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PILE NEUTRON PHYSICS. (Lecture Notes).
CHAPTER VIa(cont.). SLOWING DOWN OF NEUTRONS

By A. M. Weinberg

The Space Independent Boltzmann Equation; Energy Distribution of Neutrons

If the production of neutrons throughout all space is uniform, then the neu-
tron density cannot depend on x. The general Boltzmann equation (3.36) reduces
to

2 —~ ’ u+lno? 1
NoF(u,u) = _d+M) Z 2?_“_1_21__2 f f No. (W )F@’ ,pu)eV ™"
ST 2 2 u J 4 Sp

2M
1

£, (') Pyyhu’ —u) Pilg(u’ —u)] P (u) P, (') du'dp’ + S(u) 8(u—ug)  (3.70)

The total neutron flux per logarithmic energy interval, F(u), and the total num-~
ber of neutrons produced per c.c. per second, S;, are

rl
Folu) = fl F(u,p)du

So =f_i S(u)dp

Thus upon integrating Eq. 3.70 over p and p’ there results

 utlno? -,
f Nog, Fo(w’') e ™ f[u’,h(v’ —u)] dw’ + Sy a(u—uy) (3.71)

Ju

(1+M)?
2M

NUFo(u) = -

In the isotropic scattering case, f = 1/2:, this reduces to

(1+M)? f,‘u+1naz

NoFyfu) = — M

i Nos. Fy(’) ew'-u duw’ + S, 8(u»—uo)
vu .

It is to be understood, as before, that Fy(u) = 0 if u< u,.
The distribution Fjy(u) for large values of u (i.e., at energies far from the
source energy) is easy to calculate provided there is no absorption (No = NO'so).
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hence, on jf’isforming to the variable u, and integrating over angle, we find

e 2 ’ u+lno ., .
- (1+M)* f e ™ flw,h(w —u)] dw =1 (3.74)

2M  J,

Consequently

Ncrs Fy(u) = C, a constant,
0

satisfies Eq. 3.72. However, since this solution does not satisfy the initial con-
dition (which is derived from Eq. 3 71) namely,

lim NoFy(u) = S; a(u—uy)

u-*ug

it cannot be correct close to the source energy u,. Thus No,, Fy(u) = C is only
the asymptotic solution of Eq. 3.71, correct at energies u which differ from u,
by several logarithmic slowing down intervals Ina?,

We compute the value of the constant C in the case of isotropic scattering,
ie.,f= 1/2. This is of most practical interest since the asymptotic solution ap-
plies only to neutrons which have lost considerable energy, and therefore the
scattering by the moderator will usually have become isotropic by the time the
asymptotic solution becomes valid. To compute C we equate the number of neu-~
trons which cross a given energy E per second per c.c. in the course of slowing
down, to the number of neutrons produced per second per c.c.

To calculate the number of neutrons which cross E per second per c.c. we
observe that all neutrons from logarithmic interval du’ which enter a logarith-
mic energy interval du” lying below u(E) will have crossed E. The number of
collisions per logarithmic energy interval du’ per second is

1?!030 Fy(u’) du’; —— f dw’

the probability that these collisions will result in u(E)
neutrons being thrown into energy interval dE” is du”
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e

(1+ M)Z U - T” ” *
oM ~——f{[E’ ,n(E’ ,E"})] dE

or, in the i;Ogarithmic energy variable,

i3 .

3
MO s o 5 . €
QZ—I\B/[/IL e’ ™ ffu ,huw —u”)] du”

_Hence the total number of neutrons thrown across

(1 +M)2 fu+1na f

Since the scattermg is assumed 1sotropic f = 1/2 Hence the number of neu-
trons crossing energy E per second per c.c., i.e., the slowing down density q(E),
which is to be equated to S, is

(3.75)

+M)2 u+lna u -
q(E) = Sy = u M) C f ‘ f . e™™ durdw = C{ = Nog Fy(u) (3.76)
u’-Ino?
Thus
S
C = _0 - -
3

and the energy distribution is

Sg

Fo(u) = - 3.77)
o) = 5o (
In terms of E, rather than u, the distribution is
S
Fo(E) =—"2—- 3.78
or
S
=0
n(v) No, £v5 (3.79)

The energy distribution Eq. 3.77 can, of course, be derived from the approx-
imate Eqs. 3.56a and 3.57. In the case of isotropic scattering in a mixture, the
slowing down density in an infinite medium in which neutrons are produced uni-
formly satisfies the equation
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o [Ny, EFg(w)] = g o) (3.80)

where
1
Now the solution of 1Eq2’3.80 is

No, EFo(u) =8, u>0

0 -0 u<o0 (3.81)
and the neutron energy distribution implied by Eq. 3.81 is the same as that of Eq.
3.78.

The assumption of a single substance was not necessary to obtain Eq. 3.81;
on the other hand the differential equation which led to Eq. 3.81 is an approxi-
mation which was valid, because it involved a Taylor series expansion, only if
¢! (in the case of mixtures) varied slowly over one slowing down interval. Ac-
tually the energy distribution (Eq. 3.81) is a rigorous asymptotic solution of the
space-independent Boltzmann equation only for isotropic scattering in a single
substance. For mixtures or anisotropic scattering, Eq. 3.81 is only approxi-
mately correct.

Spatial Distribution of Slowed Neutrons; the Slowing Down Kernels

The slowing down density satisfies

Aqlr,7) = 29&:7) . (3.69)
— or
with the initial condition

aq(r,7)
oT

lim Aq(r,7) — = 8y(r) 8(7)
1-,0

Suppose a point source emits one fast neutron per second at r = 0 in an infinite
medium. The slowing down density at some lower energy corresponding to age
T will be the solution of

Aq(r,7) + 8(7) a(r) = a—qé—%’—T—) : (3.82)

This equation is identical in form with the time dependent diffusion equation
discussed in Chapter 1. The solution, as was found there, is

3

rseh

b
3
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2
~§
q(r,7) = ?Tn_;)%' (3.83)

i.e., the slowing down density of neutrons from a point monoenergetic source is
distributed around the point according to a Gaussian function. The range r; of
the Gaussian (i.e., the distance at which the density falls to 1/e of its value at
the source) is '

vy = V27 (3.84)

For many purposes it is important to know the second spatial moment of
the slowing down density. If the slowing down density is Gaussian, then the sec-
ond moment of neutrons slowed to age 7, which we denote by r(7), is

L:uq(r,-r)r2 «4mrldr f:r“ e~T/4T gr
{)“Q(r,'r,) * 4nridr fo'°r2 e~T/4T 4r

1'—2(1') =

For a Gaussian distribution, the following relation holds between the age, the
second moment, and the range:

r=rtk= r;/‘

The relation between 7 and the second moment of the slowing down dis-
tribution is the same as the relation between the square of the diffusion length,
L, and the second moment of the distribution of thermal neutrons around a point
source. For this reason v is often called the slowing down length.

The age T is related to the logarithmic energy according to Eq. 3.66 by

7(u) =f —_—a (3.85)
0 3N<7tr NcrSO

and is therefore a monotone increasing function of u. Thus the spatial distribu-
tion of slowed neutrons keeps a Gaussian shape as the neutrons lose energy,
but the neutron distribution gradually spreads out since the range r; increases
with u. The distribution of neutrons slowing down from an energetic source is
in this approximation exactly the same as the distribution of heat from an in-
stantaneous heat source. ;
The energy distribution of the neutrons slowed from a point source is, ac-
cording to Eq. 3.83 514 U89
.

1 e,

'Na_%g [4rr(w)]%

FO(r,u) =
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T(1) bemg the function expressed in Eq. 3.85. If all cross sections are constant,
then

T() = e
3No,, Ncrs‘o 3

and

olr,0) No (3.86)
At a given pdint:the’ !
occurs at the logarlthmlc energy Umax given by

2 :

umax = %%E:lg—l:_ . ‘ (3-87)

The slowing down density (Eq. 3.83) from a point monoenergetic neutron
source may be designated the ¢‘point slowing down kernel.’”’ Following the pro-
cedure used in the discussion of the time dependent diffusion equation, we can
write down the corresponding kernels in other geometries.

From the slowing down density arising from a monochromatic energy
source it is a trivial matter to compute the slowing down density from a fission
neutron source which is polyenergetic. If the number of neutrons emitted per
sec between energy E’ and E’ + dE’ from a point source at the origin is

f(E')dE’

(3.88)

where q 1, T(Ef)" he number of neutrons crossing ‘energy E per second per c.c.
at r. Since in a chain reaction the neutrons originate from a fission: ‘spectrum,
the slowing down distribution as given by Eq. 3.88 is the one appropriate to a
chain reactor in which the moderator is: non-hydrogenous.

a3
Y

SEIAN
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Slowing Down Kernels

Source
Geometry Normalization
Plane 1. neut/cmz/sec
. at’ (xt,'r')
Point 1 neut/se_c at
(', 7).
Line i neut?[cm/sec
‘at (7, ¢', )
Spherical 1 neut/sec per
Shell shell of radius

Notation

- lx-x?|2/4(:i'- )
[4r(r—71]*%

P75 %', 1)
~‘2§B’i‘ &g

e~ ez’ [*/4(r-77)

P,(t,7; ',7)
T '[41r(r— )%

P (r,cp T, ¢ ,r) e lppl/atr)
Ar(t—7")

’

L

p2=r2 +ri -2

P

rr’ cos (¢ —¢’)

~ e f2/a(r-17)

Pg(r,m; I, 7') 1 |e
' 4nrr’

dn(r—T1')"%

r’ at age T’.

_e—|r+r'lz/4(‘r-7‘) :
ar(r—7)% '

Cylindrical 1 neut/sec/cm  P_(r,7; ’,1’) e~ lr-r*|/4(r-7) . < rr
Shell of shell of ' An(t—79 0\ 2(r— T')>
radius r’ at ’

age 7’

Elementary Improvements on Age Theory

The age approximation, and the Gaussian slowing down distribution which it
yields, resulted from a spherical harmonic expansion of the angular distribution,
and a Taylor s series expansion of the energy distribution. As has already been
pointed out, the Taylor’s series expansion is valid only if the mean free path
varies slowly over one slowing down interval while the spherical harmonic ex-
pansion could be expected to be good only fairly near the source. Thus the age
approximation is poor in hydrogenous: media (where the mean free path changes
rapidly), or at large distances from the source m any medium.

That the Gaussian cannot be correct at large distances is evident from the
following physical argument: Consider neutrons which have made no collisions
at all. These will be distributed like So (e"N"r /41rr2) where N7 is the macro-
scopic scattering cross section and S; is the source strength. Now at small dis-
tances the Gaussian slowing down distribution will exceed this exponential; at
large distances, however, the ratio

Fr Ay
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i'

- source neutrons = | e | =
Gaussian moderated neutrons J \e

approaches «, since the Gaussmn falls" off faster‘thanithe A__exponential Thus at
large distances the distribution is more exponent1a1 than Gaussian.

An improvement on the age theory distribution which at least is free from
this ‘“first collision paradox’’ can be expected if the ‘‘aging’’ process, which
leads to the Gaussian, is assumed to begin only after the neutrons have made
their first collision. The points at which first collisions occur act as ‘‘sources’’
for the slowing down process.

The first collisions are distributed as

e™ NO(O)I‘ _ h

4qr?

the 0 referring to u = 0, the source energy.
According to this picture the slowing down distribution should therefore be

—t o

l_rlz ‘ T

f‘” —No(O)L'le”‘ij,r
@ =J T gy

ar

A further improvement can be made by taking into account the fact that after
a neutron has suffered a collision which throws it across energy E, it experi-
ences a ‘‘free ride,’”’ without changing its energy, until it suffers its next colli-
sion. To take this free ride after the last collision into account, it is plausible
to include another exponential with mean free path appropriate to the lower en-
‘ergy. Thus the slowing down distribution, including both first and last collisions
is

r)-rll
No(O)I_’ —T—— o Naﬁl)lr"-rl

where ¢(0) and o(u) are cross sections at the initial and final log energies re-
spectively. Formulas like (3.89) are of course not rigorous; they are rather
more plausible than the simple Gaussian and have been used to represent the
slowing down distribution from a point monoenergetic source.

In order to compute the second moment of the distribution (3.89) we first
state the well known result that the second moment of the distribution from a
plane source is just 1/3 the second moment from a point. This follows from the
relation between a point kernel and the corresponding plane kernel,

a3
W
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1,
Pp(r)=—ﬁppl (I‘). .

Hence

- f“rp (r)ridr’ f 2Py @)dz
rt f P (r)rzdr ‘;, f zP" l(z)dz }

Upon integrating by parts and using the fact that r3Pp1 (r) - 0 as r — « for any
kernels of interest, we obtain

r? = 3z

" 2% being the second moment of the plane distribution.

With this preliminary we compute 1 for the distribution (3.89) by computing
the corresponding plane second moment, and multiplying by 3. The plane dis-
tribution corresponding to (3.89) we write as

1) = [ [DKy () P (|2 — z]) Kp(lz** = z]) dz’ dz"” (3.90)

» - PR ol
where Kj(z) and K, (z) aTe plane transport kernels and P, is the plane Gaussian

kernel. The quantity q(z,r) is the convolution of the three kernels K, P ) and K.
Now if Kl(Bz) is the Fourier transform of K(z), i.e., if

K (B = f: K;(z) eiBzdz
then ;%(: , the second moment of the distribution defined by K;(z) is
d*K, (B%
_ =
22 = dB®__ (3.91)
Ky Kl (Bz) )
~ Furthermore, the Fourier transform of q(z,7) is

q(B%,7) = Ki(Bz) (Bz) K,(B?) : (3.92)

r transform. Hence

aza&ai;;) |
q(B*,7)

(3.93)




10 CF-48-9-128

2 _ 2 2 2
q T TR F TRy T TK,

In other words, the second moment of a distribution which is the convolution of
several kernels is the sum of the second moments of each kernel.

We now apply this result to the distribution (Eq 3.90). The second moment
of the transport kernel e=No©)/47:2 ig

_2 _
[No (0)]?

and the second moment of the Gaussian is 67. Hence the second moment of the
slowing down distribution corrected for first and last collisions is

- 2 2
=T 6T ey 3.94
@ Ne@P T [No@]l? (3.94)
or, upon using the formula (3.66) for 7,
" 2 2
'™ Ne (O o Noy Nost  No@)? (3.95)

The distribution (Eq. 3.90) is unwieldy analytically, and it has therefore been
customary to replace it by a single Gaussian

e—rz/4'r'
@)%

where 7/, the corrected age, is chosen so as to give the same second moment
as (Eq. 3.86). Thus the corrected age is

%ol

Ly | a1
6 3MNo@F "3 J No Nogg 3 INo @)

= (3.96)

and it isthis-age, together with the 81mp1e Gauss1an, which is usually used to

represent the slowing down (1§n81ty m a he%avy moderator.

The Group Picture ’ :
The Gaussian slowing down dlstrlbutlon with the corrected age {Eq. 3.96) is

a fairly satisfactory representation of ithe :slowing down  process in heavy moder-

ators. However, for certam %roblems, e.8ss those 1nvolv1ng slowing down in

comp081te Tifedia, ever the eIegant G%ussmn age theory becomes very unwieldy.

,
Y
kS e
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The analytical difficulties arise because the age theory equation is a partial dif-
ferential equation. To avoid these complications a simplified formulation of the
slowing down problem which describes the process by a sequence of ordinary
differential equations has been used very widely in pile theory.

The general idea of this method, called the method of groups, is to divide
the total logarithmic energy interval through which the neutrons pass into a fi-
nite number of energy submtervals Neutrons in a given energy group are sup— .
posed to diffuse without energy loss until they have experienced a number of
collisions equal to the average number of collisions actually required to pass
through the energy interval; at this time they pass into the next lower energy in-
terval. Thus removal from an energy interval is treated as an ‘‘adsorption”’
process, the ‘‘absorption’ cross-section, o¥, being determined from the rela-
tion

'oi* = number of collisions before removal from energy range.
a

The cross-section for removal of neutrons from one group is also the cross-
section for creation of neutrons in the next lower group. The slowing down den-
sity, i.e., the number of neutrons passing from the pth energy group to the vy +
1st group, is therefore

q, = No* &, (3.97)

~ where & v is the flux of neutrons in the yt energy group. If the magnitude of a

logarithmic energy interval is denoted by u,, and ¢ is the logarithmic energy
decrement per collision, then the number of collisions required to cross u, is
u,/¢, and the ‘‘absorption’’ cross-section for the pth group is

oF = Ogy € (3.98)
Uy

where o, is the average scattering cross-section in the u, energy interval.
If D, is the average diffusion coefficient in the yt™ energy group, then the
neutron flux &, (r) in the pth group satisfies the diffusion equation

DyA®, (r) ~No¥, & () +No, & (1) +8, (r) =0 (3.99)
S,,(Llj) being the number of neutrons produced by an external source per unit vol-
ume at r'in the pth energy interval.

In a one group picture, y = 1, in which the external source is a 8-function
at the origin, thé group equation is

DiA@1 - NO':I @1 + 8(1') =0 : (3.100)

V')
.

»
b
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this has the sblution

—r/L"1
No* &;(r) =m (3.101)
1
where
Li? = Dy/Nyo* (3.102)
1

The second moment of this distribution is 6L*%, and the slowing down length is
given by

3 *
r_x_ D 3.103
g - U Noi (8.103)

If we substitute for Ncr".‘;1 and D, their expressions in terms of cross-sections, we
obtain

¥ W 3.104
Ly 3NU;tr1 N(Isl (3.104)

This is identical with the age theory expression for the second moment provided
the product Natrl Nasl is chosen as

1 1 f“l du
Ncrtrl Nasl Uy J Ncrtrl (u)Ncrs1 () (3.105)
With this choice of average cross sections, the one-group picture is seen to give
a spatial distribution which is exponential instead of Gaussian which has the

same second moment as the age theory, but '

In the n-group picture the distribution from a localized source of high energy
neutrons is readily found by solving Eg.-3,99. For simplicity we deal with the
problem plane symmetry; the solution from a point source is then found by dif-
ferentiating according to Eq. 1.141. The differential equations to be solved are

) X
DiFXﬂ}— Noal ®; + ox) =0
(3.106)

2
e ot & = No*

Du dx? av -y av-1

<I>i_1=0 ‘v=:2...n.
To solve these equations we make a Fourier transformation,

(%) =f Ty w) elv*dw, ax) :%r f e lwX o

)
i ik P
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The transforms satisfy
(Dyw? + Noj ) &= Yo
— (D, w? +No&) &, + No;‘,,_1$ p-1=0  p>1
Hence

. 1 o 5 e
21 (W) = 21r(D1w—2 + NU:1 B0} = Byl i ) =

and therefore

(3.107)

the previous groups. Physically thls means that each*group acts as a source for
the succeeding group.

To actually compute &, (x), it is necessary to evaluate the integrals in Eq.
3.107. The integrands have poles in the upper half plane at

w= i‘/‘}i‘?ﬂ =i/L% (3.108)
Dy .

and we assume for simplicity that all roots are simple. Hence, according to the
residue theorem,

*
—x/LJ

1) = N akZu* A-LFIH - L;‘z/L*z)....(i Lt%/LYY

(3.109)

where the term (1 — L*z/ L*z) is omitted from the sum. If k= 1 (one group pic-
ture), Eq. 3.109 reduces to

. o= ¥/L] |
NUal‘I)l(x)= 71:1;_ . (3.110)

which is the plane equivalent of Eq. 3.101.

AY
N
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Since @ (x) is the convolution of all the prev10us @, (x), the total slowing
down length for the neutrons slowed out of the k™ group must be the sum of the
squares of the slowing down lengths in each group individually:

")
%L: LI2+ L2+ .. ..+ L2 3.111)

If the number of groups becomes infinite, but each L, is reduced so that

where r remains finite, then the group picture should go over into the continuous
age theory. The slowing down density in the *-group case can be computed most
readily by first passing to the limit in the integrand of (3.107) and then evaluating
the integral. From Eq. 3.107

(3.112)

III

‘°°|§1N‘

elqu dwt
ak ¢, (x) = o f (1 L;""’wz)(i " 1;2 5. A+ L))

3.113)

B S I B IR
as is verifiédidby“taking logarithms of both sides. Hence

. -2
lim * 2 e~ x"/4r

= iwx =Wt =
k— ® Gak &y () _[; € € (4nT)%

(3.114)
that is, the group picture and the age picture merge when the number of groups
becomes infinite.

The great merit of the group method is that it involves ordinary instead of
partial differential equations. By takmg enough groups it is possible to approxi-
~ mate the age theory slowing down function to any degree of accuracy, and still o
deal only with ordmary equations. The ‘approximate slowing down functions which "
are constructed-out-of group picture exponentlals are called “‘synthetic’’ ker-

nels. In pile problems involving H,O as moderator, it is customary to use one
or two fast neutron groups in addition| to the thermal neutron group; in piles
moderated by heavier materials as many as five or six groups have been used.
In assessing the relative accuracy of the group method and the age theory,
it must be remembered that the slowing down function from a point fission
source, even in, say, graphite, is not a Gaussian because of the energy spread
of the source neutrons. Thus in graphite the three group model is only slightly

Ay
N
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less accurate than the single Gaussian while in HyO, because of the very long
mean free path at high energies, the slowing down is more nearly represented by
a single group picture than by a Gaussian.

Average Transport Cross Section in Group Method

In order to obtain a one group distribution which has the same second mo-
ment as the Gaussian, it is necessary to average the product of the transport
and scattering cross sections according to Eq. 3.105. In problems involving only
one medium it is only this product which determines the neutron distribution.
However, in problems involving composite media, since one of the boundary con-
ditions across an interface is continuity of the net current, and the current is
proportional to the transport mean free path, it is necessary to find an appro-
priate average for the transport mean free path separately.

To calculate an average transport mean free path which will ensure conti-
nuity of the net neutron current in a group, it is necessary to make some as-
sumption with regard to the actual energy distribution of the neutrons in a given
group. Evidently the energy distribution will depend on the partlcular arrange-
ment and properties of the slowing down media on each side of the boundary.
However, as a simple approximation, it is useful to assume that the energy dis-
tribution of the neutrons is the asymptotic distribution

8(x,E) dE = £(x) —& (3.115)
NasﬁgE . :
A e e o
2.
where o, is the scattering cross section.
The total flux of neutrons in a group from energy E; to E; is
E; E ,
200 = [ @ ENE= £6 [ _dE_ (3.116)
El / No gE
E; So
and the net current is
E, & E
d _1df Ay (E)E 3.117)

Ao (B) oo &, E) dE‘E& No, gE

where Ay is the correct average transport mean free path. Thus combining Eqs.
3.116 and 3.117, we obtain

Bz dE
f Ag(E) —=
— o ‘,El tu No'soE i
Ay = E;, dE (3.118)

Noso.E ,

Ey

O

[y

N
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if ¢ is constant, i.e., the average transport mean free path which will give con-
tinuity of flow and density in a group in which the asymptotic energy distribution
holds is an average over 1/No§ E. 5

The Energy Transfer Distribution of Slowed Neutrons

1t is a matter of some practical importance to calculate the manner in which
the energy transferred to a moderator by elastic collisions of fast neutrons is
distributed in space as the neutrons slow down from a plane source. If the flux
of neutrons of log energy u = InEy/E is F(x,u) (plane symmetry), then the number
of elastic collisions per c.c. per second at energy E = el is

Nog F(x,u)

Since the logarithm of the ratio of the average energies E’ and E after two
successive collisions is

In E’/E=¢

the average energy loss per collision, AE, is

AE=E' —E=E@E* -1) (3.119)
i.e., if the moderator is heavy,

AE ® ¢tE (3.120)
This energy increment appears as kinetic energy of the moderator atom. Hence
E(x), the energy released per c.c. per second to the moderator by elastic colli-
sions, is, for heavy moderators,

E(x) = f: Nog (u) ¢E F(x,u) du = E, f(;" Nog (W) e Fix,u) du (3.121)

To evaluate this integral an assumption must be made with respect to the neu-
tron distribution F(x,u). This we take to be Gaussian:

ak,u) 5 e K/4w

NO’sog N(J'so E [411'1' (u)]vl/z (3.1 22)

Fx,u) =

where 8, is the number of neutrons emitted per sq. cm. per second by the source.
Hence we obtam ' :

(3.123)

E() = SE; % v[4‘%}
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This integral can in general be evaluated only by numerical methods. However,
if all cross sections are constant, then, in simplest approximation,

T () =—>\‘3I—Au , (3.124)
and
E(X) = SoEo (3.125)

Evaluating the ‘integral according ti gatsfdh’s Bessel Functions, p.. 183, we ob-

tain
E(x) =—°‘¥‘l e~ (3.126)
where
Yy
= [B&/M ] (3.127)

The total energy emitted from one side of the source plane cm? per second is
S¢E¢/2; thus, according to Eq. 3.126, the fractional energy release in each cubic
centimeter falls off exponentially with length constant «.

Slowing Down Distribution in a Finite Block

In order to measure the slowing down distribution from a source it is cus-
tomary to place the source on the axis of a long parallelepiped and measure the
activity of Cd covered In foils placed along the long axis of the parallelepiped.
Since In has a deep resonance at 1.44 eV, the activity of such a foil will in good
part be proportional to the flux of 1.44 eV neutrons. Actually, because of higher
resonances, the reading of the In foil is not quite proportional to the 1.44 eV
flux; according to Hill and Roberts, at points close to a source of 30 kv neu-
trons in graphite, almost 40% of the activation of In is due to absorption above
1.44 eV. Farther from the source the perturbation due to higher resonances
becomes less so that the mean square distance to 1.44 eV as measured by In
foils is in error by much less than 40%. The theory of this experiment is a
good illustration of the usefulness of the age approximation, and we give the
details in the following paragraphs, . =

Suppose a monoenergetic unit source is placed at the point x =0, y = 0,

z = 0 in an infinitely long moderating prism of sides 2a . The slowing down
density satisfies

bk

Cad
1
[
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Aqx,y,z,T) = 24 x,y,2,7) (3.128)
oT
| Tlino ax,y,2,7) = 8(x,y,2) (3.129)

where we have assumed the long direction is along z. The boundary conditions
may be takef with: sufficient accuracy (prov1ded the width of the block is much
larger than the meéan free path). 4

q=0 onthe ext‘rapolated bodﬁdary (3.130)

the extrapolated boundary being the geometrlc boundary. a’ augmented by the ex-
trapolation distance 0.71 Aye We denote a’+ .71 A, by 4. It is convenient to as-
sume Ay independent of energy; again this is an unlmportant assumption pro-
vided the block dimension is large compared to a mean free path.

The solution of Eq. 3.88 which satisfies the boundary conditions is

ax,y,z,7) = —E cos B x cos By e ~[Bh+Bilre- 2°/47 (3.131)
(47'-7')%
where
T T
Bm = (2m + 1)5; an (2n+ 1)% (3.132)

The sine solution is not used because of the symmetry of the source distribution.

The shape of the distribution along the z-direction is the same as from an
infinite plane. As the neutrons age (7 increases) the intensity of the distribution
falls because of the exponential factor. This factor accounts for leakage out of
the block. Its dependence of T arises from the circumstance that neutrons with
large T must have diffused for a relatively long time and therefore must have
had a good chance to leak out of the sides. The magnitude of the leakage is de-
termined by the ratio 7/a2.

The distribution (Eq. 3.131) is represented as a sum of characteristic func-
tions. The slowing down density can, of course, also be computed by observing
that the neutron distribution from a point source in a finite block can be viewed
as the superposition of distributions from point sources and sinks appropriately
distributed in an infinite medium. The mathematical relation between the source
wise and characteristic function representations of the distributions is estab-

llshed by means of the Po1sson summation formula (Courant-Hilbert, Methoden

(3.133),
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Upon applying this transformation to the series (3.131) with
¢(m,n) = cos B, x cos B,y
we obtain
1 v
q,y,z,7) = (41!_"—1_)372 Q...Z v(a))d-u exp — [(x—Aa)? + (y—na)z + z2]/47" (3.134)

Each term in Eq. 3.134 represents a source or sink of unit strength situated at
the point (Aa, pa, 0). The source wise representation of the slowing down dis-
tribution converges better than the characteristic function representation at
points close to the source; at points far from the source the characteristic func-
tion form is the better converging.

Measurement of Slowing Down Length

The second moment of the distribution (3.131) is

<. fon a(x,y,z,7)z*dz _ 5

Z T
fo“ 1(x,y,z,T) dz

that is, the second moment in a finite block is the same as in an infinite block.
Hence foil measurements in a block of finite width yield the same second mo-
ment as measurements in an infinite medium. This result is independent of the
relative importance of the various harmonics contained in Eq. 3.131 and holds
provided only that the distribution is strictly Gaussian.

Most neutron sources are not monoenergetic, nor is the slowing down in-
trinsically Gaussian. For both these reasons the mean square distance measured
in a finite block is not strictly the same as the mean square distance in an in-
finite system. For example, if the energy distribution of the source is f(r’)dr’,
then

aix,y,z,1) = —12- 2 cos B x cos B,y f” e~ B *BLl (r-7) £(1+) e=2°/4(r-1") dr+
A" Lwl LY .”
m,n ‘0 [4n@r—1)]"

The second moment of this distribution aleng the z axis (x =y = 0) is

R BB (- AT
= f f = o~ [Bm*By] (7 T"f(‘r’)zzl € ;Z/ ,(T T)"ﬁ? dr
z2=mn Y0 Yo [4rr—1)]% :
B

i e ‘ 3.135)
B 90 o e—[B:Tl+B¥l] (T'T')f (1") e-Zz/4(T'T') TV * (
f : = dz d’

Br{r—7)]%

g
e

-~

dywe
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In general this second moment will d].ffer from the second moment zw, meas-
ured in an infinite medium:

f{o f-o . o2 /4(r-1")
— b f(T9) =z Tantr T (T_T,)]‘l/?dz dr

2 _
Z = e e—z/4(r-1%) 8.136)
f 1 f@) ————— dzdr
Jo Jo 4r(T—7")
Corrections must therefore be made to the observed infinite system 2% in order

to obtain the true infinite system z%,. It is possible to compute these corrections
for a completely general kernel and this will be done in the remainder of this
section.*

The correctlons w111 be made by observmg that the neutron dlstrlbutlon ina

tribution of positive and negative sources in an infinite med1um, provided as we
shall assume, the extrapolation distance can be neglected compared to the block
size, or is independent of neutron energy. _

Now a point source at the center of the z = 0 plane in a long block of sides
2a is equivalent to a sequence of positive and negative sources spaced at inter-
vals of 2a in the z = 0 plane. Such a sequence can be represented as

) d(y,a) = Sx,y) 8(z) = 8(z L cos Byx cos By (3.137)
m,n

where x and y are allowed to have any value from -« to +%,
We consider the function

qx,y,z) = f'°f S’,y’) P[\/(x—-X)2 + (y—y)2+ 2 dxdy’ = = [°f cos Bmx'cos Bpy’

m,n ~%

x PV (x—x")2+ (y—y)? + 2] dx’'dy’ = L cos Bmx cos Bpy D(B%, + B%,z) (3.138)

m,n .
where P(B%, + B, z) is the two dimensional Fourier transform of the point
slowing down kernel, P(r): '

P@, + B, 2) = [[ e B & + Byl PIVEL + of + 27] dedn. (3.139)

The function q(x,y,z) can be viewed as the slowing down density in an infinite
medium in which the infinite array of §p¢sitive and negative sources defined by
Eq. 3.137 is situated. Since according to Eq. 3.138 q(x,y,z) vanishes on the
boundary of the block, it can also be viewed as the slowing down density in the
finite system due to a single point source at x = y = z = 0, provided the extra-
polation dlstance is energy independent. A range measurement results in the
observed 2k™ moment‘zzk

*M. E. Rose and A. M. Weinberg, MonP-297.
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= B fffl *X cosB x’ cosB,y’ P(Jx'2+ y‘2 7) dxrdy'dzlf.

Y Y

(T lcosB_ X’ eosB y’ P(\/x'2 + y‘2 + zz) dx’dy’dz’

a2

We now show ‘how the' moments in an 1nfm1te system can be expressed in terms
of the observed moments in the finite system. Since P(x,y,z) is an even function
of x,y,z we can replace cosB, x’ coany’ by cos(B Xx+B y) in Eq 3.140. Now

(3.141)

2 _he I‘e‘ 2. wcz g

EoB “?\”‘CJ Y D T N S S o bl = w5 2‘
. w02 = [z(w s)l! @s)! » o
Upon substituting (3.141) into (3.140) we find

5 32 e ]

222 Z 20-9]1! (28)! Bz("'s) B“/f ix2 -9 y28 P(r)dxdydz
e v e=g W

':,.m—'"ﬁu}.—-wm F - T

2 y2sz2kp<g>dxdydzf

The 1ntegrals which appear in Eq.: 3.142 are of the form

and can be evaluated by shifting to polar?eoordinates. Thus

Rigtlgel . @D @)L LI G+ 3+ D)1 ofpr

oo w it jl L @Qi+2j+2L)1 P

(3.143)

Upon substltutmg Eq. 3.143 into Eq. .1142 ‘we obtam

1

SV pro-oge CRG 411 KD |
‘ 2 22}2( Ve S R RO v R

=0

i et

2 22 2 - pu By st jsz‘?(;i':s)z!};y)z B

uuuuu - ‘l)/‘

which is an infinite system of linear equatlons relatmg the observed moments
22K to the infinite system moments zz”k The system can be solved for each g 21(
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in'terms of the z?_lfiliy successive approximations, in which, at each stage of the
approximation only a finite number of equations and unknowns are used. Such a
process will converge well if the block dimension is large compared to the slow—
ing down range.

If the source instead of being concentrated in a point is distributed.over the .
z = 0 plane like cosBgx cosB,y, only the term m = n = 0 appears in Eq. 3.144.
The infinite second moment can then be expressed explicitly in terms of the
measured finite system moments:
- ; Boz + 310 B"z‘5 . )
z%, = — ‘ (3.145)

i 1
1+ Boz + = 5 Bgz '+—§-6 Bgze. .o

1
i
S

e

and this expressiongives the correction for converting z* into z2 . Equation
3.145 is of practical importance since measurement of fission neutron ranges
are sometimes performed by using the thermal neutrons from a thermal column
which are distributed like cos Byx cosByy to produce fissions in a flat plate of
fissionable material. The fission neutrons in such an arrangement will be dis-
tributed also as cosByx cosByy.
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