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SUCCESSES AND FAILURES OF THE NUCLEAR SHELL MODEL

J. B. McGrory

Oak Ridge National Laboratory , Oak Ridge, Tennessee

I have assumed that my job today is to convey some general impression

on the usefulness and significance of the conventional nuclear shell model

in stud^ss of nuclear phenomena in terms of microscopic properties. Let me

first define what I mean by a conventional shell model calculation. Nuclei

are assumed to consist of neutrons and protons interacting through two-body

interactions. An exact solution for such a system of more than two parti-

cles is intractable. To reduce the problem to manageable dimensions, it is

assumed that a certain number of particles form an inert core, which gener-

ates a field in which the remaining active particles move. The active

particles are assumed to be in only a few orbits outside this core, so that

the problem is reduced to diagonalizing some Hamiltonian in the space gen-

erated by a few particles in a relatively few single-particle orbits. One

interpretation of the results of calculations in such a model follows from

the following train of thought. We assume that there exists a true Hamil-

tonian, H , for a nuclear system of neutrons and protons cf which the domi-

nant parts are the kinetic energy and the sum of all mutual two-body inter-

actions. The eigenfunctions, t|/_, of this Hamiltonian are real nuclear wave

functions, and the eigenvalues, E , are real energy levels. With these

wave functions, it is possible to calculate physical observables from

matrix elements of some set of real observable operators, 0 . Thus,

H IV = (1)

and matrix elements <1J'Ei0 ,> correspond to observed transition rates. H

is defined in an infinite Hilbert space. Is it possible to find effective

operators7/ and Q* defined in a finite Hilbert space, so that the eigen-

functions, |x > of the effective ft in this finite space have the property
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If we can find a set of simple operators *?/ and &, simple in that they can

be specified in terms of a relatively small set of parameters, which can

account for a variety of observed phenomena over a relatively large number

of nuclei, then we obviously have a phenomenological model which can be ex-

tremely useful in studies of systematic behavior of nuclei. In this sense

the nuclear shell model has achieved a large measure of success. Much of

this success is for one-body operators. For such operators, many detailed

correlations in the nuclear wave function are not too important. The fact

that nuclear observables involve wave function overlaps is

crucial to the success of the shell model in the phenomenological sense.

This general approach, together with perturbation theory, is funda-

mental to the whole field of the calculation of "realistic" effective

interactions. If one could find a systematic way to calculate the ef-

fective shell model parameters (one- and two-body matrix elements of ̂  and

($0 from known nucleon-nucleon and nucleon-electromagnetic field inter-

actions, then one could start to talk of a real microscopic theory. The

"success" of the shell model in this sense is still very unclear. Some of

the uncertainties arise from purely mathematical considerations (mainly

concerning perturbation theory convergence), and we'll hear in detail on

this matter later in this meeting.

My main emphasis today is on the success or failure of the shell model,

in a phenomenological sense, in describing systematic patterns of nuclear

phenomena. I will first discuss conventional shell model calculations in

the s-d shell and the f-p shell, wherein 0 and Ca are treated as closed

cores. I choose these areas obviously because I am most familiar with

them, and because most of the conventional shell model calculations in

recent years have been in this region. In addition, most of the "realis-

tic" interaction calculations are in this mass region, and so one can make

some comments on the usefulness of the shell model in testing these inter-

actions. I will first discuss some of the most popular types of theory-

experiment comparisons, i.e. energy levels, electromagnetic moments, and



electromagnetic transition rates. Then I'll spend some time discussing

shell model calculations of two-nucleon transfer cross sections. Such re-

actions are relatively sensitive to two-particle correlations in the wave

functions and so may present a more challenging test of particular shell

models. Finally, I'll spend some time discussing the application of the

conventional shell model to states which involve core-excitation around 0

and 40Ca.

Insofar as conventional shell model calculations are concerned, the s-d

shell is one of the most extensively studied regions of the periodic

table . With the capability for large space calculations developed first
8)

by the Oak Ridge-Rochester group and considerably extended recently by the
9)

Glasgow group , it is now possible to do shell model calculations of almost

all nuclei with 8 <_ N, Z ̂  20 in untruncated (sd)A~16 model spaces. Thus,

very extensive studies of systematic trends are possible. The first step of

the shell modnl calculation is the diagonalization of the chosen effective

Hamiltonian, so that at the first step, eigenvalues are obtained. Thus the

natural first comparison is for energy levels. Although this is the natural

first test, it is not obviously the best comparison. Soyeur and Zuker

demonstrated that in really large shell model calculations, such as treating
no 1 r

Si as 12 particles in the s-d shell outside an inert 0 core, the exci-

tation energies can be very sensitive to the chosen effective interaction.
28

In the Si case, changes of several MeV in the excitation energy of several

states occurred for two interactions for which the two-body matrix elements

looked very similar. This does not really reflect great sensitivity in the

total eigenvalues, merely a sensitivity in eigenvalue differences. The

eigenvalues for the two interactions for a given state differed by only a

few percent. Their results also implied that the calculated E2-observables

were relatively insensitive to the differences in the interactions. Thus,

one must treat energy level comparisons in large shell model calculations

with caution. Having issued such a caveat, we proceed with an uncautious

comparison of energy levels.

In the s-d shell nuclei with A <_ 28, there is a large body of experi-

mental information on ground state rotational bands, and in many cases on

excited rotational bands. Some qualitative features of these bands have

been found to be particularly sensitive to differences in the effective

Hamiltonians which are used in the shell model calculations. The situation



is easily summarized. The shell model yields spectra in which rota-

tional bands clearly exist (i.e., they show J(J+1) spacings, and the calcu-

lated E2-observables are similar to rotational band E2-observables). The

calculated structure within the rotational bands is relatively insensitive

to what effective Hamiltonian is used ' . The relative position of the

bands as a whole is sensitive to the interaction ' , and interband tran-
12)

sitions are sensitive. When one uses the Kuo ' realistic interaction, the

first excited rotational band is consistently calculated to occur at too low
13)an excitation energy relative to the ground state band. Wildenthal has

found an empirical effective s-d shell interaction which does not suffer

this defect to nearly so large an extent. He starts with the Kuo inter-

action, as expressed in terms of 63 two-body matrix elements. He treats

certain subsets of these 63 matrix elements as free parameters which are ad-

justed to reproduce optimally a set of energy levels in nuclei with A = 18-

22 in complete (sd) ~~ model spaces. Thus, he essentially forces the

interaction to reproduce correctly the position of the excited bands in

these 18-22 nuclei. When this interaction, now referred to as the Preedom-

Wildenthal (PW) interaction, is used in nuclei with A = 23-28, the resulting

spectra are in significantly better agreement with experiment than is the

case with the Kuo interaction. One example of this is shown in Fig. 1.
5) 25 9

Here, shell model calculations ' of Mg in the complete (sd) space are com-

pared with experiment. The complete spectrum calculated with the PW inter-

action is shown. The spectrum of states in the excited K=l/2 band as calcu-

lated with the Kuo interaction is shown. Ths calculated position of the

J=l/2 state is arbitrarily set equal to the observed J=l/2 energy. The

significant point here is that the ground state 3=5/2 state is calculated,

with the Kuo interaction, to be more than 2 MeV above the excited band head

J=l/2 state. Mg presents another example of the sensitivity of the cal-

culations to the effective interaction. In this case it turns out that

the quadrupole moments of the two low-lying J=2 states are very sensitive

to the interaction, as are interband transitions between states in the two

low-lying bands in Mg. Results calculated in mass 26 with the PW inter-

action are generally superior to those calculated with the Kuo interaction.

In Fig. 2, the two-body matrix elements of the Kuo interaction and the

PW interaction are compared . The matrix elements are expressed in LS

coupling. We see that the central and tensor force matrix elements are



MW virtually identical. There are sever-

€0_ m n/2 al striking differences in the two-

body L»S terms. Thus, the inter-

" actions in general are quite similar,

but the few differences which do exist*-o-
M »'» are apparently quite important with

m regard to band head energies. The

main difference in the Kuo and the PW

*£ the j-j coupling representation. The

interactions is more transparent in

the j-j coupling representation. Tfc

center-of-gravity (c-g) of the inter-

~ in 3/2 »7,2 action of two particles in two differ-

\n ent orbits is defined in

I (2J+l)(2T+l)<j j JT|H|j j JT>
2.0- s« 5° J,T •*• X

m in I (2J+1H2T+1)
J,T

-in The PW interaction differs from the
_wl j,2 xn Kuo interaction in that the c-g of the

"2 d5/2~sl/2 and d5/2*"d3/2 interactions

-M OT ^ is less attractivel3) by roughly 0.5
otFT- '* <WBANI» MeV. In calculations involving many
o b c

particles, such a shift can be very

Fig. 1. Observed and Calculated significant. The interaction of one
Spectrum of T-l/2 States particle with n d particles is

in Mg • i-t £. D I £.

roughly proportional to n times the
28

center-of-gravity of the d
5/ 2~

si/2 interaction. Thus, in Si, a change of
0.5 MeV in this center-of-gravity leads to a difference of ̂  5 MeV in the

12 11relative excitation of the (d,,,) and the (d.i-.s. ,») configuration.

Thus, a change in this center-of-gravity is n times more significant than a

change in the single-particle energy of a comparable magnitude. Thus, we

see here that with a simple change in two parameters, the two centers-of-

gravity, the Kuo interaction in the s-d shell is apparently significantly

improved. A similar "defect" has been noted in the f-p shell . These

types of calculations may help to focus in on possible defects in the real-

iutic interactions, and suggest directions for the effective interaction
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Fig. 2. Comparison of Matrix Elements of Preedom-Wildenthal
and Kuo Interactions in LS Representation.

theorists to follow. Thus, in the s-d shell, the phenomenological shell

model successfully describes the qualitative features of the excitation

spectra of low-lying collective states. The only "realistic" interaction

tested systematically for all nuclei in this region fails to reproduce the

relative positions of the bands, but a simple prescription has been found to

repair this defect.

In the f-p shell, pure f7/9 models have been very successfully ex-

ploited by Talmi , by McCullen, Eayman, and Zamick , and by others to
A—40describe the spins and energies of many nuclei. Complete (fp) calcula-

18"̂tions have been reported only for nuclei with A <_ 44 ' . Configuration

mixing within the s-d shell is essential to the development of the rota-

tional structure observed. Insofar as energy levels and spins in the light

f-p shell jclei are concerned, configuration mixing is not so important.

Perhaps the best summary of the situation is shown in Fig. 3. This compares
44 4

the observed spectrum of Sc with the complete (fp) calculation using es-

sentially the Kuo-Brown effective interaction derived for this region. Of

all the low-lying states observed which are believed to have good shell

model counterparts, all but two are accounted for equally well by both the
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Fig. 3. Calculated and Observed
Spectrum of Low-Lying States in
In the experimental spectrum states
under ir=- are negative parity states.
TT=+ labels positive parity states.
The calculated spectrum includes only
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f_,_ and the (fp)^ calculations.

The only improvement insofar as

energy levels are concerned as a

result of configuration mixing, is

to account for the second 3 and

5 states. What is more signifi-

cant here is that more than half

the states in the low energy

spectrum are not accounted for by

either model. Many of these in-

truder states are negative parity,

atid are obviously indescribable in

an (fp) model, but many are posi-

tive parity, and are not so ruled

out. This is but one of several

pieces of evidence I'll discuss of

the relative complexity of the
40

Ca-core region compared to the
16,0-core region.

I have discussed so far only

excitation energies. There is available a considerable amount of data on

ground state binding energies with respect to 0. Cole, et_ al^ have cal-

culated the binding energies of a large number of s-d shell nuclei in com-

plete (sd) shell model spaces. They report on calculations with the Kuo

and PW interactions. Their results are tabulated in Table 1 for those

nuclei for which the binding energies have been determined experimentally.

We see that the Kuo interaction leads to more and more overbinding with in-

creasing A. The comparison of theory with experiment for the PW interaction

is significantly better. In general, the binding energies calculated with

the PW interaction are within 1 MeV of the observed binding energies.
19)Slightly better agreement is obtained by Gross and Talmi ' with a modified

surface delta effective interaction which includes seven parameters. They

obtain an r.m.s. deviation between theory and experiment of 0.47 MeV for 18

observed binding energies. An alternative method for predicting binding

energies is the well known Garvey-Kelson mass formula. Where there is

experimental information available, the Garvey-Kelson formula as



Table 1. Calculated and Observed Mass Excesses (M-A) MeV in s-d Shell
Nuclei with A £ 33. The heading Kuo refers to calculations with the

Kuo effective interaction. The heading PW refers to calculations
with the Preedom-Wildenthal interaction.

Nucleus

200
210
22o
22F
24Ne

25Ne

26Na

27Na

28Na

29Na

30Na

29Mg

3OA1

31A1

33Si

J

0

5/2

0

4

0

1/2

2

3/2

2

3/2

0

3/2

2

5/2

3/2

Experiment

3

9

11

2

- 5
- 2

- 6

- 5

- 1

2

8
—i l
J L

-15

-20

.80

.30

.50

.83

.96

.07

.85

,78

.26

.73

.37
in

• / \j

.89

.06

.56

(M-A) MeV

a Calculated3

Kuo

2.89

6.90

6.83

1.30

-10.60

- 8.53

-15.27

-17.78

-16.99

-17.47

-15.04

-36.77

-53.58

PW

3

8

9

3,

- 6,
- 2,

- 7,

- 6.

- 2.

2.

11.
—1 0
"It •

-18.

-16.

-21.

.74

.31

.47

.09

.25

.24

.83

,97

,22

,46

,03
17

20

83

44

a0bserved and calculated numbers are taken from
Ref. 6.

21)
parameterized by Thibault and Klapisch yields slightly better agreement

with the data than does the shell model calculation with the PW interaction.

Where there is no experimental information available, Garvey-Kelson and the

shell model are in agreement to within 1.5 MeV.

After energy considerations, the next traditional shell model-

experiment comparison is made for single-nucleon-transfer reaction spectro-

scopic factors. Detailed comparisons for such numbers abound in the litera-

ture (see, for example, Refs. 1-3), and I'll not say more about such com-

parisons here. To my knowledge, the analyses of such data have not bsen of

great use in testing various realistic interactions.

Now we move to the calculation of various electromagnetic observables,

and first of all to E2-observables. The first question that arises is that



of the effective charge, which is commonly pointed to as a shell model

failure. In the conventional model of s-d shell nuclei, the oxygen iso-

topes consist of only neutrons outside an inert 0 core. The neutrons

should not interact with the electric field, but experimentally, there are

strong E2-transitions observed between low-lying states in the oxygen iso-

topes. This is a manifestation of the fact that the neutron can polarize

the core and excite protons, which can then radiate. The usual shell model

prescription is to assume that the neutron has an effective charge, e . For
n

similar reasons the proton has a total charge 1+e , where e represents the

effective charge on the proton due to core-polarization due to the proton

core interaction. The usual approximation is to assume that particles in

all single-particle orbits carry the same effective charge. In this

approximation, the shell model effective operator for E2-observables has the

following form
A

= I |0£+t (i)) (1+E ) r. Y (fl )
i=1L z p i i

2 Y

(2a)
2 ,„

<2b)

Here t (i) is +̂ " for protons. In the second form (2b), the operator is ex-
z

pressed in terms of isoscalar and isovector components.

The use of effective charges in shell model calculations is a failure

only if one interprets shell model wave functions and operators as true wave

functions and operators. In the phenomenological sense, I stated that we

could consider the model a success if we could find simple effective opera-

tors and simple effective wave functions such that a large body of experi-

mental data could be correlated with the calculations. I further stated

that if there were a theory whereby these simple operators could be derived

from bare or exact operators, we could claim some success in deriving a

microscopic thecry. Or. Brussaard will speak on this latter point later.

I will quickly review the phenomenological situation now.

Usually one uses effective charges e - 0.5e for both the neutrons and

protons in the s-d shell. Most measured E2-observables in the s-d shell

which are describable with the shell model are dominated by the isoscalar



part of the effective operator (2b). Thus, within the state-independent ef-

fective operator approximation used here, only the sum (e +e ) is really de-

fined by most of the experimental data. As I'll show here, the isoscalar

charge with e +e = 1.0 is consistent with much of the data available on E2-p n
observables. As a first illustration, Table 2 summarizes the strongest

Table 2. Selected Strong B(E2)-Transitions to Ground States in s-d
Shell Nuclei. In all calculations, an added effective charge of
0.5e is included in E2-operators for both neutrons and protons.

Nucleus

17F
17o
18F
180
19F
20Ne
21Ne
22Na
22Ne
35C1
36Ar
38Ar

Ji>

1/2

1/2

3

2

5/2

2

5/2

4

2

5/2

2

2

Ti

,1/2

,1/2

,0

,1

,1/2

,0

,1/2

,0

,1

,1/2

,0

,1

Jf

5/2

5/2

1

0

1/2

0

3/2

3

0

3/2

0

0

Tf

,1/2

,1/2

,0

,1

,1/2

,0

,1/2

,0

,1

,1/2

,0

,1

B(E2)1_f

Expt.a

64±2

6+0.1

15±2

7±1

21±1

57±8

63±13

94+15

40+3, 66±12

78±2

59

38+9

e2fm*

Theorya

38

4

15

3

19

48

81

101

55

74

59

28

Observed and calculated values compiled for nuclei
with A £ 22 from Ref. 1, and for nuclei with A ^ 34
from Ref. 2.

transition measured to the ground state in nuclei with A <_ 22 or A ^ 34 and

the calculated values for the same transitions. These calculations are all

made in complete (sd) ~ models, with effective charges 0.5 for both

neutrons and protons. The structure calculations are done with "realistic"

interactions, and are described in detail in Refs. 1 and 2. We see that the

qualitative features of the data are quite well reproduced. There are dis-

crepancies with 0, F, and 0. All the rest of the data are consistent

with the calculations. The discrepancies could reflect problems related to

the fact that the 1/2 state in F is unbound, and/or to deformed state



admixtures which might be important close to the closed shells. More on

this later. For relative E2-transition rates between states within ground

state rotational bands, the shell model predictions are in good agreement

with experiment . Interband transitions are observed to be weak, and they

are calculated to be weak, although absolute values for weak transitions are

in error by orders of magnitude. In the middle of the shell, the interband

transition rates are sensitive to the interaction , as discussed for Mg

above.

The systematic behavior for quadrupole moments for s-d shell nuclei is

summarized in Table 3. This table is extracted from a recent preprint by

Table 3. Calculated and Observed Quadrupole Moments in
s-d Shell Nuclei.

Q(e fin) Q(e fin )

Nucleus

17o
19F
21Ne

23Na

25Mg

27A1
33s
35S
3 5C1

36C1

37C1

39K

a
Expt.

-2.6±0.9

11.2+2

+9.3+1.0

+11+2

22

15.3+0.3

-5.5+0.5

+4.0+0.4

-7.9±0.1

-1.7±0.2

-6.2+0.6

5.5+0.4

information taken

bRef. 45.

Theorya

- 2.6

- 9.2

+10.3

+10.4

+17.8

13.8

- 7.1

+ 7.8

- 9.1

- 0.9

- 8.4

7.7

from Ref. 22.

Nucleus

180
20Ne

22Ne

24Mg

26Mg

28Si
32s
34S

Expt.a

-16+lb

-23±3

-17.0+3

-21±3

-14+4

+16±3

-19±4

6±6

Theory

- 2.0

-14.3

-13.6

-16.0

-11.9

+14.3

-13.6

10.0

22)
Wildenthal and Schwalm . All measured quadrupole moments for s-d shell

nuclei are listed there, as well as shell model calculations for all these

moments. All calculations assume 0.5e effective charges for e and e , The
P n

left half of the table includes all ground state moments as measured by

hyperfine interaction methods. The right half summarizes all moments of



first excited J =2 states in even-even nuclei as measured by reorientation

techniques. The calculations for A j< 22 and A ^ 34 are in complete (sd)

spaces. The calculations in masses to 23 £ A <_ 33 are made in truncated

spaces. A variety of typical effective interactions were used, as described

in the articles referenced in Table 3. Again the systematic behavior of the

moments is reproduced. To the extent that the sign of the moment reflects

the shape of the nucleus, we see that the shape is correctly reproduced in

all cases, and by and large the magnitudes are in good agreement.

There are two points worth amplifying here. The first has to do with

the moments measured by the reorientation technique. As discussed by

Wildenthal and Schwaha, these numbers have been considered somewhat suspect.
23)

In early calculations , in more severely truncated model spaces, the trend

seemed to be that the ground state moments could be fit with one effective

charge, while the excited state moments, measured with the reorientation

technique, required an effective charge roughly 30% larger than the ef-

fective charge needed to fit the ground state moments. Further, if one as-

20

sumes the low-lying states in Ne can be described by an adiabatic ro-

tational model, the observed B(E2)2 - and 2 quadrupole moment cannot be de-

scribed in teims of one intrinsic quadrupole moment. The calculated quad-

rupole moments in Table 3 were determined from shell models in more complete

spaces than were used in the earlier work described above. I don't believe

the numbers listed in this table offer strong evidence for any discrepancy.

This statement is snade on the condition that I be allowed to ignore the re-

suits for 0 and Ne. I'll return to these below. The Ne number is al-

most within experimental error of the measured value. The calculated values

for A = 23-33 are all in somewhat truncated spaces. For all but one of
33

these cases ( S), the calculated moments for both the ground state moments

and the excited state moments are too small, and the deviations are quite

similar for those nuclei which are close together in mass. The truncation

of the space almost certainly reduces the quadrupole deformation. I strong-

ly suspect that complete (sd) space calculations will lead to good

agreement for both ground state moments and excited state moments with one

effective charge.
1R ?fl

I ignored the results for 0 and Ne. The large quadrupole moment of
18

0 is probably a manifestation of the importance of core-excited deformed
24)

states. Such an argument has been proposed to explain an even larger



Canomaly in """Ca.

shell model is +1.0e fm

deformed-state effects are so important in

There the calculated quadrupole moment in a conventional
7 2

while the measured one is -19e fm , If these
"• 0, there exists the possi-
20
N

20
bility that some of the discrepancy for the Ne quadrupole moment has a

similar origin.

It is interesting to note the importance of the large space configura-

tion mixing on these s-d shell quadrupole moments, de Kock and
25)

Glaudemans have calculated a number of s-d shell quadrupole moments in an

independent particle, model (i.e., for A = 28, the space is dK/0 ~ , and for
12 4 A-32

A 2i 33, the space is <*5/2»si/2't*3/2 *̂ F o r a** ' ^ c a s e s w n e r e measured

moments were available to them, with the exception of Ne, the correct sign

was predicted for the moment by this model. They determined the necessary

effective charge for this truncated space to reproduce the observed magni-

tude. In Fig. 4, a plot of effective charge vs, A is shown. The effective

charge peaks in the

middle of the shell,

where the truncation is

most extreme. As I have

discussed above, this

plot would be a much

streighter line for re-
sults from shell models

in complete (sd) A~ 1 6

spaces.

We move now to E2-

observables in the f-p

shell. The situation

here appears to be much less neat than in the s-d shell. Let us assume that

we know nothing about the effective charge, and let us determine this number

directly from the data on E2-transition rates in the calcium isotopes. In

Fig. 4. Plot of Effective Charge in s-d Shell
Needed to Reproduce Observed Quadrupole Moments
in Simplest Independent Particle Shell Model
Space (e = Aee e = 1 + Aee).

n p

Table 4 I have listed the effective charges one would need

se
44

18)
to fit each of

several strong E2-transitions between low-lying states in Ca, Ca, and

Ca. This number is obtained by calculating the B(E2)-values for these

transitions in a shell model space of (fp)"* " states using the Kuo-Brown

f-p shell interaction, and assuming an effective charge of 1.0. The needed

effective charge is then the square root of the ratio of the experimental



Table 4. Empirical Effective Charges for Transitions Between
Low-Lying of Light Calcium Isotopes.

Nucleus

42Ca

43Ca

44Ca

J i

2
4
6

5/2
3/2
11/2

2

J f

0
2
4

7/2
7/2
7/2

0

n
v/B ( E 2 )obs

V B ( E 2 ) ca lc

1.8
1.9
0.7

1.2
1.6
1.6

1.3,1,8

Taken from Ref. 14.

B(E2) to the shell model B(E2). For comparison, the effective charge for
18the 2-0 transition in 0 determined in this way is 0.7e. In Table 4 we see

that in all but one case, the empirical effective charge is 2-3 times as

large in the f-p shell as in the s-d shell. If we define the effective

charge as arising from one-particle one-hole core-polarization processes, it

is unlikely that any effective operator calculation can lead to simple ef-

fective operators for use in "conventional" f-p shell model calculations

which will reproduce this behavior. This strong enhancement almost cer-

tainly reflects contributions due to complicated many-particle many-hole de-
26}

formed states. Brown, e£ al. have attempted to analyze all the data in

the f-p shell nuclei near Ca and Ca and Ni in terms of one set of

neutron and proton effective charges. They first estimate the contributions

of deformed states in A=40-42 nuclei from schematic calculations similar to

the Brown-Green calculations , and then fit effective charges to the tran-

sition strength not accounted for by the deformed states. They find that

effective charges e % 0.2e and e % 0.6e describe a number of transitions
P n

in these nuclei. Such results are consistent with perturbation theory cal-

culationr of the core-polarization effective charge in this region. The

calculated B(E2) values in 42Sc and 43Sc which result from (fp) A~ 4 0 shell

model calculations with the Kuo-Brown interaction and with effective charges
e = 0.2e and E = 0.5e and in which deformation effects are not accounted
P n



for are summarized in Table 5 for those cases where measured B(E2) values

Table 5. Calculated and Observed B(E2) Values in 42>43Sc.

Nucleus

42Sc

43Sc

2V 2 Ti

6,0

10,0

4,2

3,1

11,1

15,1

19,1

2Jf.2Tf

2,0

14,0

0,2

7,1

7,1

11.1

15,1

B(E2)±_f e" fm"

Expt.a

35

20-25

12

67

123

49

27

(e =0.2, e =0.5)
P n

Theory3

23

21

19

62

20

23

15

Information taken from Ref. 14.

are available. In this table only two of seven calculated transition rates

are in reasonable agreement with measured values. Assuming that the experi-

mental values are correct, it is obvious that the shell model is a failure

in this region for such calculations as these, in significant contrast to

the s-d shell. In Table 6 the calculated and measured quadrupole moments

Table 6. Calculated and Observed Quadrupole Moments
in light f-p Shell Nuclei.

Nucleus

42Ca
43Sc
44Sc
44Sc

aRef. 14.

J

2 +

7/2

2

6

Q(e fm")

Observed

-19±8

-26

-10

-19

(ep=0.2, en=0.5)

Calculated8

+1

-16

-6

-16

for f-p shell nuclei with A <_ 44 are summarized (where again e = 0.2e and

e = 0.5e). The picture is not any better here. (Remember that the B(E2)
n
is quadratic in the E2 matrix element while the quadrupole moment is only



42
linear.) The Ca number was discussed briefly above. It appears that al-

+ 42
most the entire moment of the first 2 state in Ca comes from core-excited

deformed-state configurations. There is still a significant discrepancy for
43 44

the Sc moment, while the results begin to appear reasonable in Sc.

Next consider Ml-observables. There is extensive data available on

magnetic moments of ground states (and a few excited states) in s-d and f-p

shell nuclei. The measured magnetic moments for s-d shell nuclei with

A <_ 22 and A >_ 34 are compared with calculated values in Table 7. In these
Table 7. Calculated and Observed Magnetic Moments

in s-d and f-p Shell Nuclei.

Nucleus

1 7 F
17o
1 8 F
1 9 F
1 9 F
2 0 F
21Ne
22Na
35C1
35s
36C1
37Ar
37C1
38R

39K

M(

Expt . 3

+4.72

-1.89
+2.86

+2.63
+3.69
+2.09
-0.66
+1.75
+0.82
±1,0
+1.28
+0.95
+0.68
1.37

+0.39

• V

Theory3

+4.79
-1 .91

+2.88

+2.87
+3.55
+1.92

-0.90

+1.82

+0.68

+1.21

+1.55

+1.43

+0.59

+1.24

+0.13

Nucleus

41Ca
42Ca
43Ca
43Sc
43Sc
44Sc
44Sc

Expt.

-1.91
-2.88

-1.67

4.80

3.18

2.60

3.64

M(p

- 1

- 3

- 1

4

3
2

3

N>

Theory

.59

.0,-2.52

.32

.61

.15

.56

.88

Information on nuclei with A ̂  22 taken from Ref. 1;
information on nuclei with A >_ 34 taken from Ref. 2.

Information taken from Ref. 14.

calculations, the operator is assumed to be the free nucleon Ml operator.

For the A=17 nuclei, the measured value agrees very well with the calculated

values, implying that the bare operator is the "correct" effective operator.



It turns out that this is really the result of more or less fortuitous can-

cellation of higher-order corrections. In the mass 39 system, the proton

hole moment deviates from the Schmidt value by almost 0.3 u » so that here

the higher-order renormalization is a little more significant. The agree-

ment between shell model and experiment is qualitatively good throughout the

s-d shell. It is quantitatively somewhat better at the lower end of the

shell than at the upper end of the shell. This is consistent with the fact

that renormalization effects are stronger in A = 39 than in A = 17. In

those cases where these moments were calculated with different inter-
1 2)

actions ' , there was no great sensitivity to the interaction evidenced.

The measured magnetic moments in the light f-p shell nuclei are also sum-

marized in Table 7, and also shown there are the moments calculated in con-

ventional shell models , wherein the M. operator is assumed to be the
41

bare operator. There is again a fairly significant deviation in the Ca
43

case. This same discrepancy appears in the low-spin states in Sc and
43 42 43

Ca, while it disappears for the high-spin states in Ca and Sc. This

might imply that the deformed state effects are diminished in the high-spin

states.

There is not nearly as much experimental data available on B(M1) values

in the s-d shell or the light f-p shell as is the case for B(E2) values.

For more or less well-known reasons , isoscalar Ml transitions are ex-

tremely weak in these regions. The calculated values of isoscalar tran-

sitions involve strong cancellation effects, and are relatively sensitive

to the interaction. Some of the most extensive investigations of Ml tran-
22)

sitions in the s-d shell have been reported by the Utrecht group . These

calculations are in the middle of the s-d shell. They use s-d shell wave

functions in a severely truncated (sd) space, and they treat the vari-

ous matrix elements of the effective Ml operator, <j.||MlJ|j2> as free parame-

ters which they adjust to fit observed transition rates. They find signifi-

cantly different effective operators for nuclei which differ only by one or

two mass units. Thus, they did not satisfy the "simple"-effective operator

condition. This result surely reflects the fact that they work in a very

truncated space. In general the Ml operator is sensitive to excitation of

particles of states from orbits with J = i. + 1/2 to orbits with j = i, - 1/2,

so that the calculated B(M1) values are sensitive to truncation within the

shell.



Ml transitions with AT=1 are strong. There are only three or four

cases where observed AT=1 Ml transitions can be compared with large shell
20model calculations. In Ne, two such transitions are accurately described

59)
in a calculation in which the bare Ml operator is used. In the f-p

42
shell, two such transitions are observed in Ca. There are serious dis-

18}
crepancies between the observed values, and those calculated with the

2
bare Ml operator in an (fp) shell model.

The major successes of the shell model have been for energy levels,

spectroscopic factors, E2 observables in the s-d shell, and magnetic

moments. The general experience has been that these observables are not

very sensitive to the particular effective interaction which is used (with

the exceptions already noted for the middle of the s-d shell). There has

been a fair amount of interest and activity in the study of two-nucleon

transfer reactions, with the hope that the analysis of such reactions would

be more sensitive to two-particle correlations in the nuclear wave func-

tions, and thus sensitive to the two-body effective Hamiltonian which is

used. I would next like to review briefly the record so far for shell model

analyses of some two-nucleon transfer reactions. I think the general re-

sults can be summarized by saying that the uncertainties in the DWBA

analyses are much more important in this case than in the one-nucleon trans-

fer case, so that we are not yet at the point where too much can be learned

about shell model wave functions from such reactions. (For a rather com-

plete discussion of spectroscopy with two-nucleon transfer reactions, see

Ref. 29.)

Let us first review the sources of sensitivity and uncertainty. If it

is assumed that the two-particle transfer proceeds by a direct process, and

if we believe the reaction can be described by the DWBA, then the cross

section for the reaction is proportional to

I I 6. , <*A+2IKat x a t )J'% >
J,T J1,j2

 J1J2 A + 2 Jl J2 A

where a. is the usual single particle creation operator. The reaction

mechanism information is contained in 6. . , while the information on
JU2

nuclear structure is contained in the matrix element. Note in particular

that while the sum is incoherent in the transferred angular momentum and

isotopic spin (J,T) it is coherent in contributions from transfers to



different pairs of single particle orbits. Because of this coherence, there

is expected to be sensitivity to the wave functions. This sensitivity is

enhanced for the following reason. In two-particle transfers with mass 3

and 4 particles,, the reaction is dominated by the transfer of pairs of

particles which are in relative s-states with respect to their centers-of-

mass. Thus, the cross section is in part proportional to the probability

that the pair Jifjo are *n a relative s-state. This probability is obtained

by transforming the wave function of the pair from j-j to L-S coupling

through the usual 9-j coefficient, and then from single particle coordinates

to relative and center-of-mass coordinates through a Talmi transformation.

Thus, the cross section becomes proportional, in part, to factors of the

form

l2

L S J

These coefficients are rather strongly dependent on the i's and j's in-
2

volved. For instance, this coefficient for the (lp ,_) configuration is
28} 3i ̂  2

three times as big as the coefficient for the (Of-.,) configuration.
2 He.

When this term is squared, the cross section for p, / 9
 is an order of magni-

2 2

tude stronger than for ^ij-y Similarly in the s-d shell, the s configura-

tion is highly favored over the d configurations. It is a hope that this

sensitivity can be useful in studying various wave functions with the analy-

sis of two-nucleon transfer reactions. The angular distribution for the

typical direct two-nucleon transfer process is often a very clear signature

of the coupled angular momentum of the particle pairs, and is relatively in-

sensitive to the individual j's of the pair. This signature, plus rather

strong selection rules on AS and AT have made the two-nucleon transfer

process very useful in spectroscopy for determining spins and parities. It

also makes the most distinctive features of the observed cross sections

relatively useless insofar as studying the relations between various model

wave functions.

Thus, the reaction can be useful in shell model studies only to the ex-

tent that one can expect to predict absolute or relative cross sections.

One must first ask about the accuracy of the DWBA in analyzing such re-

actions. The traditional approach has been to calculate the structure part



of the cross section with shell model wave functions. One then replaces

the oscillator wave functions for the transferred pair with some appropriate

wave functions such as those of a Woods-Saxon well. The choice of the

strength of the well is important. The most popular approach at present

seems to be to assume that each transferred particle is bound with one-half

the separation energy of the transferred pair of particles. A second con-

ventional approximation is to assume that the interaction between the trans-

ferred pair and the remaining particles in the projectile is a delta func-

tion in the centers-of-mass of the pair and of the residual particles, the

so-called zero-range approximation. These approximations have received con-

siderable attention.
30)Bayman and Feng have investigated the accuracy of the zero-range

approximation. They find that the relative cross sections predicted for the

Ca(t,p) Ca reaction to states with different J-values can differ by as

much as 40-80% in the zero-range approximation as compared with more exact

finite range calculations. They find that in a finite range calculation,

wherein some ground state correlations are included in a pairing approxima-

tion, and in which the binding energy prescription described above is used,

the absolute cross section is predicted to be roughly 1/3 of the observed

cross section.

The question of the two-nucleon overlap function and the resulting

form factor has been studied in some detail recently, primarily by
31)Ibarra . He has studied an approximate method for including effects due

to one- and two-particles in the continuum on the two-particle transfer form

factor. His results suggest that the more exact form factor for the

Ca(t,p) Ca reaction can lead to a factor of two difference in the calcu-

lated cross section as compared to the binding energy prescription con-

ventionally used.

From these investigations, one can say that the use of the zero-range

approximation and the well-depth prescription introduce uncertainties in

calculated cross sections of roughly a factor of two to three for strong

direct transitions.

There are important effects in these reactions due to ground state

correlations that are not contained in conventional shell model calcula-
32) 208 206

tions. Vary, et_ al̂ . ' have studied the Pb(p,t) Pb reaction. They use
a two-particle RPA formalism to calculate the effects of ground state



correlations in this reaction. Their general results are that with respect
206

to a conventional two-hole shell model calculation of Pb, the ground

state correlations enhance the transition to the Fb ground state by a

factor of two, they enhance the transition to the first 2 by 40%, and they

have relatively little effect on other transitions. For identical-particle

two-particle transfers, correlations among valence particles introduced by

the pairing part of the residual interaction concentrate the two-particle

transfer strength into the ground states, much as the quadrupole strength is

concentrated in the lowest 2 state by the quadrupole-quadrupole part of the

residual interaction. The RPA results imply that much of the strength added

to a model space by introducing core excitation goes mainly to the ground

state. Similar results are reported by Bayman and Hintz in studies of

the calcium isotopes.

There are, of course, the usual uncertainties due to optical model

ambiguities. In addition to these DWBA uncertainties there is the question

of the importance of various two-step non-direct processes in these two-
29)

nucleon transfer reactions . I'll cite an example of such effects in a

few minutes.

Bearing in mind all these uncertainties, what is the record so far on

shell model predictions of two-nucleon transfer reactions? Let me first

show examples of two cases where the shell model is expected to fare well,

the lead region and the calcium isotopes.

The reactions 208Pb(p,t)206Pb and 206Pb(p,t)204Pb have been studied35**

Shell model wave functions have been generated for the relevant nuclei in a
208

model space involving the six lowest neutron hole orbits in Pb. A "real-

istic" interaction developed by Kuo and Herling was used for the ef-

fective Hamiltonian. The predictions of this model for energies and various

other observables are in above average agreement with experiment. The two-

particle spectroscopic factors calculated with these same wave functions

have been used in a standard DWBA (i.e. zero-range approximation and well-

depth prescription) analysis of the observed cross sections. The results of

this analysis for transitions to the low-lying J=0 , 2 , and 4 states in

Pb and Pb are summarized in Fig. 5. The figure shows relative cross

sections where for each J, the cross section is normalized to the strength

of the transition to the lowest state of that J in the Pb(p,t)206Pb re-

action. With this normalization, we see that the qualitative features of
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Fig. 5. Observed and Calculated
Relative Cross Sections for
208Pb(p)t)

2°6pb, 206Pb(p,)
and 2Ol(Pb(p,t)2O2Pb Reactions.

the relative cross sections are accu-

rately reproduced. In these figures we

see also the predictions of tbe simplest

pairing-vibration model. The gross

features of the data are also reproduced

by this model. The pairing-vibration

model can only predict the strength to

the lowest state of each spin. For

these states, where there is a deviation

between the experiment and theory, the

shell model is in better agreement than

the pairing-vibration model.

The overall normalization required

to fit the 0 states is roughly twice

that required to fit the states with

higher spins. This presumably reflects

the significance of ground state corre-

lations. It is consistent with the factors discussed by Vary, et al.32)

for such effects.

Very similar analyses of the (p,t) and (t,p) reactions37^ on the

calcium isotopes have been performed. In this case the shell model calcula-

tions are in a slightly truncated (fp)" ~ space. The (t,p) reaction has

been studied on the targets 4 <M 2» 4 4> 4 6» 4 8
C a # I n Tabie g, the results of a

44 46
conventional DWBA analysis of the Ca(t,p) Ca reaction are summarized.

These results are fairly typical of the results for the 40>42»*4Ca experi-

ments. In this table, Y represents the sum of the observed and/or predicted

cross sections at a selected set of 5 angles. The experimental and calcu-

lated Y's are separately normalized to 100 for the ground state transitions.

The results are similar to what one finds for single-nucleon transfer

spectroscopic factors. In the experimentally observed cross sections, there

is a significant splitting of the strength to states at a relatively high

energy. In the calculation, there is strength in one or two high-lying

states that occurs at about the same energy as the observed strength. The

column labeled R is the ratio of the theoretical Y value to the observed Y

value. Four of these five ratios are roughly 2. Thus, if we doubled the

calculated ground state cross section, the theory-experiment



Table 8. Calculated and Observed Relative Cross Sections for
4'*Ca(t,p)'*6Ca Reaction. Y Is sum of cross sections at 12
forward angles. EY represents total strength to several

states listed In that column.

Expt. Theory
J E(MeV) Y £Y E(MeV) Y ZY R

0 0 100 0 100

2 1.35 8 1.44 14 1.8

4 2.57 2 2.63 4 2

6 (2.98) 2.99 2

2 3.02 6
3.64 3 4.15 89
3.86 3 5.15 50
4.43 20
4.99 6 J38 139 36

4 4.74 20 4.74 55 2.2
(5.53) 5 25

0 5.32 14
5.60 55 5.21 183
5.63 37 5.49 26
6.05 9 115. 209 1.8

comparison would be much more favorable. This is again consistent with the

result that the shell model calculations underestimate the ground state

pairing correlation by a factor of about 2. Analyses analogous to these for

the ' Ca(t,p) ' Ca reactions are not so satisfactory. The shell model
A—40calculations for these nuclei are in a significantly truncated (fp)

space, and this may account for some of the difficulty. Thus, from these

two "good" shell model regions, we have a consistent picture. Pairing

correlations are underestimated in the model ground state wave functions,

while the relative properties of the excited states are well described by

the theory, better than the known inaccuracies of the DWBA night suggest.

What is the situation in the s-d and f-p shell? In the s-d shell, much
38) 3

of the experimental work has been on He induced reactions for targets in
the middle of the shell. The emphasis in these experiments has been to test
the nuclear wave functions. In an early investigation by Hardy and

39)Towner the sensitivity of the cross section to the wave function was

clearly evidenced. Before comparison with the two-nucleon transfer experi-

ments, the signs of some of the matrix elements of the effective interaction



were undetermined by the shell model calculations in question. It turned

out that the observed cross sections were in serious disagreement with the

calculation with one sign assumed for one matrix element, but there was sub-

stantial agreement with the other sign.

Unfortunately, for the nuclei involved in most s-d shell two-particle

transfer experiments, full s-d shell model wave functions were not available

for the analysis, so there is an ambiguity in whether to assign discrep-

ancies in theory-experiment comparisons to DWBA problems, or wave function
40)deficiencies. In Table 9, I have summarized the results of Nann, et^ al.

Table 9. Calculated and Observed8 Cross Sections for 29Si(p,t)27Si
and 29Si(p,3He)27Al Reactions. The meanings of ZOSM, FOSM,

and MSDI are explained in detail in Ref. 40.

*•

5/2

1/2

3/2

7/2

5/2

ZOSM

(p.3He)

0.36

1.10

2.10

1.50

(P,t)

1.25

0.19

0.38

0.48

a lo .exp theory
FOSM

(P.3He) (p,t)

0.45 3.10

0.80 0.35

2.10 0.65

1.50 0.70

MSDI

(p,3He)

0.58

1.05

1.30

0.90

0.65

1.25

0.75

0.75

0.60

4.10

aRef. 40.

on the 29Si(p,3He)27Al and 29Si(p,t) 7Si reactions. These results are typi-
3

cal of mid s-d shell results now in the literature. In the (p, He) case

there can be AS»=O, AT=1, and AS=1,AT=O transitions possible, and the rela-

tive strengths of these are a function of the still-ambiguous spin-isospin

exchange character of the nucleon-nucleon interaction used in the reaction

analysis. The authors present arguments for a certain value of this ex-

change component, and then compare observed and calculated cross sections

with various sets of wave functions. The wave functions vary from pure in-

dependent particle wave functions to wave functions obtained from diago-

nalizing an effective interaction in a truncated space of (sd) ~ configu-

rations. The calculations were made in the zero-range approximation, and

the usual binding energy prescription for the form factor was used. The re-

sults are summarized in Table 9 for five low-lying states. ZOSM is the



29 12
independent particle model (i.e. Si = (d-/2>

si/2^' e t c - ) . MSDI is a more

complete shell model calculation. These results are for the case where the

spin-isospin exchange character was chosen to maximize the theory-experiment

agreement. The points I wish to emphasize here are that 1) there is only

rough agreement for the states shown here, 2) the results are sensitive to

the set of wave functions used, and 3) the results are within limits of un-

certainties of DWBA. For other states not shown here, the agreement is not

so good. The results for the (p, He) reaction to analogs of the states

shown in this table are not nearly as good as for the (p,t). The (p, He)

results are obviously more sensitive to the spin-isospin-exchange in the re-

sidual interaction. Finally, the "best" wave functions here are still in a

highly truncated basis. The situation at best is ambiguous. There has been

some work recently on two-particle transfer on s-d shell nuclei where "com-

plete" s-d shell wave functions are available, so that some of the ambiguity

is reduced. The most recent results are for the 0( He,p) F reaction,

which results are summarized in Table 10. The analysis is a standard one,

ated and Observed Cross
180(3He,p)20F Reaction.

Observed(MeV) Ecalc(MeV> lt]3 * q e * P
/ { W

Table 10. Calculated and Observed Cross Sections in the

2

3

4

1

5

2

1

0

0.66

0.82

1.06
1.82

2.05

3.49

0

0.61
1.21

0.92

2.29
1.76

2.47

0.51
0.83
0.36

1.03

0.48
1.15

0.69

aRef. 41.

similar to those described above. Considerable information can be gathered

from this reaction on spins and parities from angular distributions, and

from relative contributions of different L-transfer. The shell model ap-

parently predicts correctly which transitions are dominated by one L-

transfer, and which transitions involve several L-transfers. Table 10 shows

data on states which are believed to be accurately described as (sd)



states. The absolute cross sections to these states are all roughly compa-

rable, to within an order of magnitude. The relative cross sections for

these transitions are reproduced to within a factor of two or three.

As I mentioned above, in all the cases I've mentioned so far, the two-

nuclson transfer process is assumed to be a one-step direct transfer. There

is at least one striking case in the s-d shell where two-step processes are
29}extremely important. At the Argonne two-nucleon transfer conference ', the

Michigan State group reported on studies of the Mg(p,t) Mg and
24 22 24 22
Mg(p,t) Mg reactions. In the Mg(p,t) Mg reaction, the shell model

+ 22

predicted there to be no strength to the first 2 state in Mg, v;hile ex-

perimentally the state was populated with a cross section quite comparable

to cross sections to other excited states in Mg. A recent analysis in
terms of a two-step inelastic excitation, Mg(p,p') Mg(2 ) •*•

Mg(2+)(p,t) Mg(2 ), is found to account for almost the entire cross

section. This thus adds another complication which cannot be ignored.

The situation in the f-p shell is similar to that in the s-d shell.

There has been very little detailed analysis of two-particle transfer with
42 3 44

full f-p shell wave functions. There are data on the Ca( He,p) Sc re-

action which has been analyzed in terms of pure f",2 wave functions, with

generally unsatisfactory results. There is one possibly interesting syste-

matic effect with regard to J^l states in f-p shell nuclei as summarized by
29) +

Hansen at the Argonne Conference . The DWBA prediction of strength to 1

states is consistently too small toy a factor of 2-3 relative to the strength

to 5 states. This might suggest some important (1 ,T=0) correlations simi-

lar to the (0 ,T=1) correlations that are so important for two-neutron

transfers.

In summary then for the two-particle transfer processes in so-called

"good" shell model nuclei, there is a potential for tei3ting the two-particle

correlations in the wave functions, but DWBA uncertainties still mask such

effects. It does not seem to be a field where the structure and the re-

action theorist can be quite so independent as has been the case in general

for one-nucleon transfer reactions, but it does seem to be a field ripe for

exploitation by a collaborative effort of structure and reaction theory.

In the remaining few minutes, I'd like to make a few comments on shell

model calculations of nuclei near closed shells ia which the model spaces

explicitly include multi-particle multi-hole core-excified configurations.



It Is well known that the so-called closed shells are not closed. In nuclei

near closed shells there is a class of states reasonably well described by

the conventional shell model; there are states whose parity precludes their

being described in conventional shell model spaces, and finally there are

low-lying normal parity states which cannot be described by conventional

shell model calculations. Such states are usually referred to as deformed

states. A major step in understanding the structure of these states in

closed- and near-closed shell nuclei was the work of Brown and Green .

They studied the structure of 0 in terms of a three intrinsic state space.

They included the normal closed shell spherical state, and two states con-

structed from single-particle states of a deformed potential, a two-particle

two-hole state and a four-particle four-hole state. They correlated much of

the observed data on energy levels and E2-observables in 0 with such a

model. It was a natural question to ask if one could reproduce the features

of such a calculation by diagonalizing an effective two-body Hamiltonian in

a space of spherical orbits. An affirmative answer was found by Zuker,

Buck, and McGrory47) (ZBM) and by Zuker48). In their model an inert 12C

core was assumed and the V-ii<yi ^5/2' an<* si/2 or^>:'-ts we*e included in the

model space. They found a phenomenological two-body interaction which gave

substantial agreement with the observed features of nuclei around 0 when

single-particle energies similar to the energies of states in C were used.
52)

The same model was successfully extended to the description of all nuclei

in the mass range A = 16-20. Thus, one model describes many features of

many nuclei, so that one could call the phenomenological model a success.
53)

Recently, a similar calculation was made in a model space in which the

d-,« orbit was added to the model space used in ZBM, and the effective

interaction was derived for this space from the Reid nucleon-nucleon po-

tential. Although the inclusion of the d_.« orbit did not significantly in-

crease the degree of phenomenological success, this calculation equalled the

success of the previous calculation, so that a step was taken towards making

the calculations "realistic". I might digress to emphasize that this is as

far as anyone has progressed towards a "realistic" calculation of the ex-

cited spectrum of a "closed-shell" nucleus. An outstanding failure of

nuclear theory is that no realistic calculation of 0 in terms of 16 active

particles has been in any way successful in describing the first excited

state as a four-particle four-hole state. This is discussed extensively by



44) 12

Irvine, et al. . The crucial ingredients in the C core calculations

are: 1) the choice of the single-particle spectrum wherein the s-d shell

orbits are only 3 MeV above the p 1 / 2 orbit, and 2) the inclusion of both the

d-,_ and s. ,, orbits. The small single-particle spacing is crucial to ob-

taining a low-lying four-particle four-hole state. The inclusion of both

the d, /„ and s. ,„ orbits is essential if the multi-particle states are to

display any quadrupole deformations as experiment suggests they must,

There are observed features of low-lying states in nuclei around 0

which are not satisfactorily described by the core-excited models, and which

I believe result from shortcomings in describing the relative admixture of

so-called spherical and deformed states in one eigenstate. I'll cite two
1 ft 1 fi

examples. The first has to do with the 0(p,t) 0 reaction. This reaction
49)has been studied in detail by Adelberger, et_ al̂ . . In Table 11, I have

Table 11. Normalizations of DWBA, N D W B A > Required to fit

Observed Cross Sections in 180(p,t)160 Reactions to

Low-Lying Normal Parity T«=0 States.

Excitation

0 +

0 +

2 +

2 +

4+

0+

2 +

0+

Expt.a

0

6.06
6.92
9.83

10.34

11.30

11.49

12.02

Theorv

0

6.19
7.39

10.27
10.66
10.68
11.77

12.48

ZBM8

4

4

15

3600

2

6

280

5

COEXISTENCE21

4b

72

or 8 r o u m* state transition in

coexistence model arbitrarily normalized
to 4.

summarized the observed relative cross sections to low-lying levels in 0,



and also the relative cross sections calculated in a conventional DWBA

analysis with the form factor calculated from the ZBM wave functions. The

data on the strengths to the J=0 states was used to demonstrate a failure

of the Brown-Green coexistence model, and a success of the more complex

shell model calculation. However, I think when one also includes the data
+ +

on 2 and 4 states, it is obvious that there are problems vith the core-

excitation model as well ay with the coexistence model. It seems unlikely

that form factor and optical model uncertainties can account for these dis-

crepancies. A second example of possible difficulty is shown in Table 12.
Table 12. Calculated and Observed E2-0bservables in 16-17»18o.

Nucleus J.»>T.« •Jf»Tf

160

170

180

22,0 0^0

5/2,1/2 5/2,1/2

1/2,1/2 5/2,1/2

2,,1 0,1

B(E2) e2fm4 (e =e =0.35e)
P n

5a

41a,

0.1a

110a

-3a

6a

10C

-16C

Expt.

ioob

Q(e fm2

Q(e fm

)

2)

Theory

7

40
0.1

37

-2.8

9

12

aRef. 43.

bRef. 44.

CRef. 45.

This shows some E2-observables in the * ' 0 isotopes. In these calcula-

tions the Zuker effective interaction is used, harmonic oscillator

single-particle wave functions are used, and an effective charge of 0.35 was

assumed for both neutrons and protons. The value of 0.35 was chosen so as to

roughly reproduce the quadrupole moment in 0. Since this space is much

different from the conventional (sd)n space discussed above, a comparison of

the effective charges in the two spaces is of limited significance. These



calculations have been repeated with Woods-Saxon wave functions with very

similar results. There is some uncertainty in the experimental value of the

2, ->• 0. transition in 0. The value of 100 is mentioned without reference.
16

In 0 the strong transitions are between states in the rotational band

based on the 0 state at 6 MeV. The enhancement of these transitions are re-

produced in the model. If the value of 100 for the 2- -»• 0~ is correct, then

the effective charge for the deformed band must be more than double the value

used here. If the value 41 is correct, then the observed values imply a

strong state dependence of the effective charge for transitions within the

excited 4p-4h band. The calculated values for the 0 observables are ac-

ceptable (obviously so for the quadrupole moment, to which the effective

charge was roughly normalized). Perhaps the most interesting discrepancy is
1 O Am "I Q

for the quadrupole moment in 0. This is the first excited 2 state in 0,

and it is generally described as a spherical shell model state. The observed

value is about" three times the calculated value. This large observed value

is almost certainly due to admixtures of deformed states. Perhaps the most

serious deficiency of the model space used in these calculations is the

omission of P0/9 orbit excitations. The four-hole state (P-i/o) *s a

spherical state, and so the four "holes" of the four-particle four-hole state

in the 0 calculation make no contribution to deformation. The added defor-
mation possible with the inclusion of P3/0 excitat*011 could be significant in

these E2-observable calculations. The inclusion of this orbit could also be

very significant in the analysis of the 0(p,t) 0 reaction to the 2
49)

states, as discussed by Ohanian .

A next obvious step would be to extend these core-excitation calcula-
40 54)

tions to the Ca core region. Zuker has previously discussed preliminary
steps in this direction, as have Federman and Pittel . In both cases the

model space is restricted to d-w- n°les and ^7/2 particles. The calculations

reported so far have shed some light on the gross qualitative structure of

nuclei in this mass region. Surely the restriction to the ̂ 3/2~^7/2 sP a c e *8

too severe. The amount of deformation achievable in such a model space is

severely restricted. The importance of the P0/9 anc* si/? o r D* t s *n achieving

deformation in the s-d shell and the f-p shell has been discussed pre-

viously . These two low-lying orbits are also of extreme importance in any

analysis of multi-nucleon transfer reactions, as discussed above. While

practical necessities require the use of a severely truncated space, the



experimental data suggest that deformation admixtures are larger in the Ca

region than in the oxygen region. This is suggested by the following quali-

tative results:

1. The abnormally large effective charges in the calcium isotopes al-

ready pointed to above.
24) 42 +

2. The analysis of Towsley, et al. of the Ca 2. quadrupole moment
+ +

suggests that the first 2 state (the shell model 2 state) is 50% deformed.
42

3. If the Ca ground state were a two-particle state, and the 3.35
40

MeV state in Ca were a 4p-4h state, there would be no intensity to the ex-
42 40 49)

cited state in the Ca(p,t) Ca reaction. But, experimentally , the

first excited 0+ state at 3.35 MeV is populated with 25% of the intensity of

the ground state transition, as compared to 7% for the analogous comparison

1ft 16

of the O(p,t) 0 cross sections.

4. On the other hand, in the 38Ar(3He,n)40Ca reaction56*, the 3.35 MeV

state is not populated. This is consistent with the simple picture given in

item 3 above.

5. The spectroscopic factors extracted ^ from experimental cross
41 42

sections in the DWBA for the Ca(d,p) Ca reaction suggest that deformation
58)

effects are significantly underestimated in the Gerace-Green calculation
41 42

of Ca and Ca. These calculations are analogous to the Brown and Green
0 calculations.

Thus, in just these few nuclei there are a number of intriguing experimental

results demanding interpretation, and I expect the (f7/2'^3/2^ m°del will not

successfully meet this challenge. Ways must be found to include other impor-

tant parts of the space in such a calculation if one is to approach a micro-

scopic understanding of the light f-p shell nuclei. Perhaps Andres Zuker

will give us some assistance in charting this path in the next talk.

I would like to acknowledge many useful conversations with B. H.

Wildenthal on various aspects of this talk.



List of References

1. E. C. Halbert, J. B. McGrory, B. H. Wildenthal, and S. P. Pandya,

Advances In Nuclear Physics, Vol. 4 (M. Baranger and E. Vogt, eds.)»

Plenum Press, New York (1971).

2. B. H. Wildenthal, E. C. Halbert, J. B. McGrory, and T. T. S. Kuo, Phys.

Rev. C4 (1971) 1266.

3. B. H. Wildenthal, J. B. McGrory, E. C. Halbert, and H. D. Graber, Phys.

Rev. C4 (1971) 1708.

4. R. R. Whitehead and A. Watt, Phys. Lett. 41B (1972) 7.

5. B. J. Cole, A. Watt, and R. R. Whitehead, Phys. Lett. 49B (1974) 133.

6. B. J. Cole, R. R. Whitehead, and A. Watt, to be published.

7. B. J. Cole, A. Watt, and R. R. Whitehead, to be published.

8. J. B. French, E. C. Halbert, J. B. McGrory, and S. S. M. Wong, Advances

In Nuclear Physics, Vol. 3 (M. Baranger and E. Vogt, eds.) Plenum Press,

New York (1969).

9. R. R. Whitehead, Nucl. Phys. A182 (1972) 290.

10. M. Soyeur and A. Zuker, Phys. Lett. A1B (1972) 135.

11. P. W. M. Glaudemans, e* al., contribution to this conference.

12. T. T. S. Kuo, Nucl. Phys. A103 (1967) 71.

13. B. M. Preedom and B. H. Wildenthal, Phys. Rev. C8 (1972) 1633.

14. J. B. McGrory, B. H. Wildenthal, and E. C. Halbert, Phys, Rev. C2 (1970)

186.

15. A. E. L. Dieperink and P. J. Brussaard, Nucl. Phys. A128 (1969) 34.

16. I. Talmi and I. Unna, Ann. Rev. of Nucl. Sci. ̂ 0 (1960) 353.

17. J. D. McCullen, B. Bayman, and L. Zamick, Phys. Rev. L3£ (1964) B515.

18. J. B. McGrory, Phys. Rev. C8 (1973) 693.

19. R. Gross and I. Talmi, Phys. Lett. 44B (1974) 147.

20. G. T. Garvey and Y. Kelson, Rev. Mod. Phys. 41 (1969) 1.

21. C. Thibault and R. Klapisch, Phys. Rev. C6 (1972) 1509.

22. B. H. Wildenthal and D. Schwalm, to be published.

23. 3. H. Wildenthal, J. B. McGrory, and P. W. M. Glaudemans, Phys. Rev.

Lett. 26 (1970) 96.

24. C. W. Towsley, D. Cllne, and R. N. Horoshko, Phys. Rev. Lett. ̂ 8 (1972)

368.

25. P. R. de Kock and P. W. M. Glaudemans, Fhys. Lett. 34B (1971) 280.



26. B. A. Brown, A. Arima, and J. B. McGrory, to be published.

27. P. W. M. Glaudemans, P. M. Endt, and A. E. L. Dieperink, Ann. Phys.

(N.Y.) 62 (1971) 134.

28. I. S. Towner and J. C. Hardy, Advances in Physics 18_ (1969) 401.

29. Proceedings of the Symposium on Two-Nucleon Transfer and Pairing Exci-

tations, Argonne National Laboratory, March 1972, ANL-PHY-1972H.

30. B. F. Bayman and 0. H. Feng, Nucl. Phys. A205 (1973) 513.

31. R. H. Ibarra, Nucl. Phys. A211 (1973) 317.

32. J. Vary, R. J. Ascuitto, and J. N. Ginocchio, Nucl. Phys. A18S (1972)

349.

33. B. F. Bayman and N. Hintz, Phys. Rev. 172 (1968) 1113.

34. J. D. Garrett and 0. Hansen, Nucl. Phys. A212 (1973) 600.

35. W. A. Lanford and J. B. McGrory, Phys. Lett. 45B (1973) 238.

36. T. T. S. Kuo and G. Herling, Nucl. Phys. A181 (1972) 113.

37. The DWBA calculations were made by B. S. Nllsson, to whom I am indebted

for permission to quote unpublished information. The experimental data

is from J. H. Bjerregaard, et al., Nucl. Phys. A103 (1967) 33.

38. For example, see H. Nann, et al., Nucl. Phys. A176 (1971) 553;

H. Nann, Nucl. Phys. A192 (1972) 417; A198 (1973) 11; R. Meynadier,

et al., Nucl. Phys. A161 (1971) 305.

39. I. S. Towner and J. C. Hardy, Advances in Physics 18_ (1969) 401.

40. H. Nann, W. Benenson, W. A. Lanford, and B. H. Wildenthal, to be

published.

41. D. J. Crozier and H. T. Fortune, to be published.

42. C. H. King, H. Nann, M. Shahabuddin, and B. H. Wildenthal, to be

published.

43. S. J. Skorka, J. Hereel, and T. W. Retz-Schmidt, Nuclear Data £ (1966)

347.

44. J. M. Irvine, C. D. Latorre, and V. F. E. Puchnell, Advances in Physics

20 (1971) 661.

45. A. M. Kleinfeld, K. P. Lieb, D. Werdecher, and U. Smilansky, Proceedings

International Conference on Reactions Between Complex Nuclei, Vol. 1

(ed. by R. L. Robinson, F. K. McGowan, J. B. Ball, and J. H. Hamilton)

North-Holland Publishing Co., Amsterdam, 1974, p. 27.

46. G. E. Brown and A. M. Green, Nucl. Phys. 85. (1966) 87.

47. A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. Q (1968) 38.



48. A. P. Zuker, Phys. Rev. Lett. 23 (1969) 983.

49. E. G. Adelberger, P. T. Debevec, G. T. Garvey, and R. Ohanian, Phys.

Rev. Lett. 29. (1972) 883; R. Ohanian, Ph.D. Thesis, Princeton

University (1973).

50. K. H. Bhatt and J. B. McGrory, Phys. Rev. C3 (1971) 2293.

51. W. Schlegel, D. Schmitt, R. Santo, and F. PUhlhofer, Nucl. Phys. A153

(1970) 502.

52. J. B. McGrory and B. H. Wildenthal, Phys. Rev. C7_ (1973) 974.

53. J. M. Irvine, G. S. Mani, V. Puchnell, A. Watt, and R. R. Whitehead,

Phys. Lett. 44B (1973) 16.

54. A. P. Zuker, Proceedings of Conference on f?;2 Nuclei, Padua, 1971.

55. P. Federman and S. Pittel, Phys. Rev. 186 (1969) 1106.

56. W. P. Alford, R. A. Lindgren, D. Elmore, and R. N. Boyd, Phys. Lett.

46B (1973) 356.

57. C. Ellegaard, J. R. Lien, 0. Nathan, G. Sletten, F. Ingebreten, E.

Osnes, P. 0. Tjom, 0. Hansen, and R. Stock, Phys. Lett. 40B (1972) 641.

58. W. J. Gerace and A. M. Green, Nucl. Phys. A123 (1968) 241.

59. S. Maripuu and B. H. Wildenthal, Phys. Lett. 2§B (1972) 464.


