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Abstract

The formalism for the auxiliary-field Monte Carlo approach to the nuclear
shell model is presented. The method is based on a linearization of the two-
body part of the Hamiltonian in an imaginary-time propagator using the
Hubbard-Stratonovich transformation. The foundation of the method, as ap-
plied to the nuclear many-body problem, is discussed. Topics presented in
detail include: (1) the density-density formulation of the method, (2) com-
putation of the overlaps, (3) the sign of the Monte Carlo weight function,
(4) techniques for performing Monte Carlo sampling, and (5) the reconstruc-
tion of response functions from an imaginary-time auto-correlation function
using MaxEnt techniques. Results obtained using schematic interactions,
which have no sign problem, are presented to demonstrate the feasibility of
the method, while an extrapolation method for realistic Hamiltonians is pre-
sented. In addition, applications at finite temperature are outlined.

1 Introduction

The shell model is one of the most successful descriptions of many-fermion systems in- -
cluding atomic nuclei [1]. In this picture, valence particles are spatially confined by a
one-body potential and influence each other via a residual two-body interaction. Math-
ematically, the shell model can be reduced to a matrix-diagonalization problem by com-
puting the matrix elements of the Hamiltonian between a set of basis states that span the
configuration space of interest. Considerable effort has gone into studying nuclei within
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the framework of the shell model (developing effective interactions and operators etc.),
and impressive agreement between theoretical calculations and experimental data has
been achieved for nuclei with 4 < 48 {2, 3, 4].

The shell-model approach is limited primarily by the combinatorial growth in the
number of basis states with both the number of valence particles (¥,) and the size of
the single-particle basis (N,). Indeed, for nuclei with A ~ 60, an unrestricted shell-
model calculation utilizing the 0f7/3-0f5/2-1p3/2-1p1 /2 orbits would involve approximately
2x 10° basis states with definite z-projection of angular momentum {5]. Although angular
momentum and isospin projection can reduce the size of the basis to about 107, a problem
of this magnitude clearly lies beyond the capability of today’s computers.

The traditional approach to circumvent the computational limitations inherent in the
shell model is to impose what are often severe and ad hoc truncations on the number of
basis states. Unfortunately, because of the strong character of the residual interaction,
calculations of this nature can be unreliable, and significant renormalizations of the
residual interaction and transition operators are required.

In these lectures, a method that citcumvents the “counting problem” inherent in the
matrix diagonalization approach will be discussed in detail. The algorithm is based on us-
ing the imaginary-time propagator U= exp(—BH) to either perform a thermodynamical
trace (canonical or grand canonical) at a temperature T = 8~1, or, for large 3, to filter a
many-body trial state to the exact ground state. By applying the Hubbard-Stratonovich
transformation [6], the two-body terms in U/ are linearized with the introduction of an
auxiliary field, and the problem is transformed into a multi-dimensional integral that
must be evaluated using Monte Carlo techniques. The dimension of the integral, how-
ever, scales more gently with either N, or N,. Hence, it will be shown that the method
that can give an exact treatment of a nuclear shell-model Hamiltonian, H, even in situ-
ations where the matrix-diagonalization technique is impractical.

The outline of these lectures is as follows. In Section 2, a brief description of the
traditional, i.e. matrix-diagonalization, shell model is given. Presented in Section 3 is a
description of the formalism for the Monte Carlo approach to the shell model, including
a discussion of the sign of the Monte Carlo integrand. Section 4 contains a discussion re-
garding some computational details with the Monte Carlo shell model. Results comparing
the Monte Carlo approach with exact solutions obtained with the traditional approach
are shown in Section 5. In Section 6, techniques to treat realistic interactions are pre-
sented. Methods to obtain the strength function for transition operators are discussed in




Section 7. Applications regarding finite temperature are outlined in Section 8. Finally,
concluding remarks are gathered in Section 9.

The reader should note that much of the material that I present here has been pub-
lished previously [7, 8, 9, 10, 11, 12]. In addition, I wish to acknowledge collaborating
on this project over the past three years with C. W. Johnson, G. H. Lang, S. E. Koonin,
D. J. Dean, Y. Alhassid, P. B. Radha, and K. Langanke.

As a final note in this section, it should also be pointed out that the techniques out-
lined here have also been applied to problems in other fields in physics, and in particular
the Hubbard model. I refer the reader to refs. [13, 14, 15, 16, 18] for the details of these

applications.

2 Traditional Shell Model

In this section, I give a brief description of the standard approach to the shell-model
problem in nuclear physics. Because of space limitations, it is necessary that I omit
many of the details involved in performing shell-model calculations. Therefore, I refer
the reader to refs. 19, 20, 21] for more details.

The goal of a nuclear structure theorist is to describe the properties of nuclei as
accurately as possible. This begins with the nuclear Hamiltonian, which, if we restirct

ourselves to two-body interactions, may be written as
A 1 A
H:Zt;-{»-éZv;j, (1)
[ (7]

where £; and v;; represent the kinetic and potential energy, respectively. Currently, exact
solutions to the eigenvalue problem with the Hamiltonian Eq.(1) are possible only for
A < 3 using the Faddeev equation [22]. In addition, a Green’s function Monte Carlo
approach has been used to obtain an “exact” solution for *He [23]. For A > 5, however,
there is no technique available that can give an exact solution to the many-body problem.
Two approximate solutions are variational Monte Carlo methods [24] and the shell model

as described here and in refs. {19, 20, 21].
The fundamental tenet of the shell model is to introduce a mean field potential U;,

so that

H = f: (t:+ U:) + %i (vi; — 2U36:5) (2)

= HO + Hrea~ (3)




For the first part of Eq.(3), Ho, the eigenvalues can be obtained exactly, yielding a set
of single-particle wave functions, which serve as a basis to construct a set of many-body
Slater determinants to diagonalize the the Hamiltonian H. In principle, the eigenvalues
of H can be obtained exactly provided all possible Slater determinants are accounted for
in the diagonalization of the residual interaction. Choices of the mean field potential,
U;, can be the Hartree-Fock potential, a Woods-Saxon potential, or even a harmonic
oscillator well.

The basic concept of the mean-field potential, U; is illustrated in Fig. 1, where the
eigenstates of U;, referred to single-particle states, are labeled on the right-hand side. In
the shell model, one begins by occupying the lowest orbits, as indicatied in the figure.
The first thing to be noticed is the presence of energy gaps between groups of orbits.
Notice also that these groups (or bundles) are generally of the same character, namely
they have the same parity, and in terms of the harmonic oscillator, they usually have
the same major oscillator quantum number. As such, the gaps lead to the notion of
shell closures, in particular, the concept of a closed, inert core and an active valence
space. This is illustrated in Figure 1 for 12 particles, where the first eight particles fully
occupy the 0s and 0p orbits, and the remaining four valence particles are then permitted
to occupy all possible states in the Od and 1s orbits. Because of the computational
limitations outlined below, shell-model calculations usually do not allow excitations of
particles out of the core into the valence orbits. In addition, for the same reasons, the
valence space is restricted to a few orbits, usually one major oscillator shell.

The procedure of the shell model can now be outlined as follows:

1. Obtain the valence single-particle basis in a given configuration space; e.g. 1s/3,
0ds/3, 0ds/, orbits

2. Construct the set of many-particle Slater determinants |1;) spanning the many-
body Hilbert space. Generally, the number of basis states is reduced by imposing
symmetries such as the conservation of the third component of the angular momen-
tum, or by projection, the total angular momentum and isospin;

3. Compute the Hamiltonian matrix H;; = (¥; | H | ¥;);

4. Diagonalize H;; to obtain the eigenvalues and eigenvectors. Usually, one is inter-
ested in only the lowest few eigenvalues, and an algorithm such as Lanczos [25] is

used.




Figure 1: A schematic illustration of the single-particle potential U;. The orbits are
labeled on the right-hand side. As an illustration, twelve particles occupy the single-
particle states. The first eight close the 0s and Op orbitals, forming the inert closed core.
The remaining four particles are then constrained to the 0d and 1s orbitals.

Several computer programs exist that implement the shell-model algorithm; each ex-
ploiting different features in order to achieve optimum performance for different aspects
of the shell-model problem, e.g.. binding energies, transition matrix elements, etc. The
different programs, however, can be divided into two types: (1) those that build configu-
ration basis states using m-scheme Slater determinants, or (2) those that use coefficients
of fractional parentage (CFP). In the m-scheme, the Slater determinants have definite
z-projection of the total angular momentum, M, and are represented as integer words
on the computer, thereby exploiting the binary characteristics of Fermi occupation fac-
tors. One of the first codes to implement this approach was the Glasgow-Manchester
Code [26]. Within this framework, angular momentum projection is achieved by noting




that the Hamiltonian matrix is a rotational invariant, and, therefore, the eigenvalues
have definite angular momentum. One drawback of the m-scheme procedure is that after
diagonalization, all states with J > M are obtained, and if states of only a particular
spin and parity are desired, considerable effort is put into obtaining unwanted states. In
addition, one is forced to diagonalize a much larger matrix than might be necessary, al-
though progress has been made in improving the efficiency of the matrix diagonalization
procedure with the shell-model code ANTOINE [27]. The goal of the code OXBASH [28]
is to reduce the dimensions of the matrix to be diagonalized by projecting angular mo-
mentum onto the m-scheme basis, and, therefore, focusing on states with definite angular
momentum (and isospin if desired) and parity.

Instead of using m-scheme Slater determinants, it is also possible to construct anti-
symmetric, angular-momentum projected basis states with definite angular momentum
(and isospin) using the technique of CFP’s. The basis states are constructed by adding

one particle to the anti-symmetrized n — 1 states via

Vi alM) = 3 [48, 7 | 5mad) [w(™, 87 @ 5], (4)
where 9¥(j™~1, 8J') represents the anti-symmetrized basis states with n — 1 particles and
/"B, J")j | i"aJ] is the coefficient of fractional parentage. One of the first computer
codes to implement the CFP procedure is the Oak Ridge Code [29]. Improvements to
the general procedure using permutation group symmetries are now being implemented
in the Drexel University Shell Model (DUSM) code [30].

The primary reason for restricting the shell-model problem to just the valence particles
occupying a few orbits is to limit the number Slater determinants to a managible size
so that the diagonalization of the Hamiltonian is computationally feasible. The total
number of Slater determinants within a Hilbert space is given by the relation

NP\ (NP NP! NP
(Ns’) (N::) = (N7 NOINEI Ny — Np)INGT )

where NP(®) and N?") are the number of proton (neutron) single-particle states and
valence particles, respectively. In actuality, Eq.(5) overestimates the dimension of the

basis states since we may also fix the third component of angular momentum (m-scheme)
or even project total angular momentum (J-projection). Nonetheless, Eq.(5) gives a
rough estimate of the number of m-scheme Slater determinants to within a factor of
10-100. For example, for an fp-shell calculation of ®Zn, with N, = 20 and N, = 10 for




both protons and neutrons, Eq.(5) gives an estimate of 3.4 x 10'° states, whereas the
number m-scheme states with J, = 0 is = 2 x 10°. On the other hand, by projecting
angular momentum, the number of states with J = 0 is of the order 107. For the
most part, a calculation of this magnitude is beyond the capabilities of any computer
currently available. In particular, the storage requirements for this case would easily
exceed 100 Gbytes. Currently, a typical large-basis shell-model calculation that will run
overnight on most workstations has dimensions of the order 10°~® Slater determinants
with total J,, or of the order 5000-10000 states with projected angular momentum and
180spin.

From Eq.(5), it is clear that the matrix-diagonalization approach to the shell model
will always be computationally limited by the number of states that constitute the basis.
This is true even when we limit ourselves to a computation using only one major oscilla-
tor shell, as is illustrated in the ®Zn example above. As such, the matrix-diagonalization
approach requires a truncation on the number of basis states, even within one major
oscillator shell. One potentially dangerous aspect of truncating within a major oscilla-
tor shell is that for the most part the nucleon-nucleon interaction commutes with the
generators of the SU(4) group [31]. The primary component of the nuclear Hamiltonian
that breaks SU(4) symmetry is the spin-orbit splitting of the single-particle energies.
Hence, if one starts with basis states composed of the lowest orbitals, SU(4) is maximally
violated. However, the effect of including all configurations within the major shell is to
restore SU(4) symmetry to the level of approximately 50% [32]. This partial restoration
of SU(4) symmetry can have important consequences regarding the strength of transition
operators. In particular, in the SU(4) limit, Gamow-Teller transitions can occur only be-
tween states in the same SU(4) multiplet. The partial restoration of SU(4) symmetry
within a full space shell-model calculation then is an possible explanation for the con-
siderable decrease of the Gamow-Teller strength (B(GT) values) from the single-particle
estimate when the full space is considered. Because of this, one might conclude that full-
space calculations within at least one major shell are probably crucial for the prediction
of some quantities.

Finally, in regards to solving a shell-model problem for a realistic description of nuclei,
there are essentially two distinct problems that must be faced. The first is the choice
of the shell-model Hamiltonian itself. Because of computational limitations, shell-model
calculations are generally restricted to excitations within a reduced valence-particle space.
The validity of such a limitation can, of course, be estimated with perturbation theory,




and it is generally found that with realistic nucleon-nucleon interactions, excitations
of the core can play a significant role. For this reason, shell-model calculations are
performed with effective interactions that are designed to incorporate excitations that are
omitted from the configuration space. One attempt to accomplish this is the G-matrix,
as was done for the fp shell by Kuo and Brown [33]. Even here, though, agreement
with experimental data is not as good as one might have hoped, indicating that further
renormalization is required [34]. For the most part, this additional renormalization is
accomplished empirically by fitting components of the Hamiltonian to experimental data.
An excellent example is the sd-shell Hamiltonian of Wildenthal [2], where several hundred
levels are reproduced to within a few hundred keV. The second problem associated with
shell-model calculations, is obtaining an exact solution for a given Hamiltonian within a
given model space. Primarily, this is a computational problem, as the principal limitation
is accounting for all the excitations that lie within the configuration space. In general,
I feel that the matrix-diagonalization approach is the method of choice wherever it is
computationally feasible, as it can lead to a wealth of information not available in the
method presented in this lecture. Nonetheless, this approach will always reach a point
at which it is computationally not practical to use. Because of the rapid growth in the
basis dimensions, this limitation can be quickly achieved with the addition of one or two
particles within a large configuration space. Hence, even with the rather heroic efforts
of the Strasbourg group to complete full-space calculations in the fp-shell for A=50
using the code ANTOINE [35], it is unlikely that full-space calculations can be carried
out for A=60. In addition, for nuclei with A~x70, the Ogg/; orbit becomes important,
and as is apparent from Eq.(5), the dimensions required for these nuclei will be larger
even still. Given that full-space calculations might be required to adequately describe
some features of nuclear structure, such as Gamow-Teller transitions, it appears as if
theoretical approaches to detailed nuclear structure are doomed to failure because of an
exploding number of configurations and not enough computational resources. In these,
lectures, however, I will describe a new technique that is able to circumvent the “counting
problem” inherent in shell-model calculations, and in many cases give an “exact” solution

even though the traditional matrix-diagonalization approach is hopeless.




3 Monte Carlo Approach

In this section, a full description of the formalism required to perform basic calculations
for the nuclear shell-model problem using auxiliary-field Monte Carlo (AFMC) tech-
niques is presented. This section, being the longest in these notes, is organized in the
following manner. In subsection 3.1, the Monte Carlo approach is derived for the general
Hamiltonian problem using the Hubbard-Stratonovich transformation. In subsection 3.2
a procedure to bring the nuclear Hamiltonian into quadratic form is outlined. The math-
ematical formulae associated with computing the overlaps are given in subsection 3.3,
and a discussion regarding the sign of the Monte Carlo integrand is given in subsection
3.4. Approximate solutions to the Monte Carlo integrand are discussed in subsection
3.5, and finally, a techniques for performing the Monte Carlo integration are presented

in subsection 3.6.

3.1 The Hubbard-Stratonovich Transformation

The Monte Carlo approach to the shell model is motivated by the observation that the
expectation value of any operator, O, in the ground state of some Hamiltonian, H, can

be obtained via R
('/’f l e—ﬂﬁ/zoe-—ﬂﬂ'/z , ¢t) (6)

’

O)gs = lim a
(Oles oo (e | e=BH | o)

where 9, is any trial wave function not orthogonal to the ground state. In addition, there
are times when we are interested in the properties of nuclei at finite excitation energy.
This can be achieved by the introduction of a Lagrange multiplier, 3, to fix the average
value of the expectation value of the H, as is done in statistical mechanics. Namely we
are interested in the partition function

Z = Trexp(-BH). (M

Here, 3 may be interpreted as an inverse temperature (T = 1/8), and Tr represents either
a grand-canonical trace over all many-body states in the space (denoted by Trg) or a
canonical trace with fixed particle number N, (denoted by Try,). Given the partition
function in Eq. (7), the thermal observable of an operator O is

Py

(0) = 51z [0 exp(~p1)]. ®)

Note that the operator U = e~#¥ is similar in form to a time propagator in quantum

mechanics except that the exponent is purely real. On the other hand, if we define 8 = it,




then we may think of U/ as an “imaginary”-time propagator, and I will often use this
terminology to describe U.

In what follows, the applicable formulae are presented using the notation associated
with the finite-temperature formalism. However, the subsequent derivations are also valid

for the zero-temperature formalism of Eq.(6) by making the substitution
Tf( Y= (e | |4y (9)

For the Monte Carlo approach to the shell model, we restrict ourselves to Hamiltonians
that contain at most two-body terms, such that in second-quantization formalism

. 1
H= Z e.,a.f,a,. + 3 z V‘,g.,5af,a;,aga, , (10)
a abé

where a! and a, are the anti-commuting creation and annihilation operators associated
with the single-particle state a defined by the complete set of quantum numbers nijmdt,
(n, I, 7, m, and t, denote the principal, orbital angular momentum, total single-particle
angular momentum, z-projection of 7, and the third component of the isospin quantum
numbers, respectively), and €, and V,g.s are the single-particle energies and two-body
matrix elements of the residual interaction. Note that for any two-body Hamiltonian of
the form Eq. (10), it is possible to find a set of one-body operators O. so that H may

be written as
B=Y clut 3 T V02. (11)
a -3

At this stage, neither Eq.(6) or Eq.(8) lead to an improvement over the matrix diago-
nalization approach. This is because of the two-body character of H in U, which, when
applied to any trial wave function, will span into the complete Hilbert space. It would, in
fact, be much more convenient if instead U was the exponential of a one-body operator
since the application of U on a trial wave function that is a Slater determinant would
return, by Thouless’ theorem [36], another single Slater determinant.

To achieve a simplification of the imaginary-time propagator U/, we make use of the
Hubbard-Stratonovich transformation [6], which is based on the identity

167 _ [IA] ~1|Ale? +acAO
e3d9 = -2Tr-/da'e 3lAle’ +erAO (12)

where s = £1if A > 0 or £7if A < 0. We can then transform I into a one-body operator
with the introduction of an auxiliary field o, for each operator O, via Eq.(12), giving

o4 [ Dl)esp 30T 1 Val o2 55, (13




where .
D(e) = [T/ 2122 do, (14
and
h(o) = 3 (€a + 8aVa0a) O (15)

Notice the use of the = sign in Eq.(13). This is because although Eq.(12) is an exact
identity, the operators O. do not necessarily commute, and when Eq. (12) is applied
to U, the resulting integral is accurate only to first order in an expansion of e=8h. The
accuracy is improved by dividing U into N, “time slices”, so that

U= g-A‘BH ... e'Aﬂﬁj (16)

N\ —

N times

and applying Eq. (12) to each “slice”. For what follows, we introduce 7, as an imaginary
time in the range (0,3) defined as , = nAfJ, with AG = 8/N,.
The thermal observable in Eq. (8) can now be written as

[ DlolG(e)(0)t(o)
T DG (o) (an)

where D(0) = [Lan {/AB | Va | /27d0a(7a), §(0) = expl~1AB T, [Valo?(7a)], the over-

lap trace over the one-body, imaginary-time evolution operator is

(o) = Tr [U.(8,0)] (18)

(0) =

and
_ T: [00,(8,0)]
Tr [ff,(ﬁ, 0)] .

In these expressions, the one-body evolution operator is defined as

(19)

Us(7,m) = Ule(r3). .. Ulo(ria))0(o(m)) , (20)
with
U(o) = exp [—Aﬂix(a)} . (21)

Equation (17) expresses the expectation value of any observable as a multi-dimensional
integral whose dimensions are of the order N2.N,, so that it must be evaluated by Monte




Carlo techniques. In order to perform a Monte Carlo integration, it is necessary to define

a positive-definite weight function W(c). For the weight function, it is convenient to
choose W(e) = G(o}|{(c)| so that

(0‘> — fD[”]W(U)<O)¢Q(”)

I DlelW(o)®(o)

with the “sign” &(¢) = ¢(¢)/I¢(¢)]- The observable (O) is then computed by selecting

an ensemble {o:} chosen according to distribution W(c), and computing the ensemble

(22)

average; i.e.,

A Zk(é)ﬂ Q(U’t)

0 = . 23
(Ohee == o) (@)
The uncertainty in the Monte Carlo result is obtained by noting that if the “sign” and the
observable are computed with the same set of fields, we must also account for correlations

between the two observations, namely the uncertainty in the observable is

(0e = = [EELIOB OB (1a2) — ay)
(0%) (/552 s
- 255} (109 - wyow)]| (24)

where ( ) denotes Y°;. Now, note that if $(o%) oscillates wildly from sample to sample,
large errors can occur in (0) because of the poorly determined numerator and denomi-
nator in Eq. (23). '

Some remarks about the nature of the operators in Eq. (17) and their notation are
now in order. First, since iz(a) is only a one-body operator, the evolution operator
U(c) can be represented as a N, x N, matrix U(c) in the single-particle basis: U(o) =
exp(—Aph(s)), where (h(0))as = (a|iz(cr)|ﬁ). Likewise, any Slater determinant |¢s)
describing N, particles can be represented by a matrix, ¥, with N, columns and N,
rows. Thouless’ theorem then implies that the operation U(o)|¥s) yields only a single
Slater determinant, thus averting the need to have all Slater determinants stored in order
to evaluate Eq. (8). In what follows, we represent the product of one-body evolution

operators U,(7;,7:) as
U, (75, 7) = U(o(7)) - - - U(0(7:41))U(e(m)) (25)
with the implicit understanding that U,(3,0) = U,.
At this point, we now turn to a discussion on bringing the Hamiltonian into quadratic

form.




3.2 Bringing the Hamiltonian into Quadratic Form

Since we have restricted ourselves to Hamiltonians that are at most two-body in nature,
it is always possible to find a canonical transformation so that the Hamiltonian may be
brought into the quadratic form of Eq.(11). What is more, the transformation is not
unique and the choice may have important consequences regarding the sign of the Monte
Carlo integral.

We begin by writing the Hamiltonian in terms of the jj-coupled two-body matrix
elements, namely

H = z e,-a;‘a,-

C2OY VAGH K27 + 1T + 1)1+ 85)(1 + 8u)]?
ikl JT

[elealyT o @ea ], (26)

where V{37, kl) are the anti-symmetrized, jj-coupled two-body matrix elements of the
Hamiltonian. The choice of notation used in this section will be to use the letters 1, 7, k, [
to denote the single-particle orbits, i.e., nlj, whereas the Greek letters o, 3,4, 6 will be
used to denote the explicit single-particle state, including the 7, quantum number. At
this point, we have two choices in which to bring the Hamiltonian into quadratic form.
The first is in terms of the paring operators A}4(ij) = (a} ® a})’7, while the second is
a density-density decomposition with the operators g% = (a! ® 3;)¥™. Although both
formalisms are possible, it turns out that the density-density break-up is more convenient
in terms of the sign of the Monte Carlo integral, even for a pure pairing interaction. For
this reason, in these lecture I will focus on the density-density decomposition.

In order to illustrate the density-density break-up, we first consider the case of like
particles, and ignore the isospin label in Eq.(26). We now make use of the commutation
relation -

aLa;a,ag = alaség, — ala.,a}a; (27)
and recouple the angular momenta, to form a scalar operator. The Hamiltonian may

now be written as

2 I 1 s _
H =3 &2 +1pf + 53 3 Ex(ik, j1)(~1)"pi o5 ™™, (28)
ij

ijkl KM




where

. 1 (20 1\ (14651 + 6)\ P
e.-,-=e,-a,-,--5;;(-1)’-“*“%‘(11:,1::) (21.‘ +1) (( i) (G "‘)) (29)

4
and
. vy . . .i . K 1+5‘ 146 1/2 .
Ex(ik, jl) = ;(-—1)”“‘“{ ‘;.l ji 7 }(2J+ 1) (( ’l( “)) Vi (i5, k).
(30)
Now, we introduce the set of operators
AKM  _ { %I(pf,‘:{; (P5°)) if M =0 (a1)
Y FpEM + (p5¥)) M #0

i( KO Koyt : _
sxw | =30~ (p50))  HM=0
NS {—7‘5(5§M—(’p§“)f) if M #0, (32)

so that

A= Z’j &iv/2i + 1520 + %’_’Z”;Zo Ex(ik, j1) [QEM Q%™ + PF™PI™]).  (33)
The final step towards bringing H into quadratic form is to diagonalize the matrix
Ex(ik, jl), leading to
B=Y a5t +55 3 VE[(QFHy + (PEMY]. (34)
i a K,M>0
Equation (34) is now in quadratic form and we can apply the Hubbard-Stratonovich
transformation to the exponentiated form e~%%#. Note that there are now auxiliary
fields associated with each operator Qf“ and Pf” , which for convenience we refer to as
o and 7 fields. In general, the maximum number of auxiliary fields is given by N? (N,=
the number of single-particle states) for each time slice.
At this point, we note that the Hamiltonian is completely specified by only the anti-
symmetric two-body matrix elements of Eq.(26). However, we can add to the V/1.(i7, ki)
any set of symmetrized two-body matrix elements satisfying

Viz(id, kl) = —(= Y =I"TV(5i, k). | (35)
That such a freedom exists is due to the Pauli principle, since, for example, we have

l¢$)=0. "~ (36)

J=1M,T=1T,

et o]




As such, the added symmetrized matrix elements do not contribute to the expectation
value of the Hamiltonian. They can, however, have an important impact on the form
of the Hamiltonian after the density-density decomposition. An example is the case of
the separable quadrupole-quadrupole (QQ) interaction, which by construction is of a
density-density type, and we should be able to rewnte H in terms of density operators
with just K = 2. This is true for the direct part of the QQ interaction. The exchange
part, however, transforms to all possible K-values, and no simplification is possible. As
we will see, this “bad” behaviour of the exchange term can be compensated for by adding
a set of symmetric two-body matrix elements. In what follows, we use a set of matrix
elements that possess no defined symmetries to define the hamiltonian in Eq.(26), namely
Vir(id, k1) = Vi (i, k) + Vip (i3, k). (37
In regards to protons and neutrons, note that we can also re-couple the isospin quan-
tum numbers after the density-density decomposition in Eq.(28); this yields the opera-
tors of the form p,JMTT' One drawback of this breakup, however, is that the operators
'g“ T=1Ta=£1 45 not conserve the number of protons and neutrons in the application of
e~Ph), As such, the matrix representing i(c’) has dimensions (N? + N™) x (NP + N™)
and the proton and neutron number must be projected with a two-dimensional integral
(see below). To some degree, it is more convenient to work with operators that explicitly
conserve the the number of protons and neutrons. The principle advantages of this choice
are that & is separated into two smaller parts and that the projection of proton and neu-
tron number in the canonical ensemble is performed separately with two, one-dimensional
sums.
We now perform the density-density decomposition using the operators

~KM, ~KM, -KMn
pu t—p p+( 1)

(38)

)

where ¢ = 0,1 and the superscript p and n denote the proton and neutron densities,

respectively. Now, in terms of both protons and neutrons, the Hamiltonian can be

written as

1?:2&,-,-,/2;.+1p?,‘"-°+ 3 3 Exa(ik, sl)(-1)Mp52 55 M, (39)

3] t]ld KMt

where

EK,::O(ikr jl) =

(- 1):;+:.+J(2J+1){ i }7: K }\/(1+6.~,-)(1+6u)

M

J
Ly
2

[VAaslid, M) + 5 (VAroalis, ) + ViraGi b)) (40)




Exem(ik,j1) = S (=1yit5+7(2] + 1){ }1: j: Ij }\/(1 + 6;)(1 + )
J

(Vir=i(i3, kl) = Viz_, i, k), (41)

o]

with
.. 1 .. i — ..
V%A(;J,kl) =3 [Vﬁ.(zj, kl) £ (—1)fstitd+T-1y 0 (57 kl)] - (42)
Note that since Vj5(ij, kl) is arbitrary, we can choose Vj_,(if, kl) = Vi_o(ij, kl) so
that Ex=1(ik,j1) = 0. The advantage of this choice is to reduce the number of density
operators, and, therefore, the number of auxiliary fields. In addition, with this choice,
the exchange term for pure density-density operators is cancelled, thereby reducing the

number of auxiliary fields yet further.
Finally, the one-body Hamiltonian A(c) is given by

ho) = T a2+ 1070+ 3 3 3 sKAVIH (aSHQEMS 4 rJMAPIMS)  (43)
i

a K.M>0 t

where QXM and PXM gre given by Eqs.(31,32) using the definition of pgu" of Eq.(38).
Note at this point, that the basic building block of the matrix (h(c));; is the matrix
element of the density operator ,-jM , which is given by )

(Jama | P | 38, mp) = (—1Y# ™ (jamajs — mg| K M)5iabis (44)

3.3 Overlaps

In this section, the explicit form of the overlap and the density matrix are given. We begin
with the zero-temperature formalism, where the Slater determinants are represented as

a matrix with N, columns and N, rows. The required overlap is then
(e | U(B,0) | ) = (u(7) | ¥a(r)) = det [€}¥4], (45)

where

‘I’R = UQ(T, 0)‘1’:; ‘I'L = U:(ﬁ, T)‘I’g (46)
are the matrices representing ¥r and ¥, respectively. By using Wick’s theorem [37], the
expectation value of any n-body operator can be can be expressed as a sum of products
of expectation values of one-body operators. Therefore, the basic quantity of interest is

(alay)e = [\I:R (nI:*LtI:R)" \I:},]d. (47)




In particular, for a two-body operator, we have
(alasalas)s = (alas)o(alad)s + (alad)s (asal).. (48)
Given the matrix notation for U, (8, 0), the grand-canonical trace is given by
Tre[U.(8,0)] = det(1 + U,), (49)

while the density matrix is given by
(elas)e = [(1 +Uo(8,0)1U.(8,0)].. - (50)

Again, the expectation value of two-body operators can be computed using Wick’s the-

orem and Eq.(48).
For the canonical trace for fixed particle number N,, {v,(c), can be obtained from

an activity expansion by noting that (8]

det(l +AU,) = g’:,\"gu(o)
N=0

= exp [tz{ln(1 + AU, )] = (Z( )M,\"t U"}) (51)

where the symbol “4r” denotes a matrix trace, as opposed to a thermal trace Tr.

A major drawback, however, of the activity expansion for computing the canonical
trace is that for N, = N,/2 (i.e., near half filling), {x, (o) involves a sum of terms that are
large in magnitude and have alternating signs. In practical terms, the activity expansion
is unstable in the mid-shell region because these terms cancel in the sum to 10-14 orders
of magnitude, and there is a loss of numerical precision in the evaluation of Eq. (18). In
actual calculations, we have found the activity expansion to be stable only for N, < 4,
or, using an equivalent hole formalism, for N, > N, — 4.

An alternative procedure for computing the canonical trace is to use Fourier extrac-
tion [11]. Starting from the grand-canonical trace, and defining ¢, = 2rm/N,, we may

write

det [1 + e“*ﬂeﬂ“U,] = i e¥mN BN ey () (52)
: N=0

where p is a parameter introduced to insure numerical stability throughout the range of

particles in the model space, and is given below. Using the identity

1 &
N. > €K = bk, (53)

f m=1




valid for integer K, we find

N,
(. (o) = —NL 3 e~ WmNe o =BuNs doy [1 + ei‘i’"eﬂ”U,] . (54)

f m=1
The expectation values of the one- and two-body density operators can be computed in
a similar fashion:

(aslon. = 3 2": e-iNebme=BNety () (), (55)

and

1 N, .
(af,aﬂatyaé)a,zv. = mgl e Nebme=BNety (o)
x [1os(o (o) — 1m(e)155(0) + 8ex1Z(0)] (56)
where

(o) = det [1 + e¥m e U, | (57)

and
15(0) = [(1+ ¥mePU, ) Tetmetiy, ] (58)

The observables in Eq. (19-21) are, of course, independent of the value of x chosen.
However, as the (, vary rapidly with N, a good choice for u is one for which the sum
in Eq. (17) peaks at N = N,. In order to find a good choice for g, we first find the N,
eigenvalues ); of U,, wherei = 1,--- N,, and | A; |<| A; |< - - - (note that each eigenvalue
has the form | A; |= exp[—Pe]). Thus, for the valence particles, we define y by

A A (V2 exp [-pREm) EReleman)| _ gy (59)

This prescription allows us to use Fourier extraction for all even-even nuclei in both the
sd and fp shells.

At first glance, the Fourier method appears to add substantial computational effort
since the computation of a determinant scales as N2 and it must be computed N, times
in Eq. (54). In fact, the computation of (x, can be simplified considerably by computing
the N, eigenvalues, A;, of Uy, in terms of which, the factor 4 (o) can be written as

N,
() = [J(1 + e=eP4X;). (60)

i=1




In addition, the matrix v75(c) is given by

vos(0) = 3 Pas(1 + €®mePedg) et Pt (61)
5
where P is the transformation matrix associated with the diagonalization of U,.

3.4 Sign of the Monte Carlo Weight Function

The most important aspect of evaluating an integral using Monte Carlo methods is
the sign of the weight function, W(cr), as denoted by ®(o:) in Eq.(22). Indeed, the
entire method hinges on the fact that W(o) may be interpreted as a probability density,
and, hence, must be positive definite everywhere. Unfortunately, in the Monte Carlo
techniques discussed in these lectures, the weight function W(s) = G(o){(o) is not
positive definite in the most general case. Indeed, as it turns out, for realistic interactions
the average value for the sign (®) used to normalize Eq.(22) is usually consistent with
zero, which leads to large uncontrollable uncertainties in the Monte Carlo procedure.
Given the importance of the sign in the method, it is prudent to discuss the conditions

that define the sign of the trace ((o).
We begin by defining the ‘time-reversed’ partner of each creation and annihilation

operator as
Gm = ajn = (=1""ajom (62)
i, = als=(-1*""al_,. (63)

Note that because of half-integer spins, we have

djm = —; (64)

am _— —a’m.

As we will shortly see, the class of interactions that have positive-definite weight

functions are of the form
. .. 1 )
H=Y (eapa +eha—32 Xapapa) , (65)

where xo > 0, €, can, in general, be complex, and p, is a general density operator of the

form

Pa =) Chalas. (66)
~é




Note that in terms of K-coupled density operators, we have
Pt = (—1)HMpTH (67)

In addition, the requirement of a negative coupling in Eq.(65) leads to a sign rule for the
eigenvalues of the Ex’s, namely :

Siga(VX) = (—1)+. (68)

After applying the Hubbard-Stratonovich transformation to a Hamiltonian of the
form Eq.(65), the effective one-body Hamiltonian becomes

il(a', T) = z (fapa + €2Pa = Xa [(Ua + iTa)Pa + (Ua - iTa)ﬁa]): (69)

so that p, and p, couple to complex-conjugate fields. We now wish to examine the
form of the Hamiltonian matrix h(or). We begin by ordering the single-particle state
labels nljm so that those states with m > 0 are contained in the first half and their
time-reversed partner in the second half. Now, in the case where all the x, > 0, the
Hamiltonian matrix at the #*# time slice will have the form

A; B;
and it is easy to verify that the imaginary-time propagator will be of the form
P Q
U= ]_:Iexp(—Aﬂh.) = ( -Q* Pp* ) . (71)

Because of the structure of Eq.(71), the eigenvalues of U come in complex-conjugate
pairs, A and A*, with respective eigenvectors (:) and (":.).
For the grand-canonical ensemble, the overlap is given by

¢ = det [1 + ( _Ic'z. 2 ) ] = Iﬁza FA)L+AY) > 0. (72)

i
If only particle-type (proton-neutron) conserving operators are present in Eq.(65), the
overlap separates into two distinct terms for each nucleon type, and the total overlap is
positive-definite as well.
In the zero-temperature formalism, if the trial wave function is comprised of an even

number of particles and is chosen to consist of time-reversed pairs of single-particle states,

so that we may write

w-( 5 2). (13)

a




where a and b are matrices with dimension N,/2 x N, /2, then \I»'IU‘I& is a N, x N,

matrix of the form Eq.(71). The overlap function then satisfies
¢ = det [TIUT] > 0. (74)

In the canonical ensemble for N particles, a fixed number trace is involved, and,

therefore,

C = TIN (H exp(—Aﬂh,)) = Z A,‘l )A,', vee A,’N. (75)

i iy Fig iy

Although no rigorous proof exists, it has been found empirically that { > 0 for even-even
systems. In addition, for a Hamiltonian comprised of isoscalar density operators, i.e.
(0® + p™), ¢ has also been found to be positive definite for odd-odd N = Z systems. The
reason for this is that the proton and neutron density operators in h couple to the same
fields, and, therefore, the proton and neutron traces are identical.

Often the third-component of the angular momentum is fixed by adding a Lagrange
multiplier term wJ, to the Hamiltonian. It should be noted, however, that the operator J,
violates the time-reversal symmetry in h required for the overlap to be positive definite,
as J, = —J,. On the other hand, it should be noticed by that cranking with an imaginary
Lagrange multiplier iwJ,, the time-reversal properties are satisfied and the Monte Carlo
sign is always positive definite.

In summary, the sign of the Monte Carlo weight function is positive definite for
Hamiltonians of the form Eq.(65), where the couplings X, are all positive. As it turns out,
an important class of nuclear Hamiltonians do, indeed, satisfy this condition. Namely,
those comprised of pairing plus separable multipole-multipole two-body interactions (such
as quadrupole-quadrupole). Generally speaking, any “realistic” shell-model Hamiltonian
is found to have a large component comprised of interactions of this type. In some sense,
this encourages us to examine Hamiltonians possessing no sign problems, with the hope
that it might be possible to extrapolate to fully realistic shell-model Hamiltonians. In
Section 5, we will see the Monte Carlo approach applied to a separable interaction for sd-
shell nuclei, and compared with exact results to demonstrate the feasibility of the method.
In Section 6, we will see a method that will extrapolate to the “full” Hamiltonian, giving
us the expectation values of operators in the ground state.




3.5 Approximate Solutions

Given the large dimensions of the integral, it might be benificial to also consider approx-
imate solutions to Eq.(22). The first approximate solution is to compute the observables
at the maximum of the Monte Carlo weight function. In the case where only the direct
part of the two-body matrix elements are used in the density-density decomposition, this
equivalent to finding the Hartree mean field. With antisymmetrized two-body matrix
elements, the auxiliary fields associated with the maximum of W are actually one half
the Hartree and Fock fields [38]. An improvement upon the mean-field solution is to
expand the exponent of the Monte Carlo weight function about the maximum up to
quadratic terms, giving rise to RPA corrections to the mean field. In order to account
for large-amplitude fluctuations of the mean field, one may integrate Eq.(22) using just
one time slice. This approximation is reasonable for high temperatures, and is referred
to as the static-path approximation (SPA) and has been used in nuclear physics for the
pairing plus quadrupole-quadrupole interaction [39]. A correction to the static-path ap-
proximation is to again expand the exponent of the weight function upto second order
about the static path, i.e. RPA corrections to the static path (SPA+RPA) [40]. It is
important to note, however, that each of these approximations fail below some critical
temperature, and to achieve the exact ground-state results, it is necessary to perform the

multi-dimensional integral Eq.(22).

3.6 Monte Carlo Sampling

As previously noted, the dimensions of the integral Eq.(22) are too large to be evaluated
using any form of quadrature rule, and must be evaluated using Monte Carlo methods.
Central to a Monte Carlo evaluation of a multi-dimensional integral is the method for
sampling the o} of Eq.(22), as they must be statistically independent. The sampling
method used thus far for the Monte Carlo shell model is the method of Metropolis et
al. [41]. In this method, we start with some set of fields o7, and choose a new ith + 1 set
by

ot = ol + R(~1,1)Ac,, (76)
where R(X,Y) is a random number between X and Y, and Ao, is a pre-chosen increment.
The new set of fields o'} are accepted if the ratio of weight functions satisfies

W () /W(s*) > R(0,1). (77)




The increment Ao, is then chosen so that the ratio of accepted to rejected trials is
approximately 50%.

The procedure used to select the i** + 1 fields in the Monte Carlo integration is to
“sweep” through each of the time slices, and update the fields separately. Thus, one
begins with the i** fields, and propagates from left-to-right in Eq.(25), i.e. from N, — 1.
The fields are then updated for the first time slice, and the weight function is computed
leaving the fields on all the other time slices unchanged. The updated fields on the first
time slice are then accepted or rejected according to Eq.(77). The sweep then proceeds
successively through all the time slices, propagating from right-to-left, and repeating the
acceptance/rejection procedure at each time step.

One important point to be noted is that the observable sum must be computed with
statistically independent samples. Clearly, successive Metropolis points are correlated
since the i** + 1 point is dependent on the i** point. As such, the Monte Carlo observable
should be evaluated using Metropolis points that are separated by Ne,, sweeps, where
N_rs is the Metropolis correlation length. Unfortunately, N, is a quantity that grows
with the dimensions of the integral. This is because as the dimensions increase, the
increment Ao, must become smaller so that the acceptance ratio will be approximately
50%. In early calculations, it was found that for the sd shell the correlation length
was of the order 100-300, whereas, in the fp shell, the correlation length was = 500. For
calculations in the rare-earth region, with dimensions of the order 100000, the correlation
length was estimated to be several thousand.

The simplest solution to the very long correlation length found with Metropolis sam-
pling of the continuous integral is to recognize that the Hubbard-Stratonovich transfor-
mation as implemented in Eq.( 13) is accurate only up to (Af3) terms. Therefore, instead
of performing a continuous integral, it might be more efficient to approximate Eq.(12)
with a finite sum, namely

e349% S w e~ 3lAle? +eiA0 (78)
Indeed, a three-point Gauss-Hermite quadrature rule properly integrates Eq.(12) up to
the third moment. The Metropolis algorithm for choosing the #** + 1 point is then
modified in the following way. Instead of incrementing each sigma field by Ao, we now
choose a relative probability that any given field will change, P(o). We then choose a

random number R(0, 1) for each field, and if R(0,1) < P(c), the sigma field is allowed to
assume any of the permissible values with relative weight w;. The advantage of a discrete




sum for the Hubbard-Stratonovich transformation is that with the modified Metropolis
sampling described, the successive sweeps decorrelate much more quickly. Indeed, it is
found that the correlation length with a three-point formula is of the order 10-20. The
caveat, however, is that with the three-point formula, more time slices might be required
in order achieve convergencein AS. Having to use more time slices, however, is more than
compensated by the shorter correlation length. The three-point Gauss-Hermite formula
for Eq.(12) is being used in all current applications of the Monte Carlo method [10, 12].

4 Computational Considerations

In recent years, the concept of parallel computing has become a powerful tool in theo-
retical physics. To a large degree, the Monte Carlo approach described here is perfectly
suited for parallel computation. This is because the Monte Carlo sum of Eq.(22) requires
statistically indendent samples. This can easily be achieved by “farming” the calculation
out to several nodes, and thereby getting a substantial computational enhancement. This
is especially true since the entire calculation can reside on each of the individual nodes,
and very little data transfer is required. Indeed, the only time data transfer occurs is at
the end of each sampling sweep, where the results are collected off of each node.

The Monte Carlo shell model code has been ported to several parallel platfroms,
among them: the 512-node Delta and Paragon at Caltech, the 512-node Paragon at Oak
Ridge National Laboratory, the 28-node supercomputer at RIKEN, and the 400 node
SP-2 at Phillips Laboratory, Air Force Material Command.

The computational work associated with the Monte Carlo shell model basically scales
as the number of fields, and, therefore, as (N?)? + (N*)2. Although this scaling is
seemingly fairly rapid with N,, it is far more gentle than the combinatorial growth of
the number of basis states in the matrix-diagonalization approach, as is illustrated by
Eq.(5). On an i860 based computer, such as the Delta and Paragon, the computational
time required to complete an sd-shell calculation with approximatley 3000 samples and
64 time slices is of the order 60-node hours, whereas a comparable calculation for fp-shell
nuclei is of the order 300-node hours. One very important difference between the Monte
Carlo and matrix-diagonalization approaches to the shell model is that with the Monte
Carlo method, the computational time required for any given nucleus is more dependent
on the number of single-particle states N, than on the number of valence particles N,. As
such, a calculation for ®Zn (N, = 10) is not any more difficult than for **Cr (N, = 4). By




extrapolating the node-hours required for sd-shell and fp-shell nuclei, it is clear that full-
space calculations in much larger model spaces are also feasible. Whereas, the traditional
approach is currently limited to a full-space description of *®*Ma (N, = 5) in the fp shell.

One cautionary computational note with the AFMC method is that the propagator
matrix U is the product of the exponential of matrices whose diagonal elements may
vary considerably. Indeed, the diagonal elements are primarily determined by the single-
particle energies. For many Hamiltonians, the difference between the largest and smallest
single-particle energies, Ag, is of the order 5-8 MeV. Hence the diagonal elements of U
may differ in scale by a factor of €4¢ ~ 3x 10 for 8 = 3 MeV ™. Such large differences in
scale can lead to a loss in precision during the multiplication of the propagator matrices.
Perhaps the only solution to this problem, which can be quite serious if large B values are
required, is the method of singular-value decomposition (SVD) [18, 42]. This algorithm is
designed to preserve the scale in matrix-matrix multiplications so that high-precision can
be maintained. An unfortunate feature, however, is that it increases the computational
time considerably, since the SVD should be applied to the multiplication at each time
slice. Efforts are underway to implement SVD in the current version of the Monte Carlo
shell model program, and it appears that for static observables it might be possible to
apply the SVD method every eigth time silce, allowing calculations to performed out to
B~ 6 MeV™? [43].

5 Demonstration with Separable Interactions

In this section, results obtained with the auxiliary-field Monte Carlo shell model (AFM-
CSM) using a schematic interaction that has a sign of unity are presented and compared
with those obtained from the direct diagonalization method. The purpose is, of course,
to demonstrate the feasability of the method, so that we may begin to have confidence
in the algorithm to tackle problems not possible within the traditional approach.

The interaction was chosen to be of the form pairing plus multipole given by citeafmc5

3 . =i .. . \1=0,T=0
H = z 5.\/ 2]. + lpz‘?’t o GZ [A5=0,T=1(1"') ® AJ=0,T=1 (JJ )]
s Y]
— % Z xK(_l)MpKM,t=0pK—M,t=O, (79)
K=0,2,4

where G > 0 and each xx > 0. The parameters were chosen to reproduce parts of the sd-
shell Hamiltonian of Wildenthal [2], and can be obtained from the author upon request.




For each of the calculations presented in this section, the value A3 = 0.0625 MeV™!
was used and approximately 2000 Monte Carlo samples were collected. Being amongst
the first calculations, they were performed using the continuous form of Eq.(12), and the
independence of the individual samples was tested by computing the auto-correlation
function for (H),. As such, Ne,, was found to be & 150.

5.1 Static Observables

We begin with a compendium of results for the Ne isotopes. Shown in Fig. 2 are the
AFMCSM expectation values (open symbols) (a) (H), (b) (Q?) (quadrupole moment),
(c) (J?) (angular momentum), and (d) (T?) (isospin) as functions of 8 for even-even
Ne isotopes. Exact calculations within the canonical ensemble for 2*??Ne using the
eigenvalues obtained from the shell-model code OXBASH (28] are indicated by the curves
in the figure. In addition, the ground-state observables are plotted using solid symbols at
B = 2.5 MeV™!. Generally, we see that the Monte Carlo procedure is in good agreement
with the exact calculations. Shown in Fig. 3, are the results for the same quantities for
the odd-odd N = Z nucleus #*Na.

We may also study rotating nuclei using the cranking Hamiltonian, H' = H — wJ,.
The systematics for cranking ?’Ne are shown in Fig. 4, where we display (H), (J,), and
the sign (®) as a function of § and w. We find that the sign decays rapidly as both
the cranking frequency and F increase. The maximum J, available to **Ne is 10, and,
therefore, the w = 2 case can be considered as an extreme limit.

5.2 Nuclear Shapes

It is of particular interest to determine the quadrupole shape of a nucleus as function
of temperature and angular momentum. It is generally expected that some nuclei may
exhibit a sudden phase transition from a prolate to spherical shape as the temperature
increases [44]. In addition, within the framework of the cranking model, deformed nuclei
are expected to exhibit a transition from prolate to oblate ellipsoids as the cranking
frequency (or angular momentum) increases (45].

One measure of the quadrupole deformation is the expectation value of Q2. As is illus-
trated in the proceeding section, (Q?) is considerably larger for nuclei that are expected
to exhibit prolate deformations such as 2®?*?4Ne, and is much smaller for spherical nuclei
such as 2®Ne. The interpretation of shapes from (Q?), however, suffers from two short-
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Figure 2: The results of the Monte Carlo calculation for the expectation values of (a)
(H), (b) {(¢®), (c) (J?), and (d) (T?) as a function of @ for ®Ne (circles), 2*Ne (squares),
#Ne (diamonds), and *Ne (triangles). Where absent, the error bars are smaller than the
size of the symbols. The solid (**Ne) and dashed-dot (**Ne) lines indicate the canonical
resuits obtained from the eigenvalues of an exact diagonalization. The ground-state

expectation value for each nucleus is plotted with a solid symbol at § = 2.5 MeV™!
(except for J?, for which the ground-state value is zero for all nuclei).

comings. First, @ contains a one-body term proportional to (r*), which is present even
for spherical nuclei, and tends to obscure the contribution due to the nuclear deformation.
In addition, (Q?) does not distinguish between prolate and oblate shapes.

In order to obtain a more detailed picture of the deformation, we examine the com-
ponents of the quadrupole operator Q, = r’Yz‘“. Note, however, that due to rotational
invariance of the Hamiltonian, the expectation value of any component Q,, is expected to
vanish. On the other hand, for each Monte Carlo sample, there exists an intrinsic frame

in which it is possible to compute the three non-zero components @, @5, and Q' , (the

prime is used to denote the intrinsic frame). The intrinsic quadrupole moments can then
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Figure 3: Same as Fig. 2 for #*Na.
be related to the standard deformation coordinates 3 and v [46] by
, _ 3 [4x, ,
(QO)’ = o —5_(7' )cﬂa’ COS Yo
3 /4 B
! —_— —_ - 2 _?_ .
Qe = /5 )aﬁsm'rc
3 /4x Br .
/ _ 2 __7_
(QLz)e = ox\ 5 {r )cﬁsm'ﬁv- (80)

The task remains to compute the quadrupole moments in the intrinsic frame for each
Monte Carlo sample. This is accomplished by computing and diagonalizing the expecta-
tion value of the cartesian quadrupole tensor Q;; = 3z;z; — §;;7 for each Monte Carlo
sample. From the three eigenvalues, it is straightforward to determine the deformation

parameters as [47]

(@)e = \/5—55 (V3((@3)s +(@L)0) - VE(QL),)
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(lez)c = \/253 (‘ﬁ((qlz)c + (Q'-z)c) - ‘/i(Q:))v)




<Q;33>¢ = 2\/%(@3)6' (81)

Note, from Eq. (80) one finds @3, < @; < Q3.

To illustrate the intrinsic deformation, we plot in Fig. 5 the distribution function
F(B,v) = f(B,v)B*sin(37) for temperatures T = 0.5, 1.0, 2.0, and 4.0 MeV. The distri-
bution function was computed from the set of the 3 and 4 values from each Monte Carlo
sample, and then smoothed with a symmetric Gaussian with a width of 0.01. Although
the volume element 3*sin(3v) tends to push the function towards 4 = 7 /6, there is a
definite trend from a prolate deformation at low temperature to a symmetric spherical

shape at higher temperatures.

T=4.0 MeV T=2.0 MeV

Figure 5: Distribution functions F(3,v) are shown for ?*Ne at different temperatures T'.




6 Realistic Interactions

In the previous section, the AFMCSM was demonstrated to be successful for the case
of semi-realistic schematic interactions that possess the feature that the Monte Carlo
weight function is always positive definite. Unfortunately, this is not always the case
for the general Hamiltonian. Indeed, for most realistic Hamiltonians, the Monte Carlo
sign degrades with the application of a few time slices, and quickly goes to zero. In
this section, I will describe a method that can in principle give the correct results for
Hamiltonians applicable in nuclear physics.

We begin by analyzing the behaviour of a realistic interaction in terms of the sign
rule Eq.(68) as is illustrated in Fig. 6. Here the eigenvalues AX = (—1)¥+1V¥ for the
fp-shell Hamiltonian of Richter et al. [48] are displayed. The first thing to be noted is
that most of the large eigenvalues satisfy the sign rule, and, therefore, have a “good”
Monte Carlo sign. As such, we can decompose the nuclear Hamiltonian into two parts

H=Hg+ Hg, (82)

where Hg satisfies the sign rule, and has “good” sign, while Hg violates the sign rule,
leading to negative signs in the Monte Carlo weight function, and, therefore, has a “bad”
sign. It is then possible to construct another Hamiltonian, denoted fI, by

ff, = gc + gffa. (83)

Note that if ¢ < 0, then H, satisfies the Monte Carlo sign rule, and a Monte Carlo
calculation is possible. The hope then, is that we may be able to compute the expec-
tation value of various observables for the Hamiltonian H, and then extrapolate to the
Hamiltonian of interest at g = 1.

As it turns out, the essential feature of fi,, with g < 0 is to enhance the pairing
part of the interaction, as can be seen in Fig. 7, where the T = 1 matrix elements
of the Hamiltonian are plotted for all J values and for both ¢ = 0 and g = 1 (the
true Hamiltonian). Note that the most significant change occurs in the pairing (J = 0)
channel. It should be noted that the main feature of the density-density decomposition
of the pairing interaction is that it is present in all possible K-values. As such, it is
possible to transform any Hamiltonian into a Hamiltonian with a “good” sign by steadily

increasing the pairing strength until all the eigenvalues obey Eq.(68).
One very important feature of the Hamiltonian fI, is that at temperature T = 0 MeV
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Figure 6: The eignvalues V, of the Richter fp-shell interaction multiplied by the factor
(—1)K+!, The eigenvalues for each K value are plotted in increasing order

(or B — oo) H, satisfies a variational principle. Namely

(I;I)y 2 <ﬂ>u=1: (84)

where the subscript g denotes a trace over the eigenstates of the A - In addition, because

of the variational principle, we also have

d(H),

g=1
Therefore, we may hope to obtain information regarding the true solution by computing
the expectation value of observables for g < 0, and extrapolating with a smooth function
to g = 1. It should be pointed out that Eqs.(84) and (85) are in no way a guarantee
of success. The variational characteristic for the Hamiltonian only tells us that the true
value of the expectation value of the Hamiltonian is less than the values obtained at each
g value. It is not a guarantee that (I;T )g will be a smooth function of g or that it will
be monotonic. Nonetheless, comparisons with exact results indicate that for the nuclear
problem the proposed extrapolation method can be successful. Shown in the bottom
panel of Fig. 8 is (H), for an fp-shell calculation of *3Cr using the KB3 [34] interaction
as a function of g. The exact calculation [35] is represented by the open circles and the
dotted line. The Monte Carlo results are shown for 8 = 2 MeV~! and A8 = 1/32 MeV !,
and are indicated by the solid symbols (with error bars) and connected with a solid line.
The point at g = 1 is obtained by extrapolating the Monte Carlo results with a polynomial
satifying Eq.(85). Note that the deviation between the Monte Carlo and exact results is
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different as a function of g, indicating that an extrapolation on Af for each g value is
warranted before extrapolating to g = 1.

In the upper two panels of Fig. 8, are comparisons between the exact and Monte Carlo
results as a function of g for the total Gamow-Teller strength and the total £(2) strength.
Note that for these operators there is no variational principle, and for both operators
there is significant curvature in the region g > 0, where a Monte Carlo calculation is
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quantities.

not possible. Nonetheless, the Monte Carlo shell model with the extrapolation procedure




reproduces the exact result to within the uncertainty of the extrapolation.

To conclude this section, results obtained with the Monte Carlo shell model for the
nucleus *Fe [10] using the full fp-shell and the Hamiltonian of the Richter et al. [48)
are shown in Fig. 9. The solid lines in the figure represent polynomial extrapolations
of the various quantitites, and the extrapolated results are plotted at g = 1 along with
the associated uncertainty. Note that the number of basis states for this nucleus as
estimated with Eq.(5) is of the order 4.9 x 10°, and it is not possible to perform a
full-space shell-model calculation for this nucleus with any shell-model code currently
available. The calculations were performed on the 512-node Delta and Paragon at Caltech
with 8 = 2.0 MeV~! and AB8 = 1/16 MeV™!, and approximately 4000 samples were
accumulated for each g value.

7 Response Functions

In addition to static observables, the Monte Carlo approach can also be used to compute
response functions for transition operators. We begin with the thermal trace

fo(E) = "Ze'”- (FI01)P8(E — (By — E3)) (86)
_ g7 /_ " 2“': Bty [ePH O1(2)0(0)] (87)

Unfortunately, the presence of the real-time propagators in Eq.(87) leads to an uncon-
trolled Monte Carlo sign since the Hubbard-Stratonovich transformation must be applied
to the time-evolution operator et 1t is thus advantageous to switch to an imaginary
time 7 = it, so that the response function becomes the inverse Laplace transform of the

imaginary-time auto-correlation function of the transition operator, namely

dr dr

1) 21?1 27!' 1

~F e [eP2ONr)O0)] = [

fE=27 [ eBR(),  (88)

where Ot(r) = ef7Ote~B7. The utility of Eq.(88) is that it can be evaluated using
Eq.(17) and Ot(r)O(0) can be discretized with the same time step as the operator e=#%,
Before proceeding with a discussion on performing the inverse Laplace transform to

R(7), it is useful to discuss some of its properties. First, the n** intrinsic moment of f3

is given by

{fo)n = ;:;InR(r) (89)

r=0
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Figure 9: The results of the Monte carlo calculations for 5Fe at § = 2 MeV™* for
several observables as a function of g < 0. @ = Q, + @, is the isoscalar quadrupole,
Q. = Qp — Qn is the isovector quadrupole, GT is the Gamow-Teller operator changing
a proton into a neutron, and M1 is the magnetic moment operator using free nucleon
g factors. The lines represent polynomial extrapolations; the extrapolated values and
corresponding uncertainties are shown at g = 1.

(note (E™) = R(0)'d*R(r)/dr"|;=0). Also, because of the thermal trace, R(r) is sym-




metric about 7 = 8/2 for hermitian transition operators such as E1, M1, and E2. Indeed,
in the limit that fs involves only one tramsition, R(r) « cosh[(Ey — E;)(r — B8/2)]. As a
consequence of the symmetry about 3/2, the smallest energy that can be resolved in fg
is of the order 2/8. Further, since R(7) decays exponentially for short times, the largest
energy that can be resolved for fs is the inverse of the discretization size, namely 1/AB.
Generally speaking, the inverse Laplace transform in Eq.(88) is an ill-posed problem,
and is usually performed using Maximum Entropy (MaxEnt) reconstruction techniques.
The details and the philosophy behind MaxEnt reconstruction lie beyond the scope of
these lectures, and will, therfore, only be briefly outlined here. The reader interested in
further details is referred to Refs. [49, 50]. We begin, for illustrative purposes, with a
simplified technique that works well when most of the strength is concentrated into a
single peak. We assume that fg consists of a single line whose shape is of the form

The Laplace transform of fg is then

Ri(r)=fo [e7 + elr=P1E0] exp (-;-(a/z - r)’AE’) : (s1)

In this limit, it is possible to perform a least-squares fit of Ry to R(7) to obtain the
centroid Ey and width AE. The strength f; can then be determined by the total strength.

For a MaxEnt reconstruction, we begin by discretizing fz by using N; equally spaced
points with maximum and minimum energy of 1/Af8 and 2/f8, respectively (AE =
(1/AB — 2/B)/N:). Then, fz assumes the form

[e—(E—Eo)z/ZAE’ + e_(E+E°)’/2AE’] . (90)

fa(E)=% A s tmamyam), (92)
and 1
Ry(7) = z fi [e°’E" + e("ﬁ)E‘] exp (5(/9/ 2- T)zAEz) . (93)

The goal of the MaxEnt method is to compare Ry(7) with the computed R(r) so as to
find the most probable (or mean) values for the set {f;}. For this, the probability for
{f:} is taken to be
_ 1
Pr({f:}) = (ZsZo) ™ exp (a8 - 3x*). (94)
with the entropy S defined as [49]

§ = Slfi — mi = filn(fi/my)], (95)




where {m;} is a default model (usually chosen to be uniform), x* is given by [49]

x* =Y [Rs(n) — R(n))[Ry(r;) — R(7;)]/ o0, (96)

where o; is the Monte Carlo uncertainty associated with each R(7;), and

Zs = / [T diifV/7ees (97)

and

2 = / [] dR(r;)e " (98)
are normalizations for the entropy and x? distributions. Note that for strength functions
with considerable structure, the single-line least-squares fit outlined above can be used

to determine an improved default model {m;}. Finally, the parameter a is chosen so as
to maximize the conditional probability of a given the data set {R(r;)} and the default

model {m;}
Pr(af{B(r)Hm) « (Z2s)7 [TIdRfT explaS —3x).  (99)

For the most part, Pr(al{R(7:)}{m:}) is a sharply peaked function of a. As such, Eq.(97)
can be evaluated using a saddle-point approximation (also for Zs).

For demonstration purposes, the results for 2?Ne using the schematic interaction of
Eq.(79) in Section 5. at 8 = 2.0 MeV~! (16 and 32 time slices) are displayed in Fig. 10 for:
a) the isoscalar quadrupole, (Q°(7)-Q°(0)); b) the isovector quadrupole, (Q*(r)-Q(0));
and c) the isovector angular momentum, (J*(r) - J}(0)). Generally, the reconstructed
strength functions are in good a:greement with the exact results, especially in those cases
where most of the strength is concentrated in a single peak as for the isoscalar quadrupole.
For the situation in which the strength function is strongly fragmented, as in the case
for the isovector angular momentum, the various lines can be recomstructed only by
using many more time slices so that sufficient information in the small T region of the
imaginary-time response function exits. It is clear that in this case it is necessary to
disentangle several decaying exponentials with different slopes.

8 Finite Temperature

At times it is useful to examine the properties of nuclei at a finite excitation energy above

the ground state. One difficulty, however, is that the level density in nuclei increases
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Figure 10: Response functions for ?*Ne are shown, along with MaxEnt reconstruc-
tion of the strength functions. The calculated response functions (left) of the isoscalar
quadrupole (top), isovector quadrupole (middle), and isovector angular momentum (bot-
tom) are shown for A8 = 0.125 (circles), and AS = 0.0625 (triangles). MaxEnt re-
construction of the strength functions are also given for AF = 0.125 (dotted line) and
AB = 0.0625 (dashed line). Exact results given as the delta function peaks.

dramatically with increasing excitation energy. As such, it may not be particularly useful




to examine the properties of individual levels. In addition, in large model spaces, it may
be extremely difficult to isolate every eigenvalue. An alternative procedure 1s to perform
a sum over all the states in the model space, and by the introduction of a Lagrange
multiplier 8 constrain the expectation value of the Hamiltonian. This is the basis of
statistical mechanics, and is embodied in the partition function as described in Eq.(7) of
Section 3. We immeadiately see that AFMC techniques are well suited to the calculation
of thermal observables. In this section, I will outline some the general features of the
applications of Monte Carlo approach at finite temperature. There are several studies
currently underway, and in these lectures, I will only outline some of the main features
and difficulties.
The basic thermal quantities of interest are

2(8) = Tr(e*®) (100)
onE) = [ LerEp) (101)
F = -flnZ=U-TS (102)
S = 8F/08 (103)
U = (H)=-0nZ/68 (104)
Cv = =0U/dp=p*((H*) - (H)?) = B*0*In Z/84", (105)

where p(E) is the level density as a function of excitation energy E, F is the free energy,
S the entropy, U the internal energy, and Cy the specific heat. The two quantities of
primary interest are the level density and the specific heat, which is interesting because
sharp peaks in Cy are an indication of the presence of first-order phase transitions. Phase
transitions that might be observable in nuclei are a shape transition that should occur
in strongly deformed nuclei at T = 1.5 MeV [44] and the dissapearance of the pairing
gap [51]

As a demonstration of the usefulness of the AFMC method for finite temperature,
shown in Fig. 11 are the results for an fp-shell calculation of 5*Fe using a schematic
interaction of the form Eq.(79). The calculations contain 4000 samples and were per-
formed for AB = 1/32 MeV~'. In general, we see that the results for the Hamiltonian
are smooth as a function of 8. For the specific heat, however, there appears to be no
evidence of a first-order phase transition, although there are fairly large fluctuations in
Cy for 0.5 > T > 1.0. This is primarily caused by the fact that the calculations were
performed in steps of constant AS. As such, Cy = —p%d(H)/dB, and small fluctuations




in d(ﬁ' )/dB are amplified by the A* factor. For low temperatures, it is perhaps best to
perform calculations with constant AT. To some degree, these fluctuations may also be
smoothed out by smoothing the partition function Z(#), which we can obtain via

B .
2(8)= [ a8(8) +1a. 2(0), (106)

where Z(0) is the total number of Slater determinants in the space, and is given by
Eq.(5). With the partition function thus computed, one can reconstruct the level density
by performing the inverse Laplace transform in Eq.(99) using the maximum entropy
techniques outlined in Section 7.
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Figure 11: Monte Carlo results as a function of 8 and temperature T = 1/ for 54Fe in
the fp shell using a schemtatic interaction.

The situation for realistic interactions is somewhat more complicated as we must use
the extrapolation procedure outlined in Section 6. An important consideration, however,
is that the expectation value of H as a function of g is no longer a variational quantity, and
large errors in the extrapolation can occur. In addition, as was mentioned in Section 6,

the primary feature of the H; Hamiltonian is a significant enhancement of the pairing part




of the interaction. Because of this, a rather large gap opens up between the J = 0 ground
state and the excited states of the Hamiltonian H,. For this reason, the extrapolated
value of (H), is generally supressed relative to the exact result. In some sense, this is
a good feature when computing ground-state observables, provided a level crossing does
not occur, since it may not be necessary to carry the calculation out to very large values
of A. In regards to finite temperature observables, however, this is a diasterous feature.
Two methods to fix this problem are now currently under review. The first is to modify

the good part in H, so that
Hy=[1-(1-g)/AlHc + gHb, (107)

where A ~ 2. In this form, the gap between the ground state and the excited states of
the H, Hamiltonian is reduced considerably [43]. The second is a variational free energy
method [52] based on

Fy(ﬂ) = (I:I - ﬁn)n —In Z,(ﬂ), (108)
where p
n Z,(8) = [ dB(H,), +1a Z(0). (109)

Since F, is a variational quantity, we may now extrapolate to g = 1 using a function

having zero derivative at g = 1.

9 Conclusions

In these lectures, I have outlined the main features of the auxiliary-field Monte Carlo
approach to the nuclear shell model, otherwise known as AFMCSM. As such, I have
included the main features of refs. {7, 8, 9, 10, 11, 12] into these lectures as a central
reference on the method. We have seen that the AFMCSM can yield exact results in
regions not possible with the traditional approach because of computational limitations.
The primary difficulty in implementing the AFMCSM is the sign of the Monte Carlo
weight function, which was found to be unity for an entire class of schematic interactions
often used in nuclear physics. Unfortunately, realistic interactions possess a bad Monte
Carlo sign, and, in effect, it is not possible to perform a direct calculation. Instead,
we separate the true Hamiltonian into the components with good and bad sign, and
multiply the bad components by the factor g < 0, so that a Monte Carlo calculation
is feasible. Then, we extrapolate the g < 0 results to g = 1 to obtain the expectation
value of observables for the true Hamiltonian. Also, because of the sign problem, the




AFMC method is found to work best for even-even and N=Z nuclei. One drawback of the
AFMC procedure is that detailed spectroscopic information is not obtainable. However,
by utilizing the stremngth function, information about excited states can be obtained.
To conclude, the Monte Carlo approach to the shell model is a powerful technique that
has the potential to add significantly to our understanding of nuclear structure since
it permits us to perform full-space calculations with realistic interactions that were not

possible until now.
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