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. " INTRODUCTION

One of the main problems in nuclear physics is }the determination
of effective Hamiltonians to be used in shell-model calculations in a
truncated vector space. However, a number of difficulties have arisen
In trying to compute such effective Hamiltonians (1). In order to
"study this problem in more detail we have undertaken a series of
calculations in which we can make a direct connection between a fixed
Hamiltonian H, which "describes" the eigenenergies and eigenvectors
of nuclei in a given mass range in some "large" shell-model vector
space S, and an effective Hamiltonian ""A/- to be used to "describe"
some of the eigenvalues and eigenvectors of the same nuclei in a
smaller (truncated) vector spaced . In our calculations the results
of the H-in-S model play the role of "experimental observables" to be
reproduced by the #-in-,<$ model.

We investigated three different methods for constructing*^;
these are

(i) lowest-order perturbation theory (i.e. perturbation
theory to second order)

(ii) a projection technique, by which we construct an
operator "£f in the truncated space ̂  in terms of
known eigenvalues and eigenvectors in the larger space
S, and

(iii) a least-square search to fit to selected large-space
eigenenergies.

We applied these methods to nuclei with A = 17-20, employing the
following model.• Using the experimental single-particle (s.p.)
energies for A = 17 and the renormalized Kuo interaction (2), we
calculated the eigenenergies and eigenvectors of nuclei with A = 18-20
In 'the full sd shell, i.e. (d5/2»

si /9'd3/2^' ^e t h e n truncated the
space to (d5/2'si/2^ a n d utilized the above three
techniques ' ' to construct effective Hamilton:i.ans in this (
smaller space. ^

One of the main reasons why these calculations were originally
undertaken (3) was to investigate problems concerning the divergence
">f the perturbation expansion for the effective Hamiltonian •{$-
ietermined by means of microscopic perturbation theory (1). However,
the three techniques used for constructing -£r also allow us to study
the need for and the size of effective 3-body forces (and higher-body
forces, if we wish) in nuclei containing three (or more) nucleons
rmtside a closed-sholl core. In this talk we will be concerned only
i/ith those effective 3-body forces and will discuss only our results
yhich have to do with nuclei with A = 19 and 20. The results of all l),/i



our calculations including the 2r-body matrix elements of !<*• and the
properties of the eigenvectors of the different -$• operators in the
truncated space £ will be presented in more detail in a forthcoming
publication (3).

TECHNIQUES USED FOR CONSTRUCTING "Ĵ -IN-̂ f

The H-in-S model or large model consists of the results obtained
by diagonalizing H in a "large" shell-model vector space S. We take
*I' *J' e t c' t o b e m e m b e r s o f a s e t o f orthonormal basis vectors
spanning S and Ej to represent an H-in-S eigenvalue with eigenvector

We want to construct an effective Hamiltonian 4t* to be used
within the smaller vector spaced , which we call the ^r-in-xf model
or the small model. We take $^, <j>. etc. to be members of a set of
orthonormal basis vectors spanningJxJ and e^ to present an -Jr-in-^
eigenvalue with eigenvector ty..

We will not discuss the lowest-order perturbation-theory (1,4)
and least-square-search methods (5) in detail, since they are
already well-known. In our lowest-order perturbation theory calcul-
ation we determine -̂ - to only second order in H, called i4-A } using
more-or-less ordinary second-order perturbation theory (3). The main
difference is that for convenience we symmetrize the energy denomin-
ator to give a Hermit ian ̂ f*. . "

Our least-square-search method-Is similar to standard calcula-
tions, of this type (5). We assume some, simple parametrized form of
•{(/•and determine its parameters by requiring a least-square fit to
some chosen subset of the calculated large-model energies.

The projection method, like the least-square-search method,
requires that we already know some of the large-model eigenvalues Ej
with their eigenvectors ¥,. We then want to construct an "^r-in-^
model whose energy eigenvalues exactly match a selected subset of
H-in-S eigenvalues E,. Let {E.} be a subset of the large-model eigen-
values with corresponding small-model eigenvectors ty.. We assume
that the ty. span xS . If the <p. are also orthonormal, then -fk is
uniquely determined by

which clearly satisfies i4\^ - E-il̂ î  and exactly reproduces
the E ^ '

Following a suggestion by Brandow (4,6), we take for the vectors
ty. the projections of large-model eigenvectors on the small-model
space, calling the resulting many-body Hamiltonian ̂ p". To
construct i4-PR we assume that ^ is a subspace of S and that we can
calculate all the H-in-S eigenvalue and eigenvector pairs {E.,1?.}.
We then pick a subset {£.,?.}, whose dimensions in the (A,J,T)-
subspaces of S exactly tnatcn the dimensions of the corresponding .
(A,J,T)-subspaces in <f. We choose this subset so that the generaliz-
ed projections PV. are all linearly independent and define the set of
normalized small-rnodel vectors,
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(2)

PR uAlthough the vectors ty. span *j, they are not generally orthogonal
to each £ther. Therefore, it is convenient to construct a set of
vectors, *5T.PR, which are orthogonal to the set ̂ .i>R, i.e.

/w PR
The "bi-orthogonal" set ty . is uniquely defined and can be easily
constructed. J -

In analogy with eq. (1) we can construct the operator

Z
which automatically satisfies # P R l1/',^- Ei 1 V H .
The matrix elements of *lSP3in. the orthonormal representation <|>
are then given by

where the values E. are known, selected H-in-S eigenvalues and
the numbers ̂ <f>r| i^-^

 a£dp«? ^3*/^ "^s^ a r e t n e k n o w n expansion
coefficients of ̂ .p" and 1JT. , respectively, in the basis
representation <J>.

The operator"^ is not generally Hermitian. To simplify our
numerical applications, we have used a Hermitian approximation to
'p- namely

" P " * (6)

APPLICATION TO THE TRUNCATION (d 5 / 2 Js 1 / 2,d 3 / 2) -»• (
d
5/2,s1/2)

We have applied the three methods discussed above to calculate
effective nuclear Hamiltonians for A = 18-20. The truncation we
treat is (d5/2»si/2>d3/2^ "*" ̂ d5/2'sl/2^' t h a t is> w e s t a r t with S
spanned & IS o by all states of configurations
^d5/2'sl/2'd3/2^ ~ ' a n d i e t ke s P a n n e d bY a l 1 states of

' l.l configurations (d5/2»si/2^A~1 ' Consequently there
are no hole states in our ' ' calculations. We
use the effective Hamiltonian suggested by Kuo (2) for H and the
negatives of the measured binding energies with respect to !So of the
lowest 5/2+, 1/2 and 3/2+ states in 1 70 for the s.p. energies. The
full Hamiltonian H is a (l+2)-body operator, and its eigenvalues in S
represent energies with respect to the 1 60 ground state. We give our
results in terms of a correction operator 6#, which represents the
difference between -^ and H.

Application of the Lowest-Order Perturbation Method

Because S and xj are so simply related in our calculations, there
are no 0-body or l-body corrections in converting H to -jt/-. Also, since
H is only a (l+2)-body operator, 44*mo has particle rank no higher
than 3. The 2-body corrections to H (i.e. "S^^^,,) correspond to
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(a) (b) (c)

Fig. l:Typical Feynman-Goldstone diagrams which contribute
to,the perturbation expansion for the effective Hamiltonian

Diagrams (a) and (b) imply contributions to the 2-body-
operator part of -/̂- . Diagram (c) implies a contribution
to the 3-body-operator part of
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ladder diagrams, such as those shown in figs. l(a) and l(b). The
corrections <5#.?MJ? d correspond to diagrams such as the one
•illustrated i n

 y fig. l(c). Since H is a (l+2)-body operator
^ s ^ n j , « Table 1 lists some 3-body matrix elements of *i-w

between the basis states <}>. .

In our truncation, the denominators for "U have magnitudes
ranging from 3.34 to 10.16 MeV. Because of these small energy denomi-
nators, we did not expect i^-Ati° to constitute a good effective
Hamiltonian for our problem.

Application of the Projection Method
,ipD

In constructing?f we had to project (<*5/2»
si/o»do/o)

eigenvectors Y onto the (d5/2,s1/2) space . ' x/ *'a To do
this, we simply threw away all components involving one or more d3 ,„ •
particles and then computed -$ P R by using eq. (5). The first '
step in our calculations was to choose an appropriate subset of the
(d5/2'sl/2>d3/2^ eigenstates *T to use in eq. (5). Let us call the
chosen eigenstates in this subset *i# These ¥. should be the best
candidates for "non-intruders", where we expect non-intruder states
to have "large" projections in j& . Unfortunately, it is not always
obvious how to choose the best set of candidates for "non-intruders".
With one exception, our chosen states correspond to the lowest
eigenvalues Ej for each A, J, T.

' p-Por our calculations, it is easy to see that"̂ ][!.Rbo£J3= H i - W j
and Wo-k«fs"*Vbcdj 3 O. Using eq. (5), we computed 'Mlu^-^cdv
from which we determined Walb«J» (which is non-Hermitian), by sub- J

tracking thep|wo-body matrix elements of 14-2-hc^s . Similarly, we
obtained 14 u.+2. + 2>)-)o<x}y using eq. (5) and *our projected wave
functions for A = 19. To determine #3-bod* » we would need to
calculate the matrix elements of the non-Hermitian 2-body operator
:f££-t>pdy between three-body states <j>. But, this is impossible

with our present computer codes. Hence,-we decided to compute an
approximation to ^^. b ejj . First, we symmetrized #£*-faodj
so as to get "H^f^j^ (see eq. (6)), then we used our shell-model
codes to calculate 3-body matrix elements of * / ^ P b . j , » a n d

by subtraction from ^(
P
i\^ + 3)-y>odj » w e computed

\3OJLx . ,
Table 1 shows some, of the 3-body (A=19) matrix elements of "iro.bQdv
and ̂ 3_^o(}v between the basis states <f>. One should see ref. 3 lor
details'onyhow the choice of the "non-intruder" states ¥. influence
the magnitude and the non-Hermiticity of the matrix elements
obtained for ^PR

Application of the Least-Square-Search Method

Clearly the least-square-search Hamiltonian depends upon the
search criteria employed. Our results are for two different searches,
called SRCH.A and SUCH.B, which differed in the selection of energy
data that were least-square fitted. However, in both searches ̂  was
restricted to be a Hermitian (l+2)-body operator, the two s.p.
energies were fixed at the same 1 70 energies used in H and the
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variable parameters were the 16 2-body mrtrix elements of #-« h A •

The criteria of SRCH.A were patterned after those of a typical
least-square-search to fit experimental data for A = 18-20 (5).
Hence, the H-in-S levels selected for least-square fitting correspond-
ed to.levels of A 18-20 which "seemed important" to fit among
experimental data.

In SRCH.B we used another approach; we least-square , fitted
those H-in-S eigenvalues E^ which we thought should be easiest to
t from perturbation theory arguments, assuming a Hejrmitian operator

Consequently, we included a level E, in our least-square-fit
data set if and only if:

(a) its intensity in the (d5/2»
si/2^ s P a c e <i > i"e- O?95clPfeX

was £-0.6, .
(b) its normalized-O-projected wave-function had a squared overlap

of-< 0.02 with the normalised-i-projected wave function of every
lower-lying H-in-S level, and

(c) all lower-lying states Y of the same A, J, T satisfied (a) and
(b).

For more details about how SRCH.A and SRCH.B were carried out one
should see ref. 3.

RESULTS FOR A = 19 AND 20

As mentioned earlier, table 1 lists some typical 3-body matrix
elements contributing to the A = 19 Hamiltonian matrices, e.g.
those for J = T = 1/2 and J = T = 3/2.

After obtaining the matrix elements of H-in-S by our three
techniques, we then diagonalized $ in the space d to obtain the

j?-1$
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Fig. 2: Comparison of-~-f.Q__T = 3/2 eigenstates as obtained in the
large (H-in-S) and small cU-in-^ ) models. The notation is
explained in the text. In column I, one horizontal unit represents
100% intensity. In columns 2 onward, one horizontal unit represents
1 MeV.

-6- . . '. : :



>

uT

2
in
CO

9

t

-18

-19

-20

-21

-22

-23

-24

-25

-

—

-

-

i

— 2

- 5
- ft

• ft
* ft
•- 3
m "I

0
2

2

0
i

H-in-S
I

-

20 o
7=2

as—
— ™ ^

—

i i

H=PHP
iEl-El

•

—

——

i "1 i I
2'nd 12
ei-E,

—

=

—

1 l

•

I
AVFRr12

S|-E,

•

-

-

2 nd 123

—

or

0

'

0
1 1 1 1
SRCH A

s i-E,

e

0

o

o

3

1 1 I
SRCHB

- E l

Fig. 3: Comparison of 0 T = 2 eigenstates as obtained in the large
(H-in-S) and small (-jtf-in-̂  ) models. The notation and horizontal
scales are the same as in fig. 2.

corresponding eigenvalues and eigenvectors. In figures 2-5 we
compare low-lying H-in-S eigenstates with low-lying -#-in-x? eigen-
states. Figures 2-3 display results for low-lying levels of the
oxygen isotopes A=19 and 20 (maximum T nuclei). Figures 4-5 show
results for low-lying levels of F(A=19) and Ne(A=20) (non-maximum T
nuclei),

In each figure, column 1 shows the low-lying H-in-S eigenvalue
spectrum. The length of the level-line represents

which is the intensity of the H-in-S eigenvector outside ̂ .
Consequently, we expect better i$—i.n-d fits for short lines in column
1.

Column 2 and all columns to the right of it give information
about -il-in-J eigenstates. Hence, ̂ «* PHP means that the original,
unrevised'Hamiltonian H was used in JL . The remaining column-labels
include obvious abbreviations, such as, 2ND.12 means i4r^+o\ bodv'
etc. Each -̂ -in-,<S state is plotted at the same energy ^>~°oa'
ordinate as its proposed partner in the H-in-tf spectrum. In these
columns, the length and direction of each level-line indicates the
deviation of the-j(/-in-̂  eigenvalues £/ from the H-in-S eigenvalue E..
Thus, short linos indicate relatively rcood fits, either expected
(column 1) or actually found (column 2 onward).

In column 1, the numerical labels represent. J for even-A
nuclei, 2J for odd-A nuclei. Symbols *r indicate those levels which
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Fig. 4: Comparison of F T « 1/2 eigenstates as obtained in the
large (H-in-S) and small (-jy--in-̂  ) models.

we consider to be ground-state-band members. In all the columns
black dots on or near the vertical zero-line replace level-lines
that would be too short to see. In the -s(f-in-̂  columns, small open
circles mark those levels whose H-in-S energies were explicitly used
in constructing f̂ (as in the projection procedure or in a least-
square search).

In examining columns 2 onward, remember that the level-lengths
£t~E^ represent deviations ofj4-in-£ eigenvalues from H-in-S eigen-
values. In these columns the unmarked units on the horizontal
scales represent 1 lleV per unit.
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DISCUSSION OF RESULTS

Since the projection method (by construction) exactly reproduces
in the truncated space the selected large-space eigenenergies, the
effective Hamiltonian determined by this method indicates how big an
effective 3-body term is needed to do this. From table 1 (columns 8
and 9), we see that the effective 3-body terms computed by the pro-
jection method are fairly large in magnitude, generally being several
tenths of an MeV, and are slightly non-Hermitian. However, the
effective 3-body terms are generally smaller than the effective 2-body
terms. Hence, the qualitative features of the large-space A=19
spectra are given by-the (l+2)-body parts of jt̂ PR, as one can see in
figs. 2 and 4. However, the effective 3-body terms are needed in order
to reproduce the A=19 large-space eigenenergies.

From table 1 and figures 2-5 we see that columns 2ND.12 and
AVPR.12 strongly resemble each other. This shows that, in spite of
small denominators, the simple second-order perturbation method
determines the 2-body part of the effective Hamiltonian reasonably
well, i.e. it gives results qualitatively similar to those produced by
the projection method.

On the other hand, the 3-body part of the if determined by
simple second-order perturbation theory is noticably different from
the 3-body part of $ computed by the projection method (see table 1!,
columns 7-9). This diffeience can also be seen in figs. 2-5. For
the maximum-T cases (figs. 2-3) the 2ND,123 results are an improve-
ment over the 2ND, 12 results, while for non-max.imum-T cases (figs.
4-5) the 2ND.123 results are somewhat worse than those from 2ND.12.

Consequently, the determination of the 3-body part of'// by
simple second-order perturbation theory appears to be fairly unsuccess-
ful, particularly for non-maximum T. Although we are not sure of the
reason why second-order perturbation theory seems to work for deter-
mining the 2-body part of •$• , yet fails *to give the 3-body part, we
think it may be connected with the fact that so many more terms
appear in third order for the 3-body part of -# than for the 2-body
part. For this reason, it is possible that the effect of using such
small energy denominators may be much more important for the 3-body
calculation than the 2-body calculation, indicating that one must
probably so. to higher order in the interaction to determine the 3-body
part of -jCfin perturbation theory.

Although the SRCH.A and SRCH.B effective Hamiltonians are not
much better than the other solutions for i4- for A=18 (these results
are not shown here), they are generally better for A=19 and 20,
particularly for the maximum-T cases (figs. 2-3). For the non-
maximum-T cases (figs. 4-5), neither SRCH.A or SRCH.B is consistently
better compared to 2ND.12 or AVPR.12.

. The generally improved results for A=19 and 20 given by the
.SRCH.A and SRCH.B effective Hamiltonians would seem to indicate that
the least-square search (l+2)-body effective Hamiltonians are
"better" than the (l+2)-body effective Hamiltonians determined by
simple second-order perturbation theory and by the projection method,
since they contain the influence of the effective 3- and 4-body



terns in some average or smeared-out way.

In conclusion, when the number of valence nuclcons is increased
beyond 2, a 3-body term exists in the effective Hamiitonian ^ and
is needed in order to obtain accurate agreement with the experimental
spectra*. This conclusion is consistent with the results of previous
calculations to investigate effective 3-body forces in nuclei (7).
However, this 3-body term in •# is generally smaller than the 2-body
part of <$ , so that the (l+2)-body part of # gives the basic qualitative
features of the 3-particle spectrum. Lowest-order perturbation theory
is unsuccessful in accurately reproducing the 3-body part of 4}-. Fin-
ally the least-square-fitted (l+2)-body effective Hamiitonian appears
to be more successful in reproducing the experimental spectra for 3 or
4 valence nucleons than the lowest-order perturbation-theory and pro-
jection-method effective Hamiltonians, since the forme* contains Che
influence of the effective 3- and 4-body forces in some average way.

One of us (BRB) would like to thank Professor H.A. Weidenir.Uller
for the hospitality of the Max-Planck-Institut fUr Kernphysik in
Heidelberg and Dr. Peter Hodgson for che hospitality of the Nuclear
Physics Laboratory at Oxford University, where this talk was prepared
for presentation.
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