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The nucleus occupies a rather unique position in the physical world be-

cause it. is a system which 1) nust be treated within the framework of quantum

mechanics, 2) it exhibits collective motion, and 3) it is conceivable that

it can be treated as a "relatively" few-body system so that one might talk

of a microscopic model in which the coordinates of all the constituent nucleons

are treated explicitly. Thus, a dominant question in nuclear theory remains —

is it possible to describe the observed collective nuclear phenomena in terms

of a truly microscopic model? All theoretical investigations of this question

start in some way from a nuclear shell model. In recent years, shell model

technology has increased dramatically so that it is now possible to carry out

large systematic investigations of nuclear structure in terms of large shell

model bases. This is particularly true for light nuclei with mass less than

2 3

40, i.e. nuclei in the p-shell and the sd-shell. In this paper I would

like to review the application of the shell model to the study of electro-

magnetic decay processes. I will first briefly outline what I mean by shell

model calculation. I will then discuss the various effective operators which

enter into the calculations of electromagnetic properties. Then I will re-

view the existing calculations of suc.i properties and how the results corre-

late with experimental data. I will try to give some idea of the sensitivity
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of these calculations to the "ingredients" of the shell mode3. calculation.

Let me begin with a discussion of what I mean by a shell model calcula-

tion. We assume that nuclei consist of nucleons, neutrons and protons, which

interact through two-body forces only. Thus, we assume the axact Hamiltonian

i
+ I v .

i<j 3

An exact solution of this Hamiltonian is unavailable for more than the two-

particle system, so some approximation is necessary. We assume that much of

the effect of the two-body interaction can be absorbed in a one-body central

potential, so that to a first-ordev approximation, the particles move inde-

pendently in a central field. Mathematically, we add and subtract a central

field UQ(r) to the Hamiltonian, i.e.

H = I Ti+Uo(ri) + ̂  V±. - I Uo(r) E H Q +H 1 2

and we assume H,_ = V.. - U (r.) is weaker and can be treated in perturbation
Ll ij 0 1

theory. This is done by expanding our wave functions in terms of eigenstates

of H~ and then diagonalizing H.» in this space. The space of eigenstates of

H is an infinite Hilbert space, so we must truncate. We put all the nucleons

in the lowest available orbits. We assume that most of the particles go to

fill up the lowest available orbits to form an inert core, and that the re-

maining particles can occupy only the lowest few unfilled shells. Thus, the

problem is reduced to diagonalizing an effective interaction in the space of

a few particles distributed over a few orbits. The resulting eigenvalues are

the nuclear energy levels, and the eigenfunctions are correlated with nuclear

20
wave functions. As an example, the nucleus Ne is often treated as four



particles in the sd shell outside an inert 0 core. There are active

particles only in the d5/2, s., <2, and d,,, orbits. The matrix elements of

the effective Hamiltonian in this space is completely specified when we know

all the three one-body matrix elements <j|H | j>, (H is assumed to be diago-

nal), and tha 63 two-body matrix elements <Ji^oJT'H12^3"'4JT> * Thus' a11

the physics is in the choice of the model space and the choice of these 66

numbers, the interaction matrix elements. After that, the calculation is

one of crank turning. We now have very powerful cranks. With the recent

development of shell-model codes based on the Lanczos algorithm by Whitehead,

it is now possible to do shell-model calculations of all nuclei in the sd

shell with 8 < N,Z < 20. This means th-it matrices which are as large as

5000 * 5000 in a (J,T)-coupled representation can be calculated, and accu-

rate estimates of the lowest eigenvalues of this matrix can be obtained in

reasonable time.

There has been a considerable maturation of the interpretation of shell-

model calculations in recent years. The line of reasoning prevalent now is

as follows. There exists a true Hamiltonian H, for which the eigenvalues

are true nuclear energies E, and the eigenvectors i|> , are nuclear wave func-

tions, i.e.

For various physical observables there are related Hermitian operators 0,

such that matrix elements of the form

E E

can be used to calculate experimentally measured quantities. H and 0 are

defined in infinite Hilbert spaces. Is it possible to find effective



operators W and & defined in a small space with the following properties:

y hf> - \\*£>
E E. E. E.

Thus, the eigenvalues of rl in the small space exactly equal the eigenvalues

of H in the large space, and the matrix elements of & in the small space

equal the matrix elements of 0 evaluated with the related eigenfunction in

the large space. If it is possible to find relatively simple operators *?/

and &, (e.g. involving relatively few parameters, few-body operators, etc.)

such that a large quantity of experimental information can be correlated,

then one has a useful phenomenological model. In this sense, the shell model

has achieved considerable success, which is extensively documented. It is

obvious that much of this success results from the fact that we deal with

matrix elements, and thus with overlaps of wave functions. A trivial ex-

ample of this would be if one were interested merely in the direct overlap

of two wave functions. If the wave functions are appropriately orthonormalized,

the overlaps are one, no matter how complex the wave functions are. When

one evaluates the matrix element of a one-body operator, in an N-particle

system, he overlaps the part of the wave function involving N-l of the

particles, and again much of the complexity of the wave functions is swept

away in this overlap. Physical observables only tell of the relation of two

wave functions, and tells nothing about the details of individual wave

functions.

As I said, the shell model has been a phenomenological success. Thus,

there are simple operators which do a good job of correlating nuclear phe-

nomena. One might start talking of a "realistic" microscopic calculation



if one could calculate the appropriate operators relevant to a given model

space starting from the known "real" one- and two-body operators. The suc-

cesses in this direction are much more unclear. Until now, low-order per-

turbation theory has been used. There are mathematical problems associated

with questions of convergence. I'll make a few more comments on this matter

with regard to effective charges in a few minutes.

Most of my discussion of actual calculations today will center on the

so-called sd-shell nuclei, with A = 18-Z'6. In all cases, an inert 0 core

is assumed, and the one-body energy operator is taken from the observed

spectrum of 0. Most of the results will be for cases where the sd shell

effective interaction is the realistic interaction of Kuo, or a modifica-

tion of it due to Preedom and Wildenthal. The sd shell is probably the most

extensively studied region insofar as large shell-model calculations are con-

cerned. From the theoretical point of view, as I said above it is now possi-

ble to do complete (sd)n calculations for all sd-shell nuclei* Experimentally,

it is known that many of the nuclei in the lower half of the shell exhibit

rotational structure. By this I mean that there are rotational bands evi-

denced in the energy level spectra which have approximately J(J+1) spacing

and the observed electromagnetic properties, particularly E2 transitions,

can be described by simple rotational models. It is thus an ideal testing

ground for seeing if a microscopic model can display collective features.

Traditionally one concentrates on comparisons of the shell model energy

spectra with observed spectra. I will only briefly talk of such comparisons

here. The most interesting recent developments here have to do with the

relative positions of rotational bands. When the realistic interactions of

Kuo and Kuo-Brown have been used in the past, the following systematic

pattern is found. Where there are two known rots.tional bands in a nucleus,



the "realistic" shell-model calculations also display two rotational bands,

but all the states of the excited bands are consistently too low with regard

to the states in the ground state band. Wildenthal has tried to modify the

Kuo interaction empirically to alleviate this problem. He has treated as

free parameters a subset of the total of 63 two-body matrix elements as cal-

culated by Kuo, and adjusted these free parameters to give a best fit to over

100 levels in .iuclei with A = 18-22. There are several cases in these nuclei

where there are two rotational bands. When this interaction, referred to as

the Preedom-Wildenthal (PW) interaction, is used to calculate properties of

a number of nuclei with A < 32, it is found that most of the difficulties

with these excited bands are largely removed. It is also found that the

ground state binding energies as calculated with the Preedom-Wildenthal in-

teraction are in substantial agreement with experiment, in contrast to the

Kuo interaction. The main qualitative difference between the Kuo and PW in-

teractions is that the strength of the average interaction between d,.,_ and

sl/2 Particles, and between d_»_ and d_»2 particl» s is reduced by about 0.5 MeV

in the PW interaction. This has a distinct effect on the purity of the

rotational bands, as I'll discuss below. As a typical example of the agree-

ment of theory-experiment for energy levels, the observed and calculated

25
spectrum of Mg is shown in Fig. 1. Column a is the observed spectrum,

column b the spectrum calculated with Preedom-Wildenthal, and column c is

the spectrum of the excited K=l/2 band as calculated with the Kuo interaction.

The 1/2 member of this band has been arbitrarily shifted to agree with the

observed position of this state. Relative to this 1/2 state, the calculated

5/2 state would be at about 2 MeV. We see that the spectrum calculated with

the PW interaction is in quite good agreement for all positive parity states

up to 5.0 MeV.



Our main interest here is on electromagnetic observables, so let's move

on to them. Since we are dealing with only positive parity orbits, with

i. <_ 2, the only possible electromagnetic observables are EO, Ml, E2, M3, and

£4 observables. There is not yet enough information available on EO, M3, and

E4 observables to have any systematic comparisons with shell-model calcula-

tions, so we will concentrate here on Ml and E2 observables.

Let us start first with E2 observables. The "bare" operator for E2

observables in the long-wave-length approximation is

0 E 2 = I (1/2+t ) e r 2 Y2(Q )
i=l z i i

where e is the proton charge and t = +1/2 for protons. For such an operator,
z

our shell model for 0 says there are no E2 decays in 0, i.e. it is a pure

neutron state. Experimentally, there is a sizeable electric quadrupole

8 + + 9

moment for the ground state, and a strong 1/2 -> 5/2 E2 transition. The

conventional step at this point is to say that the neutron polarizes the 0

core, in the process of which protons are excited out of the core, and these

can decay. This effect is usually approximated by assigning an effective

charge to the neutron, and since the proton can also polarize the core, it

has an effective charge also. Then, in this approximation, the effective

operator is

V n i V i , S r±
2 Y2(ri)

A
e I l/2(l+e +e )t 2 Y2(r.) + £ t..<i)<l+e -e )r 2 Y2(r.)i=l p n i l i=1 z p n 1 i

where in the last line I simply rewrite the operator in terms of isoscalar

and isovector terms. One method of determining these effective charges is



to choose them to fit the observed transition rates in the single-particle

nuclei, such as 0 and F. The calculated E2 transition rate eventually

is reduced down to a coefficient times the radial integrals of the form

where e is the effective neutron or proton charge, whichever is appro-
n,p

priate. Thus the value of the effective charge depends on the radial inte-

gral. It depends, for instance, on whether you use oscillator wave func-

tions or Woods-°axon wave functions. There can be some sensitivity to this

choice of wave function, particularly if one is dealing with single-particle

states that are very loosely bound. For reasonably tightly bound particles,

the differences in choice of single-particle wave functions gives 10-15%

difference in the radial integrals. Thus, to be precise, the effective

charge is a function of the choice of single-particle wave function. In

practice, for the type of comparisons I'll illustrate in this talk, which

deal primarily with relative values, this ambiguity is not significant.

There is one more point that should be stre&sad here. We have made a state-

independent effective charge approximation. Thus, in the sd shell, we say

that no matter what single-particle orbits are involved, and no matter what

is the energy of the transition involved, the effective charge is the same.

There is no a priori reason for this to be sio.

If we use oscillator wave functions with an appropriate size parameter,

and if we make this state-independent effective charge assumption, what does

experiment tell us? I've summarized the situation in Table 1 for 0, 0,

Ne, F, Ca, Pb, and Po. These all represent nuclei which are

one- and two-particle or hole systems in the shell model. For the two-

particle systems, the wave functions are the results of diagonalizing



"realistic" interactions with experimental single-particle energies. In this

table I list the observed transition strengths in these nuclei, and I list

the effective charge which is needed in the simple shell model to reproduce

18
these transitions. The F transition shown is an isoscalar transition, so

only the isoscalar effective charge is determined by this transition, which

tells us the sum of the neutron and proton effective charges. These com-

parisons do not offer much support to the state-independent effective charge

concept. In the F case, the initial state is the very loosely bound 1/2

state. In this case the harmonic oscillator approximation is very question-

able. In the mass-18 nuclei, the isoscalar effective charge is only half of

lfi 18
the isoscalar charge suggested by the Ne and 0 results. Finally, the

mass-18 effective charges are significantly different from the mass-17

42
charges. In the case of Ca I have listed three transitions between the

lowest states of J = 0, 2, 4, and 6. These are simple two-neutron states in

the shell model. The neutrons carry much larger effective charges here than

in the sd shell, and there is strong evidence for a state dependence.

There is one more qualitative feature in the data worth mentioning here.

If the effective charge does arise from a core-polarization process, then

the simplest interpretation would suggest that the neutron effective charge

would be larger than the proton effective charge. This is because the

neutron can interact with the protons in the core through the strong T=0

components of the nucleon-nudeon force as well as the T=l force, while the

protons can interact only through the T=l force. Thus, neutrons should ex-

cite protons more strongly than protons. Experimentally, the proton charges

aie larger than the neutron charges. It would be extremely useful to have

19 20
good data on B(E2) values in 0 and 0 from (d,py) and (t,py) reaction

experiments. These could cast direct light on the neutron effective charge
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question(

Thus, this naive interpretation of the data does not strongly support

the simple state-independent, nucleus-independent effective charge. Most

certainly the difficulty lies with the interpretation of the A=17 and 18

(and A=41 and 42) systems as simple one- and two-particle systems outside

closed shells. There are important core-excitation contributions to the low-

lying levels of these nuclei that cannot be treated as simple perturbations

insofar as electromagnetic decay processes are concerned. It is one of the

unfortunate ironies that those nuclei which are considered to be simple in

the shell model picture are in fact among the most complex. Thus, much of

the "realistic" interaction game has been played in the A=17 and 18 region,

and most approaches have used perturbation theory to handle core effects.

It is a good possibility that these core effects become truly perturbative

in the middle of shells, when the shell model simplicity is lost. At the

bottom of Table 1 I've listed effective charges in the lead region, where

the core may be more stable. Here the neutron effective charge ̂ s larger

than the proton, and the state dependence for the polonium transitions is

not so severe„

There is an extensive literature on the calculation of effective charges

2'

due to core polarization. ' These calculations are also not without ambi-

guity. Basically they involve evaluating diagrams of the form
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The first term simply represents the interaction of s particle with the

electromagnetic field. The second process involves exciting a hole-particle

state in the core, and this hole-particle scace decays Wy T 6a!E»^ emissi-:i.

The treatment of th:'s hole-particle state is a critical one. One cruld use

an oscill'tor basis and pertui^tion theory., one could first diagonalize in

a hole-particle space, and then use perturbation theory in the resulting

space (Tamm-Dancoff), or one could include effects on the hole-particle states

due to ground state correlations through the RPA formalism. There are

questions of what renormalizations should be included in the TDA or RPA, what

single-particle energies for the hole and particle states, what interaction,

etc. Because of these uncertainties, it is difficult to draw any conclusions

as to the success of realistic "effective"-charge calculations. This diffi-

culty is obviously magnified by the fact that no one really knows what the

experimental numbers are either=

To this point, then, the picture for the E2 effective operator is seem-

ingly very complex. As I'll show now, the major shell configuration mixing

shell-model calculations give a much more simple picture. There are now cal-

culations of E2 observables throughout, the sd shell in model spaces which

are very near to being complete. In Table 2, I have compiled a listing of

E2 transitions from the first excited state to the ground state for those

cases where there is experimental information available, and where the

analogous numbers have been calculated in the complete (sd) ~ space. Thus,

the cases are restricted to A _< 22 and A ̂  34. In all the calculations,

effective charges of 0.5 were assumed for both the neutrons and the protons,

and the oscillator parameter was determined from the relation ftw = 41 A MeV.

Wt. see that this systematic data is very accurately reproduced by the shell-

model calculations. The significant discrepancies are for the nuclei close
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to the. 0 core. In table 3, I have listed calculated and measured quadrupole

moments in the sd shell. In tais case, the values are included for all nuclei

with 16 <_ A <_ 40 for which moments are measured. Thus, the models for

23 £ A £ 33 are in somewhat truncated spaces. Again, constant effective

charges of £ = e = 0.5e are used. In all caso.s the signs of the moments

are correctly calculated, and the calculated magnitudes are generally in good

1Q OQ

agreement with measurement. Ths major discrepancies are for 0 and Ne.

In the middle of the shell, the calculated numbers are a little smaller than

the measured ones but this is almost certainly a truncation effect. The ef-

fects of configuration mixing are quite important in these calculations. In
25

Fig. 2, I jhow a figure from the work of deKoch and Glaudemans. They as-

sumed the simplest independent particle models for nuclei with A £ 28 (d_ ,„ )
A-32

and A _> 32 (d,.o ) , with a good seniority approximation- Within these models

they determined the size of the effective charges (with e = e ) which was

needed to reproduce the observed quadrupole moment. As we see, the charge

needed in the middle of the shell is extremely large. The results in Table

3 show that with configuration mixing this effective charge is constant, so

that when we take in an adequate space, the effective shell model operator

does become "simple".

As I said, there are significant discrepancies for 0 and Ne. I

suspect that these discrepancies are due to the importance of core-excitation
18

effects. This is almost certainly true for 0, where the measured moment

is eight times the shell model prediction. A similar large discrepancy exists

42 18
in Ca, the fp shell analog of 0. There both the sign and magnitude of

the quadrupole moment of the first 2 state are in disagreement with the

42
shell model. The data around Ca has been qualitatively accounted for by

Towsley, et al, with a model in which 50% of this lowest 2 + is a deformed

^^
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3 8
4-particle 2-hole state. If a similar effect is important in 0, it is not

20
unreasonable that a similar effect is significant in Ne.

The shell model has achieved moderate-to-good success in describing

relative B(E2) values for transitions between low-lying states in a given

nucleus. As an example which I think may be fairly called "representative",

the measured B(E2) values for transitions among states in the lowest two

25
rotational bands in Mg are listed in Table 4. Also in this table are given

9
the values calculated for these transitions in the complete (sd) space by

12
Cole, et al. Two interactions are used, one the Kuo realistic interaction

designed for this model space and the other the PW interaction which is de-

scribed briefly above. Remember that the PW interaction does a much better

job of describing the relative positions of the rotational bands in the

25
energy spectrum of Mg. The upper part of Table 4 lists in-band transitions,

while the last four transitions listed are inter-band transitions. Insofar

as the B(E2) values are concerned, we see that there is quite satisfactory

agreement for both in-band and inter-band transitions with the PW interaction.

For the Kuo interaction, the. calculated B(E2) values for in-band transitions

are generally quite similar to the PW numbers, but the inter-band B(E2) values

are quite different for the two interactions. It is encouraging that the

interaction which better reproduces the energy levels also give a better

description of the B(E2) values. This sensitivity of the calculation is a

feature that has appeared clearly only with the really large space shell-

model calculations made possible with the Glasgow program! The results in

26 *? S

Mg are quite similar to those given here for Mg, i.e. ene-.^y levels and

electromagnetic properties are both better reproduced with the PW interaction

than with the Kuo interaction. The sensitivity is most striking with re-

gard to inter-band transitions. These are generally small and hard to
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measure, but they are potentially quite useful.

Thus, in summary, the phenomenological shell model is quite successful

in describing many observed E2 quantities with a very simple effective charge

approximation. The results suggest that calculations of effective charges

from core-polarization processes should lead to an isoscalar effective charge

(1+e +E ) % 1.0, and there is no strong empirical evidence for state

dependence.

Let us move next to Ml observables. The bare Ml operator is

m = I {1/2 U(i) + (gp+gn)i(i)] + t^(l) [I(i) + [gp-gQ]5(i)]}

A
= 0.50 J + 0.38 S + I t'(i) [I(i) + 9.40 s(i)]

i=l z

where g = 5.58 M and g = -3.82 M .
p o n o

For this operator, a particle in an. orbit j = Jl ± 1/2 can decay only to

another orbit j' = I ± 111, i.e. to itself or to its spin-orbit partner.

Because all the tensors in the bare Ml operator are vectors, the following

selection rule exists: there are no Ml transitions between systems of

identical particles in the same j-orbit, i.e. j n configurations of protons

only, or of neutrons only. The isoscalar part of the operator makes no con-

tribution to decays between S=0 states. The isovector term dominates the

isoscalar term where both processes are possible. It is generally found in

shell-model calculations that matrix elements for the Ml operator are small

between low-lying states. They are thus more sensitive than the model space

and the effective Hamiltonian which is used than is the case with the E2 ob-

servables.

As one uses an effective charge for E2 calculations, one should in

principle use ?n effective Ml operator in truncated shell-model calculations.
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There has been a long history of investigations of renormalization of the

Ml operator. Suffice for our purposes to say that the renormalization of

the Ml operator in the shell model we use for sd-shell nuclei is expected to

be small. There is, of course, direct experimental evidence on this from

the magnetic moments of the 0 and F ground states. The measured values

of these moments are included in Table 5, as are the values calculated with

the bare Ml operators. For these two nuclei, there is essentially exact

agreement as is well known. All measured magnetic moments of sd-shell nuclei

with A <_ 22 and A ̂  34 are listed in Table 5, as are values calculated in

A-16complete (sd) model spaces with reasonable effective interactions, and

for which calculations of the bare Ml operator are. used. The calculated re-

sults for nuclei with A ̂  22 are in excellent agreement with measurement.

Arguments can be made to show that these results imply that there can be

no significant quenching of the isovector part of the bare Ml operator when

used as an effective operator for these calculations. There are some rela-

tively large discrepancies for the heavier nuclei. Thus, both effective

operator theory and the results for magnetic moments indicate that the bare

Ml operator is the appropriate effective Ml operator in the sd shell, at

least for the lighter nuclei.

In recent years, there has been a significant increase in the amount of

data available on Ml transitions in sd-shell nuclei. It is thus possible to

start some systematic analysis of the ability of the shell model to account

for this data. As I said, these B(M1) values are generally fairly small,

especially for isoscalar transitions. This results in extreme sensitivity

to the calculation. Let us concentrate here on isovector allowed Ml transi-

tions which are not so small. As I will show now, the theory-comparison for

such transitions is still very confusing. Even for these "relatively strong"
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transitions there is sensitivity to the effective Hamiltonian which is used.

Before this sensitivity is useful, much more careful measurements must be

made. If one can accept the data as ic exists, there is some suggestion that

the isovector Ml operator should be quenched, in contradiction to the impli-

cations of magnetic moment data.

Let us look first at this systematic data. In Table 6 are listed a

reasonably large selection of the available data or isovector allowed Ml

transitions between low-lying, mostly bound, states in sd-shell nuclei. For

some cases, the B(Ml)'s were calculated with various effective Hamiltonians.

In those cases, the numbers in the calculated column indicate the range of

the values calculated with the different Hamiltonians. We see first that

there is a correlation in the calculated and observed results between rela-

tively weak and relatively strong B(M1) values. For the strongest transi-

tions there is a consistent trend that the calculated value is too large com-

pared to the observed value. The main exception to this is for the two tran-

sitions in Ne. This indication that the isovector Ml operator should be

quenched is difficult to reconcile with the results for the magnetic moments.

For the case of the heavier nuclei, it is worthwhile pointing out that the

39

K transition is absolutely forbidden with the bare operator. Since this

measured strength is comparable with the values observed for the other tran-

sitions in these heavier nuclei, it is hard to say much about the theory-

experiment comparison thexe.

In Table 4 are listed the measured B(M1) values in Weisskopf units in
25

Mg. I show these numbers to show: 1) a case where the relative B(M1)

values are well accounted for by the shell model, the Preedom-Wildenthal

model in this case, 2) a case where there is no obvious need to quench the

isovector operator, and 3) to show again the sensitivity of the shell-model
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calculations to differences in the PW and Kuo interactions. Again, in those

cases where there are significant differences in the calculations, the PW

interaction is more successful.

As I stated above, the data on these B(M1) values, as well as some

B{E2) values, is subject to significant experimental uncertainties. One ex-

ample, hopefully not typical, is shown in Table 7. Here are given the

measured B(E2) and B(M1) values fcr transitions between states in the ground-

21
state band of Ne. There are two sets of measured values. The calculated

values for these quantities are from a complete (sd) shell-model calculation

in which the Kuo realistic effective interaction was used, the bare Ml oper-

ator was used, and effective charges of e = e = 0.5e were used in the E2

operator. Not indicated in this table is a disagreement between the two ex-

perimental groups involved as to the lifetimes of the states involved. The

published lifetimes of Pronko and of Bailey, et al. differ by factors of

roughly 4-6. The Pronko results were reanalyzed by Bailey, et al. with an

"improved" method. The resultant lifetimes still disagree with those

"measured" by Bailey, et al. by a factor of two to three. The calculated

B(M1) and 3(E2) values are consistently intermediate to the two sets of ex-

perimental numbers. If one is an optimist, he could say that the relative

B(K1) and B(E2) values may well be in quite good agreement with the "correct"

experimental values. It would obviously be useful to resolve these dis-

crepancies .

Thus, I think we are left with an ambiguous situation for the B(M1)

operator. There is some indication that a renormalization of the isovector

Ml operator is needed, but as long as the experimental situation is as un-

clear as it appears to be, one cannot argue very strongly for this.



18

I have tried to show here that there is reason to believe that much of

the systematic features of data on electromagnetic properties of light sd-

shell nuclei can be described by the phenomenological shell model with very

simple effective operators. It appears now that the large shell-model cal-

culations of these observables in the middle of the shell may provide a use-

ful test of the various effective interactions. This can only be true if

the reliability of the experimental numbers is more firmly established.
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Figure Cspti^as

25Figure 1. Calculated and observed spectrum of Mg. Column a is observed
9

positive parity spectrum; column b is spectrum calculated in (sd) space with
Q

Preedom-tfildenthal interaction; column c is spectrum calculated in (sd)

space with Kuo interaction. The information in this figure is from Ref. 12.

Figure 2. Plot of effective charge, Ae, which is added to bare neutron and

proton charges in order to reproduce observed quadrupole moments in simplest

shell model spaces in sd shells, i.e. d~/0 for A <_ 28, and d_T9 for A ^ 34.
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Table 1. Effective Charges in One- and Two-Particle Nuclei as
Determined Directly from the Observed Transitions.

Nucleus

170

17F

180

18Ne

18F

42Ca

42Ca

42Ca

206Pb

210Po

210Po

210Po

aRef. 18.

bRef. 19.

1/2

1/2

2

2

3

2

4

6

2

4

6

8

Jf

5/2

5/2

0

0

1

0

2

4

9

2

4

6

Effective Charge

e
n

n
c

n

O

e •(
n

= 0.6a

= i.oa

= 0.8a

= 1.4a

HE = 1.0a
P

1.8a

1.9a

0.7a

1.0b

0.6b

0.8b

0.5b
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Table 2. Calculated and Observed Quadrupole Moments in
sd-Shell Nuclei.

Nucleus

17o
19F

21Ne

23Na

25Mg

27A1

33s
35s
35C1

36ci

37C1

39K

Q(e

Expt.a

-2.6+0.9

11.2+2

+9.3+1.0

+11+2

22

15.3±0.3

-5.5±0.5

+4.0+0.4

-7.9+0.1

-1.7+0.2

-6.2+0.6

5.5+0.4

Information taken

bRef. 21,i

fin )

Theory3

- 2.6

- 9.2

+10.3

+10.4

+17.8

13.8

- 7.1

+ 7.8

- 9.1

- 0.9

- 8.4

7,7

from Ref. 20.

Nucleus

18o
20Ne

22Ne

24Mg

26Mg

28Si

32s
34s

Q(e

Expt.a

-16±lb

-23±3

-17.0+3

-21+3

-14±4

+16+3

-19±4

6±6

fm2)

Theor

- 2.

-14.

-13.

-16.

-11.

+14.

-13.

10.

a

0

3

6

0

9

3

6

0
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Table 3. Selected Strc -., :fE2) Transitions to Ground States in
sri-Shell Nuclei. Tx all calculations, an added effective

charge of 0.5e is included in E2 operators for both
neutrons and protons.

Nucleus

17F

17o
18F

18o
19F

20Ne

21Ne

22Na

22Ne

35C1

36Ar

38Ar

Ji'Ti

1/2,1/2

1/2,1/2

3,0

2,1

5/2,1/2

2,0

5/2,1/2

4,0

2,1

5/2,1/2

2,0

2,1

2"' i

5/2,1/2

5/2,1/2

1,0

0,1

1/2,1/2

0,0

3/2,1/2

3,0

0,1

3/2,1/2

0,0

0,1

B(E2)i_f e
:

Expt.a

64+2

6±0.1

15±2

7±1

21+1

57+8

63±13

94±15

40^:3, 66±12

78±2

59

38+9

» 4
fm

Theorya

38

4

15

3

19

48

81

101

55

74

59

28

Observed and calculated values compiled from Ref. 3,
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Table 4. Calculated*1 and Observed*1 B(E2) and B(M1) Values in ' Mg for
States in Ground State K = 5/2+ and First Excited K=l/2+ Bands.

States in excited K=l/2 band have primes on J labels.

2Ji

7

9

3'

5'

5'

1'

9

7*

1'

3'

5'

7'

2Jf

5

5

1*

1'

3'

3'

7

5'

5

5

5

5

B(E2)

Expt.

140±35

4 0-20 6

40±30

100±4

20±4

125±5

55±30

108-52

2.3±.O4

3.5+1.7

3.0+0.9

0.9±0.2

e2fm4

Kuo

113

10

61

87

32

54

77

3

0.1

30

28

P.W.

117

46

69

87

25

77

43

7

2.4

6

36

1.6

Expt.

0.6+0.

0.03

0.02

0.002

0.0

B(M1) u
o

Kuo

1

0.13

0.10

0.05

2

P

0

0

0

0

0

. .1.

.5

.04

.02

,001

.00

ilata compiled from Ref. 12.
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Table 5. Calculated and Observed Magnetic Momenta
in sd-Shell Nuclei,

Nucleus

17F
17o
18F

19F

1SF

20F

21Ne

22Na

35C1

35S

36C1

37Ar

37C1

38K

39K

Expt.a

+4.72

-1.89

+2.86

+2.63

+3.69

+2.09

-0.66

+1.75

+0.82

±1.0

+1.28

+0.95

+0.68

1.37

+0.39

Theorya

+4.79

-1.91

+2.88

+2.87

+3.55

+1.92

-0.90

+1.82

+0.68

+1.21

+1.55

+1.43

+0.59

+1.24

+0.13

Information taken from Ref. 3.
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Table 6. Observed and Calculated Isovector B(M1) Values i n

sd-Shell Nuclei with A<22 and A>34

Nucleus

18o
18

19o
20
Ne

20p

22Ne

35C1

37
Ar

39,.

V

2,1

1,0

3/2

0,2

1,1

3,1

4,1

1,1

2,1

1,1

V
13,

V
3/2

3/2

3/2

ri

,3/2

1

1

1

,1/2

,1/2

,1/2

Jf.T

2,1

0,1

5/2,

1,1

0,0

2,1

3,1

2,1

3,1

0,1

0,1

0,1

0,1

3/2,

3/2,

3/2,

f

3/2

1/2

1/2

1/2

B(M1) M
o

Observed

0.

0.

0.

0.

0.

1.

0.

•

•

•

•

0.

0.

0.

01+0.

13±0.

003

01

03+.002

2.50

0.66

47+0.

10±0.

08+0.

51+0.

07± .

17± .

10± .

32+ .

19±0.

02±0.

06+0.

05

02

26

20

01C

03C

02C

03C

08

004

02

Calculated

0.09-K).

0.37+G.

0.00+0.

2.38

0.61

0.06+0.

0.10+0.

4.96+7.

4.16+4.

,04C

.34C

.09C

.74C

0.39-K).

0.09+0.

0.06+0.

20

79

05

29

24

08

30

50

10

09

1/2,1/2 3/2,1/2

22..Ref. 22, except for " N e .
L ryry

Ref. 3, except for Ne.

=Ref. 23.
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21
Table 7. Calculated and Measured B(M1) and B(E2) Values for Ne,

in Weisskopf units.

Ji Jf

5/2 3/2

7/2 3/2

7/2 5/2

9/2 5/2

9/2 7/2

11/2 7/2

11/2 9/2

B(M1) Wu

Expt,a Expt. Calc.

0.21+0.03 0.03+0.01 .09

0.45±0.12 0.07±0.02 .16

0.49±0.09 0.12±0.03 .20

0.18±0.05 0.08±0.0? .20

B(E2) Wu

ExPt.
a

30±30

30+8

44±30

36±7

24±33

30+8

9+11

Expt.b

18±4

5±2

7±3

6±2

6±4

12±6

4±3

Calc.c

23

10

17

13

9

15

8

Ttef. 17.

Ref. 17.

-Ref. 3.
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