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The nucleus occupies a rather unique position in the physical world be-
cause it is a system which 1) must be treated within the framework of quantum
mechanics, 2) it exhibits collective motion, and 3) it is conceivable that
it can be treated as a "relatively" few-body system so that one might talk
of a microscopic model im which the coordinates of all the constituent nucleons
are treated explicitly., Thus, a dominant question in nuclear theory remains --
is it possible to describe the observed collective nuclear phenomena in terms
of a truly microscopic model? All theoretical investigations of this questicn
start in some way from a nuclear shell model. In recent years, shell model1
technonlogy has increased dramatically so that it is now possible to carry out
large systematic investigations of nuclear structure in terms of large shell
model bases. This is particularly true for light nuclei with mass less than
40, i.e. nuclei in the p—shell2 and the sd-shell.3 In this paper I would
like vo review the application of the shell model to the study of electro-
magnetic decay processes. I will first triefly outline what I mean by shell
model calculation. I will then discuss the various effective operators which
enter into the calculations of electromagnetic properties. Then I will re-~
view the existing calculations of sucn properties and how the results corre-

late with experimental data. T will try to give some idea of the sensitivity
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of these calculations to the "ingredients'" of the shell model calculation.
Let me begin with a discussion of what I mean by a shell model calcula-

tion. We assume that nucleil consist of nucleons, neutrons and protons, which

interact through two-body forces only. Thus, we assume the sxact Hamiltonian
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An exact solution of this Hamiltonian is unavailable for more than the two-
particle system, so some approximation is necessary. We assume that much of
the effect of the two~body interaction can be absorbed in a one-body central
potential, so that to a first-orde: approximation, the particles move inde-
pendently in a central field. Mathematically, we add and subtract a central
field Uo(r) to the Hamiltonian, i.e.

Z THU () + I v, 4" Z U (r) = HyH
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and we assume le = Vij - Uo(ri) .8 weaker and can be treated in perturbation
theory. This is done by expanding our wave functions in terms of eigenstates
of HO and then diagonalizing le in this space. The space of eigenstates of
H0 is an infinite Hilbert space, so we must truncate, We put all the nucleons
in the lowest available orbits. We assume that most of the particles go to
fi111 up the lowest available orbits to form an inert core, and that the re-
maining particles can occupy only the lowest few unfilled shells, Thus, the
problem 1s reduced to diagonalizing an effective interaction in the space of

a few particles distributed over a few orbits. The resulting eigenvalues are

the nuclear energy levels, and the eigenfunctions are correlated with nuclear

wave functions. As an example, the nucleus 2oNe is often treated as four



particles in the sd shell outside an inert 160 core. There are active
particles only in the d5/2, 81/2° and d3/2 orbits. The matrix elements of
the effective Hamiltonian in this space is completely specified when we know
all the three one-body matrix elements <j‘H°Ij>, (Ho is assumed to be diago-
nal), and th2 63 two-body matrix elements <jlj2JT|H12lj3j4JT>. Thus, all
the physics is in the choice of the model space and the choice of these 66
numbers, the interaction matrix elements. After that, the calculation is
one of crank turning. We now have very powerful cranks. With the recent
development of shell-model codes based on the Lanczos algorithm by Whitehead,1
it is now possible to do shell-model calculations of all nuclei in the sd
shell with 8 < N,Z < 20, This means that matrices which are as large as
5000 x 5000 in a (J,T)-coupled representation n~an be calculated, and accu-
rate estimates of the lowest eigenvalnues of this matrix can be obtained in
reasonable time.

There has been a considerable maturation of the interpretatio-n of shell-
modei calculations in recent years. The line of reasoning prevalent now is
as follows. There exists a true Hamiltonian H, for which the eigenvalues
are true nuclear energies E, and the eigenvectors wE, are nuclear wave func-
tions, i.e.

E
leii> - Ei|w11>.

For various physical observables there are related Hermitian operators O,

such that matrix elements of the form
E E
i h
<1pi |0|1pj >

can be used to calculate experimentally measured quantities. H and 0 are

defined in infinite Hilbert spaces. 1Is it possible to find effective



operators'%/ and ¥ defined in a small space with the following properties:

E

1
E; vy

¥ |xii>

Ei Ej Ei Ej
%y Ié"lxj > = <ut|ofy,T>?
Thus, the eigenvalues of‘?{ in the small space exactly equal the eigenvalues
of H in the large space, and the matrix elements of f”in the small space
equal the matrix elements of 0 evaluated with the related eigenfunction in
the large space. If it is possible to find relatively simple operators <?/
and C’, (e.g. involving relatively few parameters, few-body operators, etc.)
such that a large quantity of experimental information can be correlated,
then one has a useful phenomenological model., In this sense, the shell model
has achieved considerable success, which is extensively documented. It is
obvious that much of this success results from the fact that we deal with
matrix elements, and thus with cverlaps of wave functions. A trivial ex-
ample of this would be if one were interssted merely in the direct overlap
of two wave functions. If the wave functions are appropriately orthonormalized,
the overlaps are one, no matter how complex the wave functions are. When
one evaluates the matrix element of a one-body operator, in an N-particle
system, he overlaps the part of the wave function involving N-1 of the
particles, and again much of the complexity of the wave functions is swept
away in this overlap. Physical observables only tell of the relation of two
wave functions, and tells nothing about the details of individual wave
functions.

As I said, the shell model has been a phenomenological success. Thus,

there are simple operators which do a good job of correlating nuclear phe-

nomena. One might start talking of a "realistic" microscopic calculation




if one could calculate the appropriate operators relevant to a given model
space starting from the known "real" one- and two-body operators. The suc-
cesses in this direction are much more unclear. Until now, low~-order per-
turbation theory has been used. There are mathematical problems associated
with questions of convergence. I1'il make a few more comments on this matter
with regard to effective charges in a few minutes.

Most of my discussion of actual calculations today will center on the
so-called sd~shell nuclei, with A = 13-28. In all cases, an inert 160 core
is assumed, and the one-body energy operator is taken from the observed
spectrum of 170. Most of the results will be for cases where the sd shell
effective interaction is the realistic interaction of Kuo,4 or a modifica~
tion of it due to Preedom and Wildenthal.S The sd shell is probably the most
extensively studied region insofar as large shell-model calculations are con-
cerned. From the theoretical point of view, as I said above it is now possi-
ble to do complete (sd)® calculaticas for all sd-shell nuclei. Experimentally,
it is known that many of the nuclei in the lower half of the shell exhibit
rotational structure. By this I mean that there are rotational bands evi-
denced in the energy level spectra which have approximately J(J+1} spacing
and the observed electromagnetic properties, particularly E2 transitions,
can be described by simple rotational models. It is thus an ideal testing
ground for seeing if 2 microscopic model can display collective features.

Traditionally one concentrates on comparisons of the shell model energy
spectcra with observed spectra. I will only briefly talk of such comparisons
here. The most interesting recent developments here have to do with the
relative positions of rotational bands. When the realistic interactions of
Kuo4 and Kuo-Brown6 have been used im the past, the following systematic

pattern is found. Where there are two known rotational bands in a nucleus,



the “realistic'" shell-model calculations also display two rotational bands,
but all the states of the excited bands are consistently too low with regard
to the states in the ground state band. wtldenthal5 has tried to modify the
Kuo interaction empirically to alleviate this problem. He has treated as
free parameters a subset of the total of 63 two-body matrix elements as cal-
culated by Kuo, and adjusted these free parameters to give a best fit to over
100 levels in uclei with A = 18-22. There are several cases in these nuclei
where there are two rotational bands. When this interaction, referred to as
the Preedom-Wildenthal (PW) interaction, is used to calculate7 properties of
a number of nuclei with A < 32, it is found that most of the difficulties
with these excited bands are largely removed. It is also foundT that the
ground state binding energies as calculated with the Preedom~Wildenthal in-
teraction are in substantial agreement with experiment, in contrast to the
Kuo interaction. The main qualitative difference between the Kuo and PW in-

teractions is that the strength of the average interaction between d and

5/2

31/2 particles, and between d and d3/2 particles is reduced by about 0.5 MeV

5/2
in the PW interaction. This has a distinct effect on the purity of the
rotational bands, as I'll discuss below. As a typical example of the agree-
ment of theory-experiment for energy levels, the observed and calculated
spectrum of ZSMg is shown in Fig. 1. Column a is the observed spectrum,
column b the spectrum calculated with Preedom-Wildenthal, and column c is

the spectrum of the excited K=1/2 band as calculated with the Kuo interaction.
The 1/2+ member of this band has been arbitrarily shifted to agree with the
observed position of this state. Relative to this 1/2+ state, the calculated

+
5/2" state would be at about 2 MeV. We see that the spectrum calculated with

the PW interaction is in quite good agreement for all positive parity states

up to 5.0 MeV.



Our main interest here is on electromagnetic observables, so let's move
on to them. Since we are dealing with only positive parity orbits, with
£ < 2, the only possible electromagnetic observables are EQ, M1, E2, M3, and
£4 observables. There is not yet enough information available on EO, M3, and
E4 observables to have any systematic comparisons with shell-model calcula-
tions, so we will concentrate here on M1 and E2 observables.
Let us start first with E2 observables. The "bare" operator for E2
observables in the long-wave-length approximation is
g2 _ % 2 2
0" = --—2-1 Wate ) e r.” Y9(0)
where e is the proton cinarge and tz = +1/2 for protons. For such an operator,
our shell model for 170 says there are no E2 decays in 17O, i.e. it is a pure
neutron state. Experimentally, there is a sizeable electric quadrupole
moment8 for the ground state, and a strong 1/2+ > 5/2+ E2 transition.9 The
conventional step at this point is to say that the neutron polarizes the 160
core, in the process of which protons are excited out of the core, and these
can decay. This effect is usually approximated by assigning an effective
charge to the neutron, and since the proton can also polarize the core, it

has an effective charge also. Then, in this approximation, the effective

operator is

A
8] E2 =e} /2=t )e

2 Y2 (ri)
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where in the last line I simply rewrite the operator in terms of isoscalar

and isovector terms. One method of determining these effective charges is



to choose them to fit the observed transition rates in the single-particle
nuclei, such as 170 and 17F. The calculated E2 transition rate eventually

is reduced down to a coefficlent times the radial integrals of the form

A 2 2
*n.p J rdr Rnl(r) r Rh'l'(r)

where En,p is the effective neutron or proton charge, whichever is appro-
priate. Thus the value of the effective charge depends on the radial inte-
gral. It depends, for instance, on whether you use oscillator wave func-
tions or Woods-axon wave functions. There can be some sensitivity to this
choice of wave functiom, particularly if ome is dealing with single-particle
states that are very loosely bound. For reasonably tightly bound particles,
the differences in choice of single-particle wave functions gives 10-15%
difference10 in the radial integrals. Thus, to be precise, the effective
charge is a function of the choice of single-particle wave function. In
practice, for the type of comparisons I'll illustrate in this talk, which
deal primarily with relative values, this ambiguity is not significant.
There is one more point that should be stressed here. We have made a state-
independent effective charge approximation. Thus, in the sd shell, we say
that no matter what single-particle orbits are involved, and no matter what
is the energy of the transition involved, the effective charge is the same.
'‘nere is no a priori reason for this to be so.

If we use oscillator wave functions with an appropriate size parameter,
and if we make this state-independent effective charge assumption, what does
experiment tell us? I've summarized the situation in Table 1 for 170, 180,
18Ne, 18F, 42Ca, 206Pb, and 210Po. These all represent nuclei which are

one- and two-particle or hole systems in the shell model. For the two-

particle systems, the wave functions are the results of diagonalizing



“"realistic" interactions with experimental single-particle energies. 1In this
table I list the observed transition strengths in these nuclei, and I list
the effective charge which is needed in the simple shell model to reproduce
these transitions. The 18F transition shown is an isoscalar transition, so
only the isoscalar effective charge is determined by this transition, which
tells us the sum of the neutron and proton effective charges. These com-
parisons do not offer much support to the state-independent effective charge
concept. In the 17F case, the initial state is the very loosely bound 1/2+
state. In this case the harmonic oscillator approximation is very question-
able. In the mass-18 nuclei, the isoscalar zffective charge is only half of
the isoscalar charge suggested by the 18Ne and 180 results. Finally, the
mass-18 effective charges are significantly different from the mass-17
charges. In the case of 42Ca I have listed three transitions between the
lowest states of J = 0, 2, 4, and 6. These are simple two-neutron states in
the shell model. The neutrons carry much larger effective charges here than
in the sd shell, and there is strong evidence for a state dependence.

There is one more qualitative feature in the data worth mentioning here.
If the effective charge does arise from a core-polarization process, then
the simplest interpretation would suggest that the neutron effective charge
would be larger than the proton effective charge. This 1s because the
neutron can interact with the protons in the core through the strong T=0
components of the nucleon-nucleon force as well as the T=1 force, while the
protons can interact only through the T=1 force. Thus, neutrons should ex-
cite protons more strongly than protons. Experimentally, the proton charges
are larger than the neutron charges. It would be extremely useful to have
good data on B(E2) values in 190 and 200 from (d,py) and (t,py) reaction

experiments. These could cast direct light on the neutron effective charge
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question,

Thus, this naive interpretation of the data does mot strongly support
the simple state—independent, nucleus—independent effactive charge. Mest
certainly the difficulty lies with the interpretation of the A=17 and 18
(and A=41 and 42) systems as simple one- and two-particle systems outside
closed shells. There are important core-excitation contributions to the low-
lying levels of these nuclei that cannot be treated as simple perturbations
insofar as electromagnetic decay processes are concerned. It is one of the
unfortunate ironies that those nuclei which are considered to be simple in
the shell model picture are in fact among the most complex. Thus, much of
the "realistic" interaction game has been played in the A=17 and 18 region,
and most approaches have used perturbation theovy to handle core effects.

It 15 a good possibility that these core effects become truly perturbative
in the middle of shells, when the shell model simplicity is lost. At the

bottom of Table 1 I've listed effective charges in the lead region, where

the core may be more stable. Here the neutron effective charge 1s larger

than the proton, and the state dependence for the polonium transitioms is

not so severe.

There is an extensive literature on the calculation of effective charges
due to core polarization.Z” These calculations are also not without ambi-

gulty. Basically they involve evaluating diagrams of the form
! !

4 4
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The first term simply represents the interactlon of & particle with the
electromagnetic field. The second process involves exciting a hole-particle
state in the core, and this hole~particle stace dccays ny = gamz emissi-:u.
The treatment of th s hole-particle state i3 a critical one. One cculd use
an oscill-tor basis apd pertul. xtion theory, one could first diagonalize in

a hole-particle space, and then use perturbation theory in the resulting
space (Tamm-Dancoff), or one could include effacts on the hole-particle states
due to ground state correlations through the RPA formalism. There are
questions of what renormalizations should be jncluded in the TDA or RPA, what
single-particle energies for the hole and particle states, what interactionm,
etc. Because of these uncertainties, it is difficult to draw any conclusicns
as to the success of realistic "effective'~charge calculations. This diffi-
culty is obviously magnified by the fact that no one really knows what the
experimental numbers are either.

To this point, then, the picture for the E2 effective operator is seem-
ingly very complex. As I'il show now, the major shell configuration mixing
shell-model calculations give a much more simple picture. There are now cal-
culations of E2 observables throughout the sd shell in model spaces which
are very near to being complete. 1In Table 2, I have compiled a iisting of
E2 transitions from the first excited state to the ground state for those
cases where there is experimental information available, and where the
analogous numbers have been calculated in the complete (sd)A"16 space. Thus,
the cases are restricted to A < 22 and A > 34. In all the calculations,
effective charges of 0.5 were assumed for both the neutrons and the proteoans,
and the cscillator parameter was determined from the relation Hw = 41 A—l/3 MeV.
We see that this systematic data is very accurately reproduced by the shell-

model calculations. The significant discrepancies are for the nuclei cleose
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to the 160 core. In table 3, I have listed calculated and measured quadrupole
moments in the sd shell. 1In tals case, the values are included for all nuclei
with 16 < A < 40 for which moments are measured. Thus, the models for

23 < A < 33 are in somewhat truncated spaces. Again, constant effective
charges of ep =e = 0.5e are used. 1In all cas:s the signs of the moments

are correctly calculated, and the calculated magnitudes are generally in good
agreement with measurement. The major discrepancies are for 180 and 20Ne.

In the middle of the shell, *he calculated numbers are a little smaller than
the measured ones but this is almost certainly a truncation effect. The ef~-
fects of configuration mixing are quite important in these calculations. 1In
Fig. 2, I Lhow a figure from the work of deFoch and Glaudemans.25 They as-
sumed the simplest independent particle models for nuclei with A < 28 (d?7;6)
and A > 32 (d%;%z), w;th a good seniority approximaticn. Within these models
they determined the size of the effective charges (with EP = sn) which was
needed to reproduce the observed quadrupole moment. As we see, the charge
needed in the middle of the shell is extremely large. The results in Table

3 show that with configuration mixing this effective charge is constant, so
that when we take in an adequate space, the effective shell model operator

does become "simple".

As I saild, there are significant discrepancies for 180 and 20Ne. I

suspect that these discrepancies are due to the importance of core-excitation
effects. This is almost certaiunly true for 180, where the measured moment
is eight times the shell model prediction. A similar large discrepancy exists
in 4ZCa, the fp shell analog of 180. There both the sign and magnitude of

4
the quadrupole moment of the first 2 state are in disagreement with the

shell medel. The data around 4ZCa has been qualitatively accounted for by

Towsley, et al.ll with a model in which 507% of this lowest 2+ is a deformed
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4-particle 2-hole state. If a similar effect is important in 180, it is not
unreasonable that a similar effect is significant in 2ONe.

The shell model has achieved moderate~to~good success in describing
relative B(E2) values for transitions between low-lying states in a given
nucleus, As an example which I think may be fairly called "representative”,
the measured B(E2) values for transitlons among states in the lowest two
rotational bands in 25Mg are listed in Table 4. Also in this table are given
the values calculated for these transitions in the complete (sd)9 space by
Cole, et al.12 Two interactions are used, one the Kuo realistic interaction
designed for this model space and the other the PW interaction which is de-
scribed briefly above. Remember that the PW interaction does a much better
job of describing the relative positions of the rotational bands in the
energy spectrum of 25Mg. The upper part of Table 4 lists in-band transitionms,
while the last four transitions listed are inter-band tramsitions. Insofar
as the B(E2) values are concerned, we see that there is quite satisfactory
agreement for both in-band and inter-band transitions with the PW interaction.
For the Kuo interaction, the calculated B(E2) values for in-band transitions
are generally quite similar to the PW numbers, but the inter-band B(E2) values
are quite different for the two interactions. It is encouraging that the
interaction which better reproduces the energy levels also give a better
description of the B(E2) values. This sensitivity of the calculation is a
feature that has appeared clearly only with the really large space shell-
model calculations made possible with the Glasgow program! The results13 in

Mg are quite similar to those given here for ZSMg, i.e. ene~ry levels and
electromagnetic properties are both better reproduced with the PW interaction
than with the Kuo interaction. The sensitivity is most striking with re-

gard to inter-band transitions. These are generally small and hard to
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measure, but they are potentially quite useful.

Thus, in summary, the phenomenological shell model 1is quite successful
in describing many observed E2 quantities with a very simple effective charge
approximation. The results suggest that calculations of effective charges
from core-polarization processes should lead to an isoscalar effective charge
(1+ep+en) 4 1.0, and there is no strong empirical evidence for state
dependence.

Let us move next to Ml cbservables. The bare Ml operator is

/2[R0 + (g 48 )s(D)] + (1) [R) + [ =g ls ()]}

A
0.50 J + 0.38 § + ]
1=1

t;<i) [2(L) + 9.40 s(i)]

i

where gp = 5.58 MO and B, ~3.82 Mo.

For this operator, a particle in am orbit j = % # 1/2 can decay only to
another orbit j' = 2 * 1/2, i.e. to itself or to its spin-orbit partner.
Because all the tensors in the bare Ml operator are vectors, the following
selection rule exists: there are no Ml transitions between systems of
identical particles in the same j-orbit, i.e. jn configurations of protons
only, or of neutrons only. The isoscalar part of the operator makes no con-
tribution to decays between S=0 stztes. The isovector term dominates the
isoscalar term where both processes are possible. It is generally found in
shell-model calculations that matrix elements for the ML operator are small
between low-lying states. They are thus more sensitive than the model space
and the effective Hamiltonian which is used than is the case with the E2 ob~
servables.

As one uses an effective charge for E2 calculations, one should in

principle use 2n effective Ml operator in truncated shell-model calculations.
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There has been a long history of investigations14 of renormalization of the
M1 operator. Suffice for our purposes to say that the renormalization of
the M1l operator in the shell model we use for sd-shell nuclei is expected to
be small. There is, of course, direct experimental evidence on this from

the magnetic moments of the 1

0 and 17F ground states., The measured values
of these moments are included in Tabie 5, as are the values calculated with
the bare M1 operators. For these two nuclei, there is essentially exact
agreement as is well known. All measured magnetic moments of sd-shell nuclei
with A < 22 and A > 34 are listed in Table 5, as are values calculated in
complete (sd)A-lB model spaces with reasonable effective interactions, and
for which calculations of the bare M1 operator ;re_used._ The calculated re-
sults for nuciei with A < 22 are in excellent égreement with measurement.
Arguments can be made15 to show that these results imply that there can be
no sighificant quenching of the isovector part of the bare Mi operator when
used as an effective operator for these calculations. There are some rela-
tively large discrepancies for the heavier nuclei. Thus, both effective
operator theory and the results for magnetic moments indicate that the bare
Ml operator 1s the appropriate effective M1 operator in the sd shell, at
least for the lighter nuclei.

In recent years, there has been a significant increase in the amount of
data available on Ml transitions in sd~shell nuclei. It is thus possible to
start some systematic analysis of the ability of the shell model to account
for this data. As I said, these B(M1) values are generally fairly small,
especially for isoscalar transitions. This results in extreme sensitivity
to the calculation. Let us concentrate here on isovector allowed M1 transi-

tions which are not so small. As I will show now, the theory-comparison for

such transitions is still very confusing. Even for these "'relatively strong"
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transitions there is sensitivity to the effective Hamiltonian which is used.
Before this sensitivity is useful, much more careful measurements must be
made. If onme can accept the data as ic exists, there is some suggestion that
the isovector ML operator should be quenched, in contradiction to the impli-
cations of magnetic moment data.

Let us look first at this systematic data. In Table 6 are listed a
reasonably large selection of the available data or isovector allowed M1
transitions between iow-lying, mostly bound, states in sd-shell nuclei. For
some cases, the B(M1)'s were calculated with various effective Hamiltonians.
In those cases, the numbers in the calculated column indicate the range of
the values calculated with the different Hamiltonians., We see first that
there is a correlation in the calculated and observed results between rela-
tively weak and relatively strong B(Ml) values. For the strongest transi-
tions there is a consistent trend that the calculated value is too large com-
pared to the observad value. The main exception to this is for the two tran-
sitions in 20Ne. This indication that the isovector Ml operator cshould be
quenched is difficult to reconcile with the results for the magnetic moments.,
For the case of the heavier nucleil, it 1is worthwhile pointing out that the
39K transition is absolutely forbidden with the bare operator. Since this
measured strength is comparable with the values observed for the other tran-
sitions in these heavier nuclel, it is hard to say much about the theory-
experiment comparison the:e.

In Table 4 are listed the measured B(Ml) values in Weisskopf units in
25Mg. I show these numbers to show: 1) a case where the relative B(Mi)
values are well accounted for by the shell model, the Preedom-Wildenthal

model in this case, 2) a case where there is no obvious need to quench the

isovector operator, and 3) to show again the sensitivity of the shell-model
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calculations to differences in the PW and Kuo interactions. Again, in those
cases where there are significant differences in the calculations, the PW
interaction is more successful.

As I stated above, the data on these B(Ml) values, as well as some
B(E2) values, is subject to significant experimental uncertainties. One ex-
ample, hopefully not typical, is shown in Table 7. Here are given the
measured B(E2) and B(M1l) values fer transitions between states in the ground-
state band of 21Ne. There are two sets of measured values. The calculated
values for these quantities are from a complete (sd)5 shell-model calculation
in which the Kuo realistic effective interaction was used, the bare M1 oper-
ator was used, and effective charges of Ep =€, = 0.5e were used in the E2
operator. Not indicated in this table is a disagreement between the two ex-
perimental groups involved as to the lifetimes of the states involved. The
published lifetimes of Pronko16 and of Bailey, et al.17 differ by factors of
roughly 4-6. The Pronko results were reanalyzed by Bailey, et al. with an
"improved" method. The resultant lifetimes still disagree with those
"measured" by Bailey, et al. by a factor of two to three. The calculated
B(ML) and B(E2) values are consistently intermediate to the two sets of ex-
perimental numbers. If one is an optimist, he could say that the relative
B(M1) and B(E2) values may well be in quite good agreement with the "correct"
experimental values. It would obviously be useful to resolve these dis-
crepancies.,

Thus, 1 think we are left with an ambiguous situation for the B(M1)
operator. There is some indication that a renormalization of the isovector
Ml operator 1s needed, but as long as the experimental situation is as un-

clear as it appears to be, one cannot argue very strongly for this,
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I have tried to show here that there is reason to believe that much of
the systematic features of data on electromagnetic properties of light sd-
shell nuclel can be described by the phenomenological shell model with very
simple effective operators. It appears now that the large shell-model cal~
culations of these observables in the middle of the shell may provide a use-~
ful test of the various effective interactions. This can only be true if

the reliability of the experimental numbers 1s more firmly established.
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Figure Czi-ticas

Figure 1. Calculated aad observed spectrum of 25Mg. Column a is observed
positivs parity spectrum; column b is spectrum calculatsasd in (sd)9 space with
Preedom~Wildenthal interaction; column ¢ is spectrum calculated in (sd)9

space with Kuo interaction. The information in this figure is from Ref. 12.

Figure 2. Plot of effective charge, le, which is added to bare neutron and
proton charges in order to reproduce observed quadrupole moments in simplest

shell model spaces in sd shells, i.e. dg;;6 for A < 28, and d??iz for A > 34,
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Table 1. Effective Charges in One- and Two-Particle Nuclei as
Determined Directly from the Observed Transitioms.

Nucleus Ji Jf Effective Charge
17, 1/2 5/2 e = 0.6°
17g /2 5/2 e, = 1.02
18, 2 0 e = 0.8

n
18y 2 0 c, = 1.42
1
185 301 e +e_ = 1.0%
n tp
420, 2 0 1.8%
820, 4 2 1.92
42¢, 6 & 0.72
2065y, 2 9 1.0°
2105, 4 2 0.6°
2105, 6 4 0.8°
2105, 8 6 0.5°
aRef. 18.
b

Ref. 19,
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Table 2. Calculated and Observed Quadrupole Moments in
sd-Shell Nuclei,

Qe _fn’) Qe _fn’)

Nucleus Egpt.a Theozjya Nucleus Exg;.a Theotxa

1, -2.6£0.9 - 2.6 18, -16:1® - 2.0

19 11.2¢2 - 9.2 20ye 2323 -14.3

Lye +9.3:1.0  +10.3 225e -17.0:3  -13.6

23ya +1142 +10.4 e -2143 -16.0

Bye 22 +17.8 26y, -14%4 -11.9

270 15.3:0.3  13.8 2804 +16%3 +14.3

g -5.5:0.5 - 7.1 32 -19:4 -13.6

Bs +4.0:0.4  + 7.8 g 616 10.0

Ba -7.9:0.1 - 9.1

3¢y ~1.720.2 - 0.9

Ia ~6.2:0.6 - 8.4

3% 5.5£0.4 7.7

2Information taken from Ref. 20.

bRef. 21.
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Table 3}, Selected Stro:: :fE2) Transitions to Ground States in
sd=-Shell Nuclei. 1Ir 2.} calculations, an added effective
charge of 0.5e is iucluded in E2 operators for both
neutrons and protons.

B(E2),  e’fn’
Nucleus Ji,Ti Ez.Ti Expt.a Theorya
17g 1/2,1/2  5/2,1/2 642 38
7, 1/2,1/2  5/2,1/2 60.1 4
18p 3,0 1,0 15:2 15
18, 2,1 0,1 7¢1 3
19 5/2,1/2  1/2,1/2 2141 19
20y, 2,0 0,0 5748 48
e 5/2,1/2  3/2,1/2 63+13 81
22, 4,0 3,0 94+15 101
22y, 2,1 0,1 403, 66:12 55
301 5/2,1/2  3/2,1/2 7822 74
36ar 2,0 0,0 59 59
3By 2,1 0,3 3819 28

30bserved and calculated values compiled from Ref. 3,
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s
Table 4. Calcu.latedd and Observed® B(E2) and B(Ml) Values in ‘SMg for
States in Ground State K = 5/2% and First Excited K=1/2T Bands.
States in excited K=1/2 band have primes on J labels.

2, 2 B(E2) efn® BoaL) w2

Expt. Kuo P.W.  Empt, FRuo E.lo

7 5 140£35 113 117 0.6:0.1 --—- 0.5

9 5 407238 10 46

3717 40%30 61 69 0.03  0.13 0.04

5© 1°  100t4 87 87

5° 3 20t4 32 25

7737 12585 54 77

9 7 55¢30 77 43

77 s° 10810 3 7 0.2 0.0 0.02

1© 5 2.3:.04 0.1 2.4

3° 5 3.5:1.7 30 6

5 5 3,009 -—~ 36 0,002 --— 0.001

7° 5 0.9%0.2 28 1.6 0.0 0.05 0.00

4pata compiled from Ref. 12,
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Table 5. Calculated and Observed Magnetic Moments
in sd-Shell Nuclei.

M(uN)
Nucleus Expt,a Theorya
g +4.72 +4.79
o -1.89 -1.91
18, +2.86 +2.88
19 +2.63 +2.87
19 +3.69 +3.55
20 +2.09 +1,92
lye -0.66 -0.90
224a +1.75 +1.82
Ba +0.82 +0.68
354 £1,0 +1.21
36c1 +1.28 +1.55
e +0.95 +1.43
a1 +0.68 +0.59
38y 1.37 +1.24
3% +0.39 +0.13

3Information taken from Ref. 3.
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Table 6. Observed and Calculated Isovector B(M1l) Values ip
sd-Shell Nuclei with A<22 and A>34

Nucleus Ji’Ti Jf,Tf B(ML) sz
Observed? Calculatedb
18, 2,1 2,1 0.01:0.003  0.09+0.20
18, 1,0 0,1 0.13:0.01  0.37+G.79
o 3/2,3/2  5/2,3/2  0.03%.002  0.000.05
20y, 0,2 1,1 2.50 2.38
1,1 0,0 0.66 0.61
20g 3,1 2,1 0.47%0.05  0.06+0.29
4,1 3,1 0.10:0.02  0.10+0.24
‘. 1,1 2,1 1.08£0.26  4.96+7.08
‘ 2,1 3,1 0.51£0.20  4.16+.30
2y 1,1 o041 .07¢ .01° .04¢
1,,1 0,1 .17+ .03 .34¢
1,,1 0,1 .10+ .02¢ .09°
1,,1 0,1 .32+ 03¢ .76
301 3/2,1/2  3/2,1/2  0.19:0.08  0.39+0.50
3 o 3/2,1/2  3/2,1/2  0.02¢0.004 0.09+0.10
3/2,1/2  3/2,1/2  0.06:0.02  0.06>0.09
39 1/2,1/2  3/2,1/2  0.03%0.01  f-forbidden

4Ref, 22, except for zzNe.

bRef. 3, except for 22Ne.

CRef. 23.
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Table 7, Calculated and Measured B(M1) and B(E2) Values for 2lNe,
in Weisskopf units.

Ji Jf B(M1) Wu B(E2) Wu

— _- EEEE;? Expt.b Calc. Expt.a Exp;.b Calc.c
5/2  3/2 0.21+£0.03 0.03:0.01 .09 3030 184 23
7/2  3/2 30438 52 10
7/2  5/2 0.45%0.12 0,07x0.02 .16 44%30 73 17
9/2  5)2 36+7 6%2 13
9/2  7/2 0.49+0.09 0.,12+0.03 .20 24133 64 9
11/2 7/2 308 126 15
11/2 9/2 0.18+0.05 0.068+0.02 .29 9+11 413 8
8Ref. 17.

bRef. 17.

Ref. 3.
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