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" INTRODUCTION

One of the main problems in nuclear physies is hhe determlnatlon )
of effective Hamiltonians to be used in shell-model calculations in a
truncated vector space.’ However, a number of difficulties have arisen
in trying to compute such effectlve Hamiltonians (1). 1In order to
‘study this problem in more detail we have undertaken a series of
calculations in which we can make a direct connection between a fixed
Hamiltonian H, which "describes" the eigenenergies and eigenvecrtors
of nuclei in a given mass range in some "large" shell-model vector
space S, and an effective Hamiltonian %} to be used to "describe"
some of the eigenvalues and cigenvectors of the same nuclei in a
smaller (truncated) vector space,g . In our calculations the results
of the H-in-S model play the role of "experimental observables' to be

reproduced by the #-in-. 4 model.

We investigated three different methods for constructlng'ﬁ#
these are
(1) lowest-order perturbation theory (1 e. perturbation
theory to second order)

(ii) a projection technique, by which we construct an
operator in the truncated space .£ in terms of
‘ known eigenvalues and eigenvectors in the larger space
S, and

(iii)'a least-square search to fit to selected large-space
eigenenergies.

We applied these methods to nuclei with A = 17-20,’ employing the
following model.- Using the experimental single-particle (s.p.)
ggergies for A = 17 and the renormalized Kuo interaction (2), we
calculated the eigenenergies and eigenvectors of nuclei with A = 18-20
in the full sd shell, i.e. (d5/2, 1/2° 3/2) We then truncated the
space to (d-,2, 1/2) and utilized the above three
techniques to construct effective Hamiltonians in this

smaller space.

One of the main reasons why these calculations were originally
andertaken (3) was to investigate problems concerning the divergence
>f the perturbation expansion for the effective Hamiltonian ﬁﬁ
letermined by means of microscopic perturbatlon theory (1). However,
the threce techniques used for constructing xr also allow us to study
the need for and the size of effective 3-hody forces (and higher-body
forces, if we wish) in nuclei containing three (or more) nucleons
ytside a closed-shell core. In this talk we will be concerned only
vith these effective 3-body forces and will discuss only our results
vhich have to do with nuclei with A = 19 and 20. The results of all
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our calculations including the 2-body ratrix elements of ﬁ‘ and the
properties of the eigenvectors of the different 4 operators in the
truncated space <§ will be presented in more detail in a forthcoming

publication (3).
TECHNIQUES USED FOR CONSTRUCTING 1¥hIN-Af

The H-in-S model or large model consists of the results obtained

by diagonalizing H in a "large" shell-model vector space S. We take
$., 9., etc. to be members of a set of orthonormal basis vectors

: sgannfng S and EI to represent an H-in-8 eigenvalue with eigenvector

TI. | .

We want to construct an effective Hamiltonian f* to be used
within the smaller vector space;d , which we call the 1I-in-af model-
or the small model. We take ¢i' $. etc. to be members of a set of &
orthonormal basis vectors spanningJAK and €; to present an N-in-
eigenvaiue with eigenvector wi. A :

We will not discuss the lowest-order perturbation-theory (1,4)
and least-square-search methods (5) in detail, since they are
already well-known. In our lowest-order perturbation theory calcul-
ation we determine /- to only second order in H, called A*M% using
more-or-less ordinary second-oraer perturbation theory (3). The main
difference is that for conveniénce we symmetrize the energy denomin-

ator to give a Hermitian 4. o

Our least-square-search method .is similar to standard calcula-
tions of this type (5). We assume some simple parametrized form of
ﬁ#and determine its parameters by requiring a least-square fit to
some chosen subset of the calculated large-model energies.

The projection method, like the least-square-search method,
requires that we already know some of the large-model eigenyalues EI
- with their eigenvectors Y.. We then want to construct an -in-
model whose energy eigenvalues exactly match a selected subset of
H-in-S eigenvalues E,. Let {E.} be a subset of the large-model eigen-
values with correspoinding small-model eigenvectors P.. We assume
that the V¢, span.xg. If the y; are also orthonormal, then -~ is
uniquely deétermined by

’ 7¥==28|\k>>EQ<LK! 3. N (1)

:
which clearly satisfies #Hy> = Eil¥id> and exactly reproduces
the E..
i

Following a suggestion by Brandow (4,6), we take for the vectors
Y. the projections of large-model eigenvectors on the small-model
space, calling the resulting many-body Hamiltonian HPR. To
construct PR we assume that .§ is a subspace of S and that we can
calculate all the H-in~S eigenvalue and eigenvector pairs {E ,WI}.
We then pick a subset {Ei,?.}, whose dimensions in the (A,J,%)-
subspaces of S exactly mitch the dimensions of the corresponding.
(A,J,T)-subspaces in <. VWe choose this subset so that the generaliz-
ed projections P¥, are all linearly independent and define the set of
normalized small-iiodel vectors, .
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W= P?i/<Pi/i‘P\IJi>M£' (2)

“Althouch the vectors $.PR span,J, they are not generally orthogonal
to each Eﬁher. Therefore, it is convenient tc construct a set of
vectors ijR, which are orthogonal to the set y.PR, i e,

o PR PR>...
<HTIHT =8y (3)
The "bi-orthogonal" set w PR is uniquely defined and can be easily

constructed.

In znalogy with eq. (1) we can construct the operator
PR 3, PR
HPR=ZIHTOELFT (4)

(4
which automatically satlsfles #PRIYPRD= E 144?R>
The matrix elements of t{ SRin ‘the orthonormal representatlon ¢

are then given by

- LR = Z(%WPR)E CFRIEY, o5

where the values E. are known, selected H-in-S eigenvalues and
the numbers (4:,]\}: } a‘rg‘d z ,} are the known expansion
coefficients of . PR and V. , respectlvely, in the basis
representation ¢. 1

The operatori& is not gererdlly Hermitian. To simplify our
nterlcal appllcatlons, we have used a HermJt1an approximation to

, hamely }
, #AVPRS—%CHPR'l' #PR). (6)

APPLICATION TO THE TRUNCATION (dg 5,S;/5,d3,9) * (d5/9,51 /)

Ve have applied the three methods discussed above to calculate
effectlve nuclear Hamiltonians for A = 18-20. The truncation we
treat is (d »S 2o 0) + (ds,n,S ), that is, we start with S
spanned 5/2 ilfﬁ 3/2 5/2°71/2 by all states of configurations
(d5/2,81/2, 3/2) , and let 4 bve spanned by all states of

configurations CRYPIL 1/2) -16, cConsequcantly there
are no hole states in our calculations. Ve
use the effective Hamiltonian suggested by Kuo (2) for H and the
negatives 01 the measured binding enercles with respect tc 160 of the
lowest 5/2%, 1/2 and 3/9 states in 70 for the s.p. energies. The
full Hamlltonlan H is a (1+2)-body oper%§ and its elgenvalues in §
represent energies with respect to the 0 ground state. Ve give our
results in terms of a correction operator §#, which represents the

difference between 4f and H.

Apvlication of the Lowest-Order Perturbation Method

Because S and 4 are so simply related in our calculations, thee
are no 0-body or 1l-body corrections in converting H n:%% Also, since
‘H is only a (1+2)-body operator,442“° has partlcle rank no higher
than 3. The 2-body corrections to H (i.e. Gﬁﬁ body) correspond to
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ladder diagrams, such as those shown in figs. 1(a) and 1(b). The
corrections ¢ ngod correspond to diagrams such as the one
i;igﬁgrated %? y fig. 1(c). Since H is a (1+2)-body operator,
SH, = NN, . Table 1 lists some 3-body matrix elements of 4f3N°
3°bedy be:’ttsé'gn the basis states ¢. , 3- body

. . 2KND
in our truncation, the denominators for 1¥ have magnitudes
ranging from 3.34 to 10.16 MeV. Because of these small energy denomi-
" nators, we did not expecct to constitute a good effective

Hamiltonian for oeur problem.

Application of the Projection Method

In const:ructing‘f;t-PR we had to project (d5/2’sl/2’d3/2)
eigenvectors WI onto the (d5' S 2) space . ; To do
this, we simply threw away af% c%éponents involving one or more d3 9" .
particles and then computed 4PR by using'eq. (5). The first /
step in our calculations was to choose an appropriate subset of the
(d 915 2,d 2) eigenstates WI to use in eq. (5). Let us call the
chgéen e gengéates in this sub3et ¥.. These Y. should be the best
candidates for '"non-intruders", whelre we expec% non-intruder states
to have "large'" projections in . Unfortunately, it is not always
obvicus how to choose the best set of candidates for '"non-intruders".

With one exception, our chosen states correspond to the lowest
eigenvalues EI for each A, J, T.

. * ooFOr our calculations, it is easy to see that#ri 4 =Hi-bodj
#PR =H — ; = >3 PR
and o-hodg“ o-bedy = O, P2 Using eq. (5), we computed #(Hz)-bed_y
from which we determined '/Jz-bod,y (which is non-Hermitian), by sub-
. : | PR . >
tracting the_two-body matrix elements of 1*1-&0&] . Similarly, we
obtained ¢¥(i+a+3)-boéy using eq. (5) and ‘our projected wave
functions for A = 19. To determine fJgEb,d, , we would need to
calculate the matrix elements of the non-Hermitian 2-body operator
: 355943 between three-body states ¢. But, this is impossible
with our’ present computer codes. Hence,-we decided to compute an
approximation tgvPR ﬁﬁbog . First, we symmetrized 1¥2-b,d, s
so as to get'ﬁ!a,bod (see eq. (6)), then we used our shell-model
codes to calculate 3-body matrix elements of %Jﬁﬂf,;, , and finally
by subtraction from ﬁﬂ;&2+3)—¥odj ., we computed

. PR _ 4 PR j AVPR 7
- /ﬁls-body = N(1+.?.+3)-bcdy"'7?'(1_+.z)—baal_y. ( )PR'
Table 1 shows some. of the 3-body (A=19) matrix elements of 3-bady
and H{AVPR between the basis states ¢. One should see ref."3 26%

~h "
detai?s‘ggyhow the choice of the "non-intruder"” states Wi influence
the magnitude and the non-Hermiticity of the matrix elements

obtained for #(”S+3)-body‘
Application of the Least-Square-Sedrch Method

Clearly the least-square-search Hamiltonian depends upon the
search criteria employed. Our results are for two different searches,
called SRCH.A and SHCH.B, which differed in the sclection of cnergy
data that were least-square fitted. However, in both searches-ﬁéwas
restricted to be a Hermitian (1+2)-body operator, the two s.p.
energies were fixed at the same 170 energies used in H and the

—5‘—
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variablce parameters were the 16 2-body mztrix elementé °f1¥2‘b0dy‘

‘ The criteria of SRCH.A were patterned after those of a typical
least-square-search to fit experimental data for A = 18-20 (5). .
Hence, the H-in-S levels selected for least-square fitt{ing correspond-— .
ed to levels of A ~ 18-20 which '"seemed important" to fit among

experimental data.

In SRCH.B we used another appnroach; we least-square . fitted
those H-in-S eigenvalues E. which we thought should be easiest to
fit from perturbation theory arguments, assuming a Hermitian operator
41. Consequently, we included a level EI in our least--square-fit
data set if and only if:

(a) its intensity in the (d.,.,,S;,,) space 4 , i.e. {P%|P¥:)
was > 0.6, 5/2'71/2 _ s
(b) its normalized4f—projected wave~function had a squared overlap

0of £0.02 with the normalized £~projected wave function of every
lower-lying H-in-S level, and
(c) all lower-lying states ¥ of the same A, J, T satisfied (a) and

(b). .

For more details about how SRCH.A and SRCH.B were carried out one
should see ref. 3.

RESULTS FOR A = 19 AND 2C

As mentioned earlier, table 1 lists some typical 3-body matrix
elements contributing to the A = 19 Hamiltonian matrices, e.g.
those for J = T=1/2 and J =T = 3/2.

After obtaining the matrix elemeats of H-in~S by our three
techniques, we then diagonalized 1¥ in the space 4 to cbtain the
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Fig. 3: Comparison of 200 T = 2 eigenstates as obtained in the large
(H-in-S) and small (1¥-in-3 ) models. The notation and horizontal

scales are the same as in fig. 2.

corresponding eigenvalues and eigenvectors. In figures 2-5 we

* compare low-lying H-in-S eigenstates with low-lying ~-in-4§ eigen-
states. Figures 2-3 display results for low-lying levels of the
oxygen isotopes A=19 and 20 (maximum T nuclei). Figures 4-5 show .
results for low-lying levels of F(A—19) and Ne(A—20) (non-max1mum T
nuclei).

In each figure, column 1 shows the low—lying H-in-S eigenvalue
spectrum. The length of the level-line represents

daylayy=<1-PLli-PE) , (&

which is the intensity of the H-in-S eigenvector outsidé,x.
Consequently, we expect better #-in-J fits for short lines in column

1.

Column 2 and all columns to the right of it give information
about % -in-4 eigenstates. Hence, 4 = PHP means that the original,
unrevised' Hamlltonlan H was used in.d . The remalnlnw column-labels
‘include obvious abbreviations, such as, 2ND.12 means 1+2 -bod
etc. Each H4-in-4 state is plotted at the same eneré )- y'
ordinate as its proposed partner in the H-in-S spectrum In these
columns, the length and direction of each level-line indicates the
deviation of the #-in-4 eigenvalues &€; from the H-in-S eigenvalue E;
" Thus, short lines indicate relatively cood fits, either expected
‘(column .1) or aétually found (column 2 onward).

" In column 1, the numerical labels represent J for even-A
nuclei, 2J for odd-A nuclei. Symbols 3 indicate those levels which

-T-
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we consider to be ground-state-band members. In all the columns
black dots on or near the vertical zero-line replace level-lines
that would be too short to see. 1In the 4$-in¢3 columns, small open
circles mark those levels whose H-in-S energies were explicitly used
in constructing f}(as in the projection procedure or in a least-

square search).

e

In examining columns 2 onward, remember that the level-lengths
; represent deviations off{-in-£ eigenvalues from H-in-S eigen-

&-E
é
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DISCUSSION CF RESULTS

Since the projection method (by construction) exactly reproduces
in the truncated space the selected large-space eigenenergies, the
effective Hamiltonian determined by this method indicates how big an
effective 3-body term is needed to dc¢ this. From table 1 (columns 8.
and 9), we see that the effective 3-body terms computed by the pro--
jection method are fairly large in magnitude, generally being several
tenths of an MeV, and are slightly non-Hermitian. However, the
effective 3-body terms are generally smaller than the effective 2-body
terms. Hence, the qualitative features of the large-space A=19
spectra are given by- the (1+2)-body parts of 4}PR, as one can see in
figs. 2 and 4. However, the effective 3-body terms are needed in order
~ to reproduce the A=19 large-space eigenenergies.

From table 1 and figures 2-5 we see that columns 2ND.12 and
AVPR.12 strongly resemble each other. This shows that, in spite of
small denominators, the simple second-order perturbation method
determines the 2-body part of the effective Hamiltonian reasonably
well, i.e. it gives results qualitatively similar toc those produced by

the projection method.

On the other hand, the 3-body part of the {F determined by
~simple second-order perturbation theory is noticably different from
the 3-body part of 4 computed by the projection method (see table. 1,
columns 7-9). This difference can also be seen in figs. 2-5. For
the maximum-T cases (figs. 2-3) the 2ND.123 results are an improve-
ment over the 2ND.12 results, while for non-maximum-T cases (figs.
4-5) the 2ND.123 results are somewhat worse than those from 2ND.12.

Consequently, the determination of the 3-body part of-ﬂ by
simple second-order perturbation theory appears to be fairly unsuccess-
ful, particularly for non-maximum T. Although we are not sure of the-
reason why second-order perturbation theory seems to work for deter-
mining the 2-body part of 4}, yvet fails to give the 3-body part, we
talnk it may be connected with the fact that so many more terms
appear in third order for the 3-body part of 4 than for the 2-body
part. For this reason, it is possible that the effect of using such
small energy dencminators may be much more important for the 3-body
calculation than the 2-body calculation, indicating that one must
probably go. to higher order in tke interaction to determine the 3-body.
part of ¢;in perturbation theory.

Although the SRCH.A and SRCH.B effective Hamiltonians are not
much better than the other solutions for #f for A=18 . (these results
are not shown here), they are generally better for A=19 and 20,

~particularly for the maximum-T cases (figs. 2-3). TFor the non-
maximum-T cases (figs. 4-5), neither SRCH.A or SRCH.B is consisteatly
better compared to 2ND.12 or AVPR.12.

. The generally improved recsults for A=19 and 20 given by the
.SRCH.A and SRCH.B cffective Hamiltonians would seem to indicate that
the least-square search (1+2)-body effective Hamiltonians are '
"petter" than the (1+2)-body effective Hamiltonians determined by
simple second-order perturbation theory and by the projection method,
since they contain the influence of the effective 3- and 4-body



terms in some average or smeared-out way.

In conclusion, when the number of valence nuclcons is increased
beyond 2, a 3-body term exists in the effective Hamiltonian # and
is needed in order to obtain accurate agreement with the experirmental
. spectra’. This conclusion is consistent with the results of previous
"calculations to investigate effective 3-body forces in nuclei (7).
However, this 3-body term in 4 is generally smaller than the 2-body
part of 44 , so that the (1+2)-body vart of #f gives the basic qualitative
features of the 3-particle spectrum. Lowest-order perturbation theory
is unsuccessful in accurately reprcducing the 3-body part of 4. Fin-
" ally the least-square-fitted (1+2)-body effective Hamiltonian appears
to be more successful in reproducing the experimental specira for 3 or
4 valence nucleons than the lowest-order perturbation-theory and pro-
jection-method effective Hamiltonians, since the forme. contains the
influence of the effective 3- and 4-body forces in some average way.

One of us (BRB) would like to thank Professor H.A. Weidenmliller
for the hospitality of the Max-Planck-Institut flr Kernphysik in
Keidelberg and Dr. Peter Hodgson for the hospitality of the Nuclear
Physics Laboratory at Oxford University, where this talk was prepared

for presentation.
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