculated that

this is due to the lack of state variable cross-coupling in the measure-

ment equation with Q=I. The maximum likelihood estimator again seems to

be the most unbiased on the average, although the average squared error

is ultimately larger.

6.4 Summary

In this chapter, the algorithms previously developed were partially

tested and compared and some different control sequences investigated.

The first-order conditional mean and approximate maximum a posteriori

algorithms are about equal in error performance if the best (of the ones

investigated) control sequence is used for each. However, the AMAP filter

does not require calculation of the error covariance and in practice is

about three times faster. The correction to the one-step predicted

estimate must be calculated on-line in both cases.
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The maximum likelihood filter is the cheapest to use in terms of

computational time required. However, it has the disadvantages that it

does not produce a state estimate until the nth time step, and it

generally has larger ultimate estimate error, although the bias is less.

A significant advantage is that the filter gain is not dependent on the

state, and once a control sequence has been chosen, it can be calculated

off-line as in the case of a linear system.

It is safe to conclude on the basis of the results in this chapter

that the algorithms developed in this thesis will work on a large class

of systems and that they possess some significant advantages over the

more commonly used nonlinear filters such as those described by Sage

and Melsa [23].

127



Chapter 7

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

7-1 Summary of Results

It has been shown in Chapter 2 that the problem posed in Chapter

1 has a solution; i.e., the past controls and measurements contain

enough information to estimate the state unambiguously if the controls

are large enough. Comforted with this knowledge, three algorithms

were obtained for estimating the state in a sequential fashion. The

first algorithm was derived by means of the technique of maximum

likelihood, the last two by utilizing the more general Bayesian

approach espoused by Ho and Lee [8]. In addition, a first-order

conditional mean filter was investigated for purposes of comparison.

On the basis of the contents of Chapters 5 and 6, the AMAP filter

derived in Chapter 4 appears to be the overall best with regard to

memory required, speed, accuracy, and utility. It is also clear that

quite good state estimates can be obtained for a large class of systems

using any of the algorithms if the largeness conditions on t^e controls

are satisfied.

7.2 Directions for Further Research

One obvious extension is to the case of "colored" noise. It is

felt that this extension can be easily made using either the techniques

of augmenting the state with the noise or measurement differencing (see

e.g., Meditch [16].)

Another area of concern is the minimum control required for good

state estimation. There surely exist practical problems with control
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magnitude constraints that preclude satisfaction of the conditions

discussed in Chapter 2. It would be interesting to see if usable

algorithms could be developed for this case. Indeed, a useful result

would be the elimination of any control. This last goal may be un-

attainable in the framework of the present problem.

The maximum likelihood estimator could be made much more attrac-

tive by (1) streamlining the initialization procedure, (2) providing

for state estimates before step n, and (3) obtaining more meaningful

lower control bounds in order for the Initialization to work. Again,

some of these extensions may not be feasible.

The class of problems to which these algorithms are applicable

has not been clearly delineated. There may be certain pathological

systems ether than those discussed for which there are simple tests

similar to the controllability and observability criteria for linear

systems. Such criteria would obviously be helpful to the design

engineer.

Finally, a most promising idea is the application of the technique

used for deriving the AMAP filter to more general nonlinear observers.

If this technique could be shown to work as well as the traditional

linearized Kalman filter (or any of its many variants) on a general

nonlinear filter, this would be a very significant result in practical

terms.
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APPENDIX A

PROBLEMS IN THE SOLUTION OF EQUATIONS 2.2.7

Consider a system of equations similar to 2.2.7, except eot re-

stricted to n equations and written in the compact form

X*[x(O)] + 2A x{0) + U* - Z* (A.I)

with all quantities defined similarly to those in equations 2.2.9-12.

It is useful and instructive to first consider the case of zero controls.

Then A.I becomes

X*[x(0)] - Z* (A.2)

Remembering that X*[x(0)} is a column vector of quadratic forms in

x{0), it is clear that A.2 has no unique solution. That is, if x(0) is

a solution to A.2, then so is -x(0); conversely, there may be no solution.

In order to make things more clear, consider the following two-

dimensional example with positive definite Q:

'I 01

.0 2j
x(k) u(k) with u(k)

and z(k+l) - x' (k+1)
Li i.

x(k+l)

and suppose x(0) « [1 1]'

Then, x(l) - [1 2]' z(i) - 10

x(2) - [1 4]' z(2) - 26

x(3) - [1 8]' z(3) - 82

etc.

Using these measurement values, the normal procedure is to substitute

them into A.2 and attempt to solve for x(0). When the substitution is

made, A.2 becomes
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2x1
2(0) + 4x1(0)x2(0) + 4x2

2(0) = 10

2xx
2(0) + 8x1(0)x2(0) + 16x2

2(0) = 26

2x^(0) + 16x^0) x2(0) + 64x2
2(0) = 82

etc.

where the subscripts indicate the components of x(0). Since Q is

positive definite, these are the equations of ellipses in state space,

all centered at the origin. Simultaneous solution of the first pair

of equations (corresponding to using only the first two measurements)

yields four answers which are the points of interesection of the two

ellipses. They are

x(0) = t [1 I] 7, + {3.13 -1.79]'

When these four values are substituted into the third equation, it is

found that only the first pair of solutions satisfy it. It is not

difficult to verify that any set of three or more measurement equations

have the pair of solutions x(0) = _ [1 1]', and only this pair of

solutions, in common. Therefore, the measurements on the system of

this example do not contain enough information to give a unique answer.

This problem comes about because all the ellipses have the same

center; i.e., x(0) does not appear linearly in A.2. One way to cir-

cumvent this difficulty is to apply a non-zero control. Suppose that

in the example just given u(2) = 1 so that

- • 0 • 0 - 0z(3) - 101
and the first three equations of A.2 become
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2Xl
2(0) + 4Xl(0)x2(0) + 4x2

2(0) = 10

2x^(0) + 8Xl(0)x2(0) + 16x2
2(0) = 26

2x1
2(0) + 16x1(0)x2(0) + 64x2

2(0) + 2X;L(0) + 16x2(0) = 100

The tirst two equations result in the same four solutions as before.

When these are substituted into the third equation, it is found that

the only one which satisfies it is

x(0) = [1 1]'

which is the true solution. Therefore, for this example there is

enough information in these measurements to uniquely determine the

state if a non-zero control is applied at the second step.

In general for n t n order systems with zero control, no set of

measurements can uniquely determine the state because of the symmetry

of the surfaces of constant measurement about the origin. Under suit-

able restrictions on the control distribution matrix and control

sequence this symmetry can be destroyed sufficiently so that some number

of measurement surfaces (usually greater than n) intersect in only

one common point yielding a unique state estimate.

A praccical disadvantage to generalizing to n'*1 order systems

the method used in the example to find x(0) is that all the solutions to

the first n equations must be found, and in general there are 2 n of

these. A less important problem is that the estimate of x(0) is not

available until some number of measurements have been taken.

The development of Section 2.2 gives a method of solution that

alleviates some of these difficulties. The basic idea is to try to

find a control sequence such that an iterative procedure for finding
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a solution to the first n equations converges to x*, the original

solution to 2.2.13, when the starting point is the origin. It is

shown that a control sequence satisfying equations 2.2.36 and such

that A exists results in this situation.
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