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PILE NEUTRON PHYSICS. (Lecture Notes). 
CHAPTER VIa(cont .). SLOWING DOWN OF NEUTRONS 

By A. M. Weinberg 

The Space Independent Boltzmann Equation; Energy Distribution of Neutrons 

If the production of neutrons throughout all space is uniform, then the neu- 
tron density cannot depend on x. The general Boltzmann equation (3.36) reduces 

I to 

21 + I 21' + I I"*'""' Ill Nuso (u' ) F (u' , p' )e u' -" 
2 . NaF(u,p) = - - 2M 

1 1' 

The total neutron flux per logarithmic energy interval, Fo(u), and the total num- 
ber  of neutrons produced per C.C. per second, So, are 

Fo(u) = s' F(u,p)dp -1 

so=J1 -1 S W p  

Thus upon integrating Eq. 3.70 over p and p' there results 

u+lna2 
NaFo(u) = - (i+M)2 - Ju Nos, Fo(u') e''-' f[u',h(u'-u)J du' + So i3(u-uo) (3.71) 2M 

In the isotropic scattering case, f = g, this reduces to  

It is to be understood, as before, that Fo(u) 5 0 if u <  uo. 

source energy) is easy to calculate provided there is no absorption (Nu= Na,,). 

CF-48-9-128 I 

The distribution Fo(u) for large values of u (Le., at energies far from the 

L 
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(3.73) 

"W.' " **@*2 -+-* 
hence, on transforming to  the variable u, and integrating - over angle, we  find 

(3.74) 

Consequently 

Nu Fo(u) = C, a constant, 
SO 

satisfies Eq. 3.72. However, since this solution does not satisfy the initial con- 
dition (which is derived from Eq. 3.71), namely, 

lim NoFo(u) = SO ~ ( u - u o )  
u-0 

it cannot be correct close to the source energy uo. Thus Nas,Fo(u) = C is only 
the asymptotic solution of Eq. 3.71, correct at energies u which differ from uo 
by several logarithmic slowing down intervals lncr2. 

We compute the value of the constant C in the case of isotropic scattering, 
i.e., f = '/. This is of most practical interest since the asymptotic solution ap- 
plies only to  neutrons which have lost considerable energy, and therefore the 
scattering by the moderator will usually have become isotropic by the time the 
asymptotic solution becomes valid. To compute C we equate the number of neu- 
trons which cross a given energy E per second per C.C. in the course of slowing 
down, to  the number of neutrons produced per second per C.C. 

To calculate the number of neutrons which cross E per second per C.C. we 
observe that all neutrons from logarithmic interval du' which enter a logarith- 
mic energy interval dua lying below u(E) will have crossed E. The number of 
collisions per logarithmic energy interval du' per second is 

N a  F,(u') du'; du' so 

the probability that these collisions will result in u(E) f 

neutrons being thrown into energy interval dE" is 
dua 
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1, 
or,  in the logarithmic energy variable,, 

3 .b I 

3 
i 

Hence the total'nu 

ws, 2M 

u+lna2 
(3.75) 

Since the scatt umber of neu- 
trons crossing energy E per second per c.c., i.e., the slowing down density q(E), 
which is to  be equated to  So, is 

, Thus 

and the energy distribution is 

In terms of E, rather than u, the distribution is 

or  

(3.77) 

(3.78) 

(3.79) 

The energy distribution Eq. 3.77 can, of course, be derived from the approx- 
imate Eqs. 3.56a and 3.57. In the case of isotropic scattering in a mixture, the 
slowing down density in an infinite medium in which neutrons are produced uni- 
formly satisfies the equation 



where 

Now the solution of EqI 3.80 is 

CF-48-9-128 

(3.80) 

(3.81) 

and the neutron energy distribution implied by Eq. 3.81 is the same as  that of Eq. 
3.78. 

on the other hand the differential equation which led to  Eq. 3.81 is an approxi- 
mation which was valid, because it involved a Taylor series expansion, only if 
c (in the case of mixtures) varied slowly over one slowing down interval. Ac- 
tually the energy distribution (Eq. 3.81) is a rigorous asymptotic solution of the 
space-independent Boltzmann equation only for isotropic scattering in a single 
substance. For mixtures or anisotropic scattering, Eq. 3.81 is only approxi- 
mately correct. 

The assumption of a single substance was  not necessary to obtain Eq. 3.81; 

Spatial Distribution of Slowed Neutrons; the Slowing Down Kernels 

The slowing down density satisfies 

with the initial condition 

(3.69) 

Suppose a point source emits one fast neutron per second at - r = 0 in an infinite 
medium. The slowing down density at some lower energy corresponding to age 
7 will be the solution of 

(3.82) 

This equation is identical in form with the time dependent diffusion equation 
discussed in Chapter I. The solution, as was found there, is 



- 
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(3.83) 

Le., the slowing down density of neutrons from a point monoenergetic source is 
distributed around the point according to  a Gaussian function. The range ro of 
the Gaussian (i.e., the distance at which the density falls to  i/e of its value at 
the source) is 

r o =  JZT; (3.84) 

For many purposes it is important to know the second spatial moment of 
the slowing down density. If the slowing down density is Gaussian, then the sec- 
ond moment of neutrons slowed to age T ,  which we denote by r (T), is -2- 

2 

= 6  
- 
r2(T) = 

&,=q(r,T)r2 9 47rr2dr - - $rr4 e” /47 d r  
Jd.oq(r,T) 4ar2dr r r 2  e-rz/4r d r  

For a Gaussian distribution, the following relation holds between the age, the 
second moment, and the range: 

The relation between T and the second moment of the slowing down dis-  
tribution is the same as the relation between the square of the diffusion length, 
L, and the second moment of the distribution of thermal neutrons around a point 
source. For this reason J? is often called the slowing down length. 

The age 7 is related to the logarithmic energy according to Eq. 3.66 by 

u, du 
3Natr No, T(U) = (3.85) 

and is therefore a monotone increasing function of u. Thus the spatial distribu- 
tion of slowed neutrons keeps a Gaussian shape as the neutrons lose energy, 
but the neutron distribution gradually spreads out since the range ro increases 
with u. The distribution of neutrons slowing down from an energetic source is 
in this approximation exactly the same as the distribution of heat from an in- 
stantaneous heat source. 

The energy distribution of the neutrons slowed from a point source is, ac- 
cording to Eq. 3.83 <> e . 1 4  ‘ 8::s 



6 CF-48-9-128 

T(U) being the function expressed in Eq. 3.85. If ail cross  sections a re  constant, 
then 

and 

Fob- 

.. i 

(3.86) 

r. 

At a 
occurs at the logarithmic energy urnaxgiven by 

ahd ,-en wanes; the maximum 

(3.87) 

The slowing down density (Eq. 3.83) from a point monoenergetic neutron 
source may be designated the “point slowing down kernel.” Following the pro- 
cedure used in the discussion of the time dependent diffusion equation, we can 
write down the corresponding kernels in other geometries. 

From the slowing down density arising from a monochromatic energy 
source it is a trivial matter to  compute the slowing down density from a fission 
neutron source which is polyenergetic. If the number of neutrons emitted per  
sec between energy E’ and E’ + dE‘ from a point source at the origin is 

f (E’)dE’ ?. . 

then 

q[r,T 

wher 

(3.88) 

per C.C. 

at r. Since in a chain reaction the neutrons originate from a fission spectrum, 
theslowing down distribution as given by Eq. 3.88 is the one appropriate to  a 
chain reactor in which the moderator is non-hydrogenous. 
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Slowing Down Kernels 

Source 
Geometry Normalization Notation 

7 

P 

p2 = r2 + r p 2  - 2 r i  cos (q-p') 

Spherical I neut/sec per Ps(r,T; r' ,T') 
Shell shell of radius 

r' at age 9. 

Cylindrical i neut/sec/cm Pc (r, 7; r' ,9) 
Shell of shell of 

radius r' at 
age T' 

Elementary Improvements on Age Theory 

The age approximation, and the Gaussian slowing down distribution which it 
yields, resulted from a spherical harmonic expansion of the angular distribution, 
and a Taylor's series expansion of the energy distribution. A s  has already been 
pointed out, ihe  Taylor's series expansion is valid only if the mean free path 
varies slowly over one slowing down interval, while the spherical harmonic ex- 
pansion could be e+pected to be good only fairly near the source. Thus the age 
approximation is poor in hydrogenous media (whzre the mean free path changes 
rapidly), or at large distances from the s o k e  hi any medium. 

That the Gaussian cannot be correct at large distances is evident from the 
following physical argument: Consider neutrons which have made no collisions 
at all. These will be distributed like So (eeNm/4ar2) where Ng is the macro- 
scopic scattering cross section and So is the source strength. Now at small dis- 
tances the Gaussian slowing down distribution will  exceed this exponential; at 
large distances, however, the ratio 



8 

approaches 00, since the G 
large distances, the distribution is more exponential than Gaussian. 

this “first collision paradox” can be expected if the “aging” process, which 
leads to the Gaussian, is assumed to begin only after the neutrons have made 
their first collision. The points at which first collisions occur act as “sources” 
for the slowing down process. 

ential. Thus at 

An improvement on the age theory distribution which at least is free from 

The first collisions are distributed as 

the 0 referring to u = 0, the source energy. 
down distribution should therefore be 

A further improvement can be made by taking into account the fact that after 
a neutron has suffered a collision which throws it across energy E, it experi- 
ences a “free ride,” without changing its energy, until it suffers its next colli- 
sion. To take this free ride after the last collision into account, it is plausible 
to  include another exponential with mean free path appropriate to the lower en- 
ergy. Thus the slowing down distribution, including both first and last collisions 
is 

UI  (3.89) 

where ~(0) and ~ ( u )  are cross sections at the initial and final log energies re- 
spectively. Formulas like (3.89) are of course not rigorous; they are rather 
more plausible than the simple Gaussih and have been used to  represent the 
slowing down distribution from a point monoenergetic source. 

In order to compute the second moment of the distribution (3.89) we first 
state the well known result that the second moment of the distribution from a 
plane source is just ‘/s the second moment from a point. This follows from the 
relation between a point kernel and the corresponding plane kernel, 
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Upon integrating by-parts, and using the fact that r3Ppl(r) - 0 as  r - 00 for any 
kernels of interest, we obtain 

- 
z2 being the second moment of the plane distribution. 

the corresponding plane second moment, and multiplying by 3. The plane dis- 
tribution corresponding to (3.89) we write as  

With this preliminary we compute 7 for the distribution (3.89) by computing 

q(z,T) = Cl:Ki(z') Ppl(l 2' - ~ ' ' 1 )  K2(1z" - 21) dz' dz" 

where Ki(z) and K ~ ( z )  are-plane transport kernels and PPI is the plane Gaussian 
kernel. The quantity q(z,T) is the convolution of the three kernels K, P,, and K2. 

(3.90) 
. A. , d &.%* -a 

Now if Kim2) is the Fourier transform of Ki(z), Le., if 

- 
Ki(B2) = s" Kl(z) eiBZdz 

then z"., , the second moment of the distribution defined by Ki(z) is 

-ob 

L. 

Furthermore, the Fourier transform of q(Z,T) is 

(3.91) 

(3.92) 

Hence 

(3.93) 



10 

and 
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In other words, the second moment of a distribution which is the convolution of - 
several kernels is the sum of the second moments of each kernel. 

We now apply this result to the distribution (Eq. 3.90). The second moment 
of the transport kernel eoN0(')'/4nr is 

- -  --- 
------ --- 

2 

and the second moment of the Gaussian is 67. Hence the second moment of the 
slowing down distribution corrected for first and last collisions is 

or, upon using the formula (3.66) for 7, 

(3.94) 

(3.95) 

The distribution (Eq. 3.90) is unwieldy analytically, and it has therefore been 
customary to replace it by a single Gaussian 

where T ' ,  the corrected age, is chosen so as  to give the same second moment 
a s  (Eq. 3.86). Thus the corrected age is 

(3.96) 

and it is@i&"$ltge, together with the -simple Gaussian, which is usually used to 
represent the slowing down @nsity +n a heavy modegator. 

The Group Picture 

a fairly satisfactory representation of !the slowing d * 5 Q ators. However, for certain problems, e.gF, those i 
composite eedia ,  even the eIegant G%ussian age theory becomes very unwieldy. 

-1 Y 
t 

The Gaussian slowing do,wn distribution with the corrected age (Eq. 3.96) is 
n process in heavy moder- 
lT&g slowing down in 
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The analytical difficulties arise because the age theory equation is a partial dif- 
ferential equation. To avoid these complications a simplified formulation of the 
slowing down problem which describes the process by a sequence of ordinary 
differential equations has been used very widely in pile theory. 

The general idea of this method, called the method of groups, is to divide 
the total logarithmic energy interval through which the neutrons pass into a fi- 
nite number of energy subintervals. Neutrons in a given energy group are  s s -  
posed to diffuse ‘without energy loss until they have experienced a number of 
collisions equal to the average number of collisions actually required to pass 
through the energy interval; at this time they pass into the next lower energy in- 
terval. Thus removal from an energy interval is treated as  an “adsorption” 
process, the “absorption” cross-section, ut, being determined from the rela- 
tion 

i 

3 = number of collisions before removal from energy range. 
T 
The cross-section for removal of neutrons from one group is also the cross- 
section for creation of neutrons in the next lower group. The slowing down den- 
sity, i.e., the number of neutrons passing from the vth energy group to the v + 
1st group, is therefore 

q, = GV (3.97) 

where 6, is the flux of neutrons in the vth energy group. If the magnitude of a 
logarithmic energy interval is denoted by u,, and 6 is the logarithmic energy 
decrement per collision, then the number of collisions required to cross u, is 
up/[, and the “absorption” cross-section for the vth group is 

(7* = - us, 5 (3.98) 
a uu 

where vav is the average scattering cross-section in the uu energy interval. 

neutron flux @,(r) in the v* group satisfies the diffusion equation 
If D, is the average diffusion coefficient in the vth energy group, then the 

- 
(3.99) 

S,(r) being the number of neutrons produced by an external source per unit vol- 
ume at - r’in the vth energy interval. 

at the origin, the group equation is 
In a one group picture, v = 1, in which the external source is a 8-function 

DtACPl - Nu* CPi + a(r) = 0 
a1 

(3.100) 
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this has the solution 

- r/L; 
n 

where 

~ 
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(3.101) 

L T ~  = D ~ / N , ~ *  
a1 

The second moment of this distribution is 6L*2, and the slowing down length is 
given by 

(3 .I 02) 

(3 .1 03) ’ 

If we substitute for 
obtain 

and Dl their expressions in terms of cross-sections, we 

(3.104) 

This is identical with the age theory expression for the second moment provided 
the product Nu Nusl is chosen a s  n1 

(3.105) 

With this choice of average cross sections, the one-group picture is seen to give 
a spatial distribution which is exponential instead of Gaussian which has the 
same second moment as the age theory, but 

neutrons is readily found by solving Eq. 3.99. For simplicity we deal with the 
problem plane symmetry; the solution from a point source is then found by dif- 
ferentiating according to Eq. 1.141. The differential equations to be solved are  

In the n-group picture the distribution from a localized source of high energy 

1 

To solve these equations we make a Fourier transformation, 

(3.106) 
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The transforms satisfy 

Hence 

and therefore 

1 "  
+ I W  = Jq 

= J- 
(3.107) 

I "  

Since @ k ( o )  is th 
distribution Q, k 
the previous groups. Physic 
the succeeding group. 

3.107. The integrands have poles in the upper half plane at 
To actually compute 9u (x), it  is necessary to evaluate the integrals in Eq. 

(3.108) 

and we assume for simplicity that all roots are  simple. Hence, according to the 
residue theorem, 

(3.109) 

where the term (I -Lja/Lj2) is omitted from the sum. If k = I (one group pic- 
ture), Eq. 3.109 reduces to 

(3 .I 10) 

which is the plane equivalent of Eq. 3.101. 
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Since 9 k ( x )  is the convolution of all the previous @,(x), the total slowing 
down length for the neutrons slowed out of the kth group must be the sum of the 
squares of the slowing down lengths in each group individually: 

(3 .I 1 1) 

If the number of groups becomes infinite, but each L, is reduced so that 

(3.112) 

where remains finite, then the group picture should go over into the continuous 
age theory. The slowing down density in the w-group case can be computed most 
readily by first passing to the limit in the integrand of (3.107) and then evaluating 
the integral. From Eq. 3.107 

/ 

(3.113) 

(3 .I 14) 

that is, the group picture and the age picture merge when the number of groups 
becomes infinite. 

The great merit of the group method is that it involves ordinary instead of 
partial differential equations. By taking enough groups it is possible to approxi- 

~ mate the age theory slowing down function to any degree of accuracy, and still 
deal only with ordinary equations. The approximate slowing down functions which 
are  construct&-out of group picture exponentials are called "synthetic" ker- 
nels. In pile problems involving H 2 0  as !moderator, it  is customary to use one- 
o r  two fast neutron groups in addition,to the thermal neutron group; in piles 
moderated by heavier materials as many a s  five o r  six groups have been used. 

In assessing the relative accuracy of the group method and the age theory, 
it must be remembered that the slowing down function from a point fission 
source, even in, say, graphite, is not a Gaussian because of the energy spread 
of the source neutrons. Thus in graphite the three group model is only slightly 

, 
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less accurate than the single Gaussian while in HzO, because of the very long 
mean free path at high energies, the slowing down is more nearly represented by 
a single group picture than by a Gaussian. 

Average Transport Cross Section in Group Method 

In order to obtain a one group distribution which has the same second mo- 
ment as the Gaussian, it is necessary to average the product of the transport 
and scattering cross sections according to Eq. 3.105. In problems involving only 
one medium it is only this product which determines the neutron distribution. 
However, in problems involving composite media, since one of the boundary con- 
ditions across an interface is continuity of the net current, and the current is 
proportional to the transport mean free path, it is necessary to find an appro- 
priate average for the transport mean free path separately. 

To calculate an average transport mean free path which will ensure conti- , 

nuity of the net neutron current in a group, it is necessary to make some as- 
sumption with regard to the actual energy distribution of the neutrons in a given 
group. Evidently the energy distribution will depend on the particular arrange- 
ment and properties of the slowing down media on each side of the boundary. 
However, as  a simple approximation, it is useful to assume that the energy dis- 
tribution of the neutrons is the asymptotic distribution 

1 
where a. is the scattering cross section. 

The total flux of neutrons in a group from energy El to E2 is 

+(x) = s" +(x,E)dE = f(x) 
El  

and the net current is 

(3.115) 

(3. I i 6) 

(3 .I 17) 

where-);* is the correct average transport mean free path. Thus combining Eqs. 
3.116 and 3.117, we obtain 

(3.118) 
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if 6 is constant, i.e., the average transport mean free path which will give con- 
tinuity of flow and density in a group in which the asymptotic energy distribution 
holds is an average over i/Nu, E. 

The Energy Transfer Distribution of Slowed Neutrons 

It is a matter of some practical importance to calculate the manner in which 
the energy transferred to a moderator by elastic collisions of fast neutrons is 
distributed in space as  the neutrons slow down from a plane source. If the flux 
of neutrons of log energy u = lpEo/E is F(x,u) (plane symmetry), then the number 
of elastic collisions per C.C. per second at energy E = eu is 

No, F b,u) 

Since the logarithm of the ratio of the average energies E' and E after two 
successive collisions is 

(3.119) 

In E'/E = [ 

the average energy loss per collision, AE, is 

AE = E' - E  = E(e - 1) 

i.e., if the moderator is heavy, 

AE M (E (3.120) 

This energy increment appears as kinetic energy of the moderator atom. Hence 
E@), the energy released per C.C. per second to the moderator by elastic colli- 
sions, is, for heavy moderators, 

t 

To evaluate this integral an assumption must be made with respect to the neu- 
tron distribution F 4,u). This we take to be Gaussian: 

(3.122) 

where So is the number of neutrons emitted per sq. cm. per second by the source. 
Hence we o integral (3 

E(x) = SEo (3.123) 
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This integral can in general be evaluated only by numerical methods. However, 
if all cross sections are constant, then, in simplest approximation, 

(3.124) 

(3.125) 

n's Bessel Functions, p. 183, we ob- 
tain 

- ~ S O E O  e-ax E(x) -- 
2 

where 

(3.126) 

(3 .I2 7) 

The total energy emitted from one side of the source plane cm2 per second is 
S0E0/2; thus, according to Eq. 3.126, the fractional energy release in each cubic 
centimeter falls off exponentially with length constant a. 

* Slowing Down Distribution in a Finite Block 

In order to measure the slowing down distribution from a source i t  is cus- 
tomary to place the source on the axis of a long parallelepiped and measure the 
activity of Cd covered In foils placed along the long axis of the parallelepiped. 
Since In has a deep resonance at 1.44 eV, the activity of such a foil will in good 
part be proportional to the flux of 1.44 eV neutrons. Actually, because of higher 
resonances, the reading of the In foil is not quite proportional to the 1.44 eV 
flux; according to Hill and Roberts, at points close to a source of 30 kv neu- 
trons in graphite, almost 40% of the activation of In is due to absorption above 
1.44 eV. Farther from the source the perturbation due to higher resonances 
becomes less so  that the mean square distance to 1.44 eV as measured by In 
foils is in e r ror  by much less than 40%. The theory of this experiment is a 
good illustration of the usefulness of the age approximation, and we give the 
details in the following paragraphs. 

Suppose a monoenergetic unit source is placed at the point x = 0, y = 0, 
z = 0 in an infinitely long moderating prism of sides 2a . The slowing down 
density satisfies 



(3.128) 

(3.129) 

where we have assumed the long direction is along z. The boundary conditions 
may be take%witK sufficient accuracy (provided the width of the block is much 
larger than the mean free path). 1" 

. . .  * 
q = 0 on the extrapolated bo&dary (3.130) 

the extrapolated'b&mdary being the*geometric boundary a' augmented by the ex- 
trapolation distance 0.71 A,. We {enote a' + .71 A, by a. It is convenient to as- 
sume At r  independent of energy; again this is an unimportant assumption pro- 
vided the block dimension is large compared to a mean free path. 

The solution of Eq. 3.88 which satisfies the boundary conditions is 

where 

(3.131) 

(3.132) 

The sine solution is not used because of the symmetry of the source distribution. 
The shape of the distribution along the z-direction is the same a s  from an 

infinite plane. As the neutrons age (7 increases) the intensity of the distribution 
falls because of the exponential factor. This factor accounts for leakage out of 
the block. Its dependence of 7 arises from the circumstance that neutrons with 
large 7 must have diffused for a relatively long time and therefore must have 
had a good chance to leak out of the sides. The magnitude of the leakage is de- 
termined by the ratio 7/a2. 

tions. The slowing down density can, of course, also be computed by observing 
that the neutron distribution from a point source in a finite block can be viewed 
a s  the superposition of distributions from point sources and sinks appropriately 
distributed in an infinite medium. The mathematical relation between the source 
wise and characteristic function representations of the distributions is estab- 
lished by means of the Poisson summation formula (Courant-Hilbert, Methoden 

The distribution (Eq. 3.131) is represented as  a sum of characteristic func- 

' .n 
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Upon applying this transformation to the series (3.131) with 

cp(m,n) = cos B,X COS B,Y 

we obtain 

19 

(3. I 3 4) 

Each term in Eq. 3.134 represents a source o r  sink of unit strength situated at 
the point (Aa, pa, 0). The source wise representation of the slowing down dis- 
tribution converges better than the characteristic function representation at 
points close to the source; at points far from the source the characteristic func- 
tion form is the better converging. 

Measurement of Slowing Down Length 

The second moment of the distribution (3.131) is 

= 27 
- &* qkY,Z,r)Z2dZ 
2 2  = 

S" d X , Y , Z , O  dz 
0 

that is, the second moment in a finite block is the same a s  in an infinite block. 
Hence foil measurements in a block of finite width yield the same second mo- 
ment as measurements in an infinite medium. This result is independent of the 
relative importance of the various harmonics contained in Eq. 3.131 and holds 
provided only that the distribution is strictly Gaussian. 

Most neutron sources a re  not monoenergetic, nor is the slowing down in- 
trinsically Gaussian. For both these reasons the mean square distance measured 
in a finite block is not strictly the same as the mean square distance in an in- 
finite system. For example, if the energy distribution of the source i s  f(T')dT', 
then 

The second moment of this distribution along the z axis (x = y = 0) is 

I 

(3.135) 
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In general this second moment will differ from the second moment z?,, meas- 
ured in an infinite medium: 

(3.136) 

- 
Corrections must therefore be m a e  to the observed infinite system z2 in order 
to obtain the true infinite system 25. It is possible to compute these corrections 
for a completely general kernel and this will be done in the remainder of this 
section.* 

finite block can be considered as the sum total of effects from a suitable dis- 
tribution of positive and negative sources in an infinite medium, provided as  we 
shall assume, the extrapolation distance can be neglected compared to the block 
size, o r  is independent of neutron energy. 

Now a point source at the center of the z = 0 plane in a long block of sides 
2a is equivalent to a sequence of positive and negative sources spaced at inter- 
vals of 2a in the z = 0 plane. Such a sequence can be represented as 

The corrections will be made by observing that the neutron distribution in a 

8 4 )  a(r,a) = S(x,y) = a(z) E cos Bmx cos Bny 

where x and y are  allowed to have any value from -* to +*. 
m, n 

We consider the function 

(3.137) 

q(x,y,z) = $"$ S(X',Y') P [ ~ ( x - x ) ~  + ( Y - Y ) ~  + 2'3 WdY' = 2: .T$ COS BmX'COS BnY 
m,n -O0 -00 

x P[J(x-x')' + (Y-Y')~ + z2] h'dy' = E COS BmX COS Bny H(B& + B ~ , z )  (3.138) 
m, n 

where P(Bk + Bi, z) is the two dimensional Fourier transform of the point 
slowing down kernel, P (r): - 

The function q(x,y,z) can be viewed as the slowing down density in an infinite 
medium in which the infinite array of !positive and negative sources defined by 
Eq. 3.137 is situated. Since according to Eq. 3.138 q(x,y,z) vanishes on the 
boundary of the block, it can also be viewed as  the slowing down density in the 
finite system due to a single point source at x = y = z = 0, provided the extra- 
polation distance is energy independent. A range measurement results in the 
observed 2kth moment 8. 

7 . p  - -  
1 ' 4  --- 

*M. E. Rose and A. M. Weinberg, MonP-297. 
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- J" z2kq(o,o,z)dz z2k = -00 

! 
I - 
1 

of the observed moments in the finite system. Since P(x,y,z) is an even function 
of x,y,z, we can replace 

. - Upon substituting (3.141) into (3.140) we find 
. .  

_ - .  __ 
. - Upon substituting (3.141) into (3.1~ 

. .  

_ - .  __ 

@.I. 42) -- 

The integrals which appear in Eq. 3.142 are of the form 
- . .  

x*ye3 2i 2 j  zo 2~ = - J7J -00 [-P(z{ - dxdydz - _  

and can be evaluated by shifting to polap coordinates. Thus 

(3.143) 

which is an infinite system of linear equations relating the observed moments 
za to the infinite system moments &k. The system can be solved for each T k  

.- - 
a 
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in terms of the zZk by successive approximations, in which, at each stage of the 
approximation only a finite number of equations and unknowns are used. Such a 
process will converge well if the block dimension is large compared to the slow- 
ing down range. 

z = 0 plane like c o s B ~  cosBOy, only the term m = n = 0 appears in Eq. 3.144. 
The infinite second moment can then be expressed explicitly in terms of the 
measured finite system moments: 

If the source instead of being concentrated in a point is distributed over the 

i -  I,, z2 + - B ~ Z ~  .t - B ~ Z  . . . 3 30 1 

I + B ~ Z ~  + - B;Z~ + - ~ 8 2 ~ .  . . 

- 
'5 (3 .i 45) 

- -. 
2 

1 _-c I e% *&&I 

6 90 
- 2, = 

- -- 
and this expression gives the correction for converting z2 into 2:. Equation 
3.145 is of practical importance since measurement of fission neutron ranges 
are  sometimes performed by using the thermal neutrons from a thermal column 
which are  distributed like cos Box cosBoy to produce fissions in a flat plate of 
fissionable material. The fission neutrons in such an arrangement will be dis- 
tributed also a s  cosBox cosBoy. 

& +e$ -e *b- .s 

-I* 


