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1. Introduction

The goal of the lectures on lattice QCD (LQCD) is to provide an overview
of both the technical issues and the progress made so far in obtaining
phenomenologically useful numbers. The lectures consist of three parts.
My charter is to provide an introduction to LQCD and outline the scope
of LQCD calculations. In the second set of lectures, Guido Martinelli will
discuss the progress we have made so far in obtaining results, and their
impact on Standard Model phenomenology. Finally, Martin Liischer will
discuss the topical subjects of chiral symmetry, improved formulation of
lattice QCD, and the impact these improvements will have on the quality
of results expected from the next generation of simulations.

QCD is the regnant theory of strong interactions. It is formulated in
terms of quarks and gluons which we believe are the basic degrees of free-
dom that make up hadronic matter. It has been very successful in pre-
dicting phenomena involving large momentum transfer. In this regime the
coupling constant is small and perturbation theory becomes a reliable tool.
On the other hand, at the scale of the hadronic world, u < 1 GeV, the
coupling constant is of order unity and perturbative methods fail. In this
domain lattice QCD provides a non-perturbative tool for calculating the
hadronic spectrum and the matrix elements of any operator within these
hadronic states from first principles. LQCD can also be used to address
issues like the mechanism for confinement and chiral symmetry breaking,
the role of topology, and the equilibrium properties of QCD at finite tem-
perature. Unfortunately, these latter topics were not covered at this school,
so I will give appropriate references to compensate for their omission.

Lattice QCD is QCD formulated on a discrete Euclidean space time grid.
Since no new parameters or field variables are introduced in this discretiza-
tion, LQCD retains the fundamental character of QCD. Lattice QCD can
serve two purposes. First, the discrete space-time lattice acts as a non-
perturbative regularization scheme. At finite values of the lattice spacing
a, which provides an ultraviolet cutoff at 7 /a, there are no infinities. Fur-
thermore, renormalized physical quantities have a finite well behaved limit
as @ = 0. Thus, in principle, one could do all the standard perturbative
calculations using lattice regularization, however, these calculations are far
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6 Rajan Gupta

more complicated and have no advantage over those done in a continuum
scheme. Second, the pre-eminent use of transcribing QCD on to a space-
time lattice is that LQCD can be simulated on the computer using methods
analogous to those used for Statistical Mechanics systems. (A brief review
of the connection between Euclidean field theory and Statistical Mechanics
is given in Section 5.) These simulations allow us to calculate correlation
functions of hadronic operators and matrix elements of any operator be-.
tween hadronic states in terms of the fundamental quark and gluon degrees
of freedom.

The only tunable input parameters in these simulations are the strong
coupling constant and the bare masses of the quarks. Our belief is that
these parameters are prescribed by some yet more fundamental underlying
theory, however, within the context of the standard model they have to
be fixed in terms of an equal number of experimental quantities. This is
what is done in LQCD. Thereafter all predictions of LQCD have to match
experimental data if QCD is the correct theory of strong interactions.

A very useful feature of LQCD is that one can dial the input parameters.
Therefore, in addition to testing QCD we can make detailed predictions of
the dependence of quantities on o, and the quark masses. These predictions
can then be used to constrain effective theories like chiral perturbation
theory, heavy quark effective theory, and various phenomenological models.

My first lecture will be devoted to an overview of the scope of LQCD and
to showing that simulations of LQCD are a step by step implementation of
field theory. The second lecture will be devoted to explaining the details of
how to transcribe the quark and gluon degrees of freedom on to the lattice,
and to construct an action that, in the limit of zero lattice spacing, gives
continuum QCD. I will also spend some time on issues of gauge invariance,
chiral symmetry, fermion doubling problem, designing improved actions,
the measure of integration, and gauge fixing.

Numerical simulations of LQCD are based on a Monte Carlo integration’
of the Euclidean path integral, consequently, the measurements have statis-
tical errors in addition to the systematic errors due to lattice discretization.
In order to judge the quality of lattice calculations it is important to under-
stand the origin of these errors, what is being done to quantify them, and
finally what will it take to achieve results with a given precision. These is-
sues will be covered in the third lecture along with an elementary discussion
of Monte Carlo methods.

The fourth lecture will be devoted to the most basic applications of
LQCD - the calculation of the hadron spectrum and the extraction of
quark masses and as. Progress in LQCD has required a combination of
improvements in formulation, numerical techniques, and in computer tech-
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nology. My overall message is that current LQCD results, obtained from
simulations at a = 0.05 — 0.1 fermi and with quark masses roughly equal
to m,, have already made an impact on Standard Model phenomenology.
I hope that the three sets of lectures succeed in communicating the excite-
ment of the practitioners.

In a short course like this I can only give a very brief description of
LQCD. In preparing these lectures I have found the following books [1-4],
and reviews [5-8] very useful. In addition, the proceedings of the yearly
conferences on lattice field theory [9] are excellent sources of information
on current activity and on the status of results. I hope that the lectures at
this school and these references will allow any interested reader to master
the subject.

2. Standard Model of Particle Interactions
The Standard Model (SM) of particle interactions is a synthesis of three

of the four forces of nature. These forces are described by gauge theories,
each of which is characterized by a coupling constant as listed below.

STRONG INTERACTIONS ag~1
ELECTROMAGNETIC INTERACTIONS e, & 1/137
WEAK INTERACTIONS Gr~107° GeV 2,

The basic constituents of matter are the six quarks, u, d, s, ¢, b, ¢,
each of which comes in 3 colors, and the six leptons e, ve, y, vy, 7, vr.
The quarks and leptons are classified into 3 generations of families. The
interactions between these particles is mediated by vector bosons: the 8
gluons mediate strong interactions, the W* and Z mediate weak interac-
tions, and the electromagnetic interactions are carried by the photon 1.
The weak bosons acquire a mass through the Higgs mechanism, and in
the minimal SM formulation there should exist one neutral Higgs particle.
This has not yet been seen experimentally. The mathematical structure
that describes the interactions of these constituents is a local gauge field
theory with the gauge group SU(3) x SU(2) x U(1). The parameters that
characterize the SM are listed below; their origins are in an even more
fundamental but as yet undiscovered theory.
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Parameters in the Standard Model

Parameters Number Comments
Masses of quarks 6 u, d, s light

¢, b heavy

t=175+6 GeV -
Masses of leptons 6 e, [, T

MV vy, v =7

ey 28] T

Mass of W= 1 80.3 GeV
Mass of Z 1 91.2 GeV
Mass of gluons, = 0 (Gauge symmetry)
Mass of Higgs 1 Not yet seen
Coupling o 1 & 1 for energies S 1 GeV
Coupling oo, 1 1/137 (=1/128.9 at Mz)
Coupling G 1 107% GeV 2
Weak Mixing Angles 3 8., 02, 895
CP Violating phase 1 )
Strong CP parameter 1 o =7

The question marks indicate that these values are tiny and not yet mea-
sured. No mixing angles have been put down for the lepton sector as I have
assumed that the neutrino masses are all zero. A status report on exper-
imental searches for neutrino masses and their mixing has been presented
by Prof. Sciulli at this school. The structure of weak interactions and the
origin of the weak mixing angles has been reviewed by Daniel Treille, while
David Kosower covered perturbative QCD.

In the SM, the charged current interactions of the W-bosons with the
quarks are given by

Hyw = %(JUW” + he) (2.1)

where the current is

Gw _ _ 7
J;A = 2——\/5 (’U,,C,t) 7#'(1 _75) 14 Z (22)
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and the Fermi coupling constant is related to the SU(2) coupling as
Gr/V2= g2 /8M%. V is the 3 x 3 Cabibbo-Kobayashi-Maskawa (CK M)
matrix that has a simple representation in terms of the flavor transforma-
tion matrix

Vid Vus Vo "
Vexku = | Vea Voo Va (2.3)
Wd ‘/ts V:‘.b

This matrix has off-diagonal entries because the eigenstates of weak inter-
actions are not the same as those of strong interactions, ¢.e. the d, s, b
quarks (or equivalently the u,c,t quarks) mix under weak interactions.
For 3 generations the unitarity condition V~* = V't imposes constraints.
As a result there are only four independent parameters that can be ex-
pressed in terms of 4 angles, 81,0,,83 and the CP violating phase 6. The
representation originally proposed by Kobayashi and Masakawa is

C1 —81C3 —8183
Vexm = §1C2 cCicac3 — 828361'6 ciC283 + szqa,ef‘s (2.4)

S182 C182C¢3 + 62836'&5 C18983 — 626367’

where c; = cosf; and s; = siné; for: = 1,2,3. A phenomenologically more
useful representation of this matrix is the Wolfenstein parameterization
(correct to O(A%))

1—22/2 A M A(p —in)
Vexm = —A 1-X2/2 A2A + O(2%). (2.5)
. MNA(L—p—in) —NA 1

where A = sinf, = 0.22 is known to 1% accuracy, A = 0.83 is known
only to 10% accuracy, and p and % are poorly known. The elements V;4
and V,; of the CKM matrix given in Eq. 2.5 are complex if n # 0, and
as a result there exists a natural mechanism for CP-violation in the SM.
The phenomenology of the CKM matrix and the determinations of the four
parameters have been reviewed by Profs. Buras and Richman at this school
[10,11].

A list of processes that are amongst the most sensitive probes of the
CKM parameters is shown in Fig. 1. Lattice QCD calculations are be-
ginning to provide amongst the most reliable estimates of the hadronic
matrix elements relevant to these processes. Details of these calculations
and their impact on the determination of p and n parameters will be cov-
ered by Prof. Martinelli at this school. My goal is to provide you with the
necessary background.
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D—-Klv K- #wlv
D — K*lv

1—A?%/2
L’(jKMr = —A 1-— AZ/E A/\z
AN (1 — p—in)  —AN?

Bg_gg BS—FS B— Ky B-— Diu
Mixing Mixing (DRare ) B — Dy
(Bs) (Bs.) eeays

Fig. 1. The CKM matrix in the Wolfenstein parameterization. I show examples of phys-
ical processes that need to be measured experimentally and compared with theoretical
predictions via the “master” equation to estimate various elements of the CKM matrix.

3. Scope of Lattice QCD Calculations

The primary goal of LQCD is to test whether QCD is the correct theory~
of strong interactions. Most particle physicists believe that the answer is
yes because of its successes in describing processes with large momentum
transfer, its mathematical elegance, and uniqueness. However, quantitative
confirmation is lacking. The problem with the conventional perturbative
approach (expansion in a small parameter) when analyzing hadronic pro-
cess at scales $ 1 GeV is that the strong coupling constant as ~ 1. Thus,
perturbation theory in «, is not reliable. As a result we cannot calculate
the masses of mesons and baryons from QCD even if we are given «; and
the masses of quarks. This is illustrated in Fig. 2 where I show a com-
parison between the binding energy of a hydrogen atom and that of the
proton. It turns out that almost all the mass of the proton is attributed to
the strong non-linear interactions of the gluons.

Simulations of lattice QCD have six unknown input parameters. These
are the coupling constant a, and the masses of the up, down, strange, charm
and bottom quarks (the top quark is too short lived, 0.4 x 10~2* seconds,
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Re” Me =0.5MeV
QED Mp =938 MeV

v

Ebinding =13.6eV
Hydrogen Atom (EM force)

My ~ 3MeV

Mg ~ 6 MeV
M p =938 MeV

Proton (Strong force)

Fig. 2. An illustration of the difference in the binding energy between the electron and
the proton in a hydrogen atom (interacting via electromagnetic forces) and the quarks
in a proton (strong force).

to form bound states and is thus not suitable for lattice studies). Once
these have been fixed in terms of six precisely measured masses of hadrons,
thereafter, the masses and properties of the hundreds of other particles
made up of these quarks and gluons have to agree with experiments. For
example, consider the chiral perturbation theory (xPT) relation for the
pion mass

(M)? = Br(my, +mg) + Cr(my + ma)® +.... ' (3.1)

Lattice calculations will provide a check of this relation and fix the con-
stants Bg,Cr,-.., t.e. constrain the chiral lagrangian. In addition, having
measured M, for a number of values of the quark mass, one can invert
Eq. 3.1 to determine the current quark masses. I shall call such tests of
QCD and the determination of the six unknown parameters of the SM a
direct application of lattice QCD.
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The second area in which perturbative estimates are not reliable is inr
the calculation of the matrix elements occurring in the weak decays of
hadrons. The reason is that the non-perturbative QCD corrections to the
basic weak process can be large due to the exchange of soft gluons between
the initial and final states. This is illustrated in Fig. 3 for the case of
the semi-leptonic decay D — Klv. In this case the matrix element of
the weak interactions Hamiltonian between the initial D meson and final
kaon receives large corrections from QCD which cannot be estimated using
PQCD.

The result of the experiment is a number, i.e. the decay rate. To check
whether the Standard Model prediction is in agreement with this number
theorists must derive an analytical expression for the same process. This
expression, in general, consists of a product of three parts: a combination
of the parameters in the SM, matrix elements (ME) of the interaction
Hamiltonian between the initial and final states, and kinematic factors.
(This is the well-known Fermi’s golden rule.) Schematically one can write
this “master” equation as follows.

Ezpt.4 = (SM parameters) (matrix elements) (kinematic factors). (3.2)

Thus, for each such experimental number one gets a constraint on one
particular combination of the SM parameters provided the M E are known.
By using several precision experiments and calculating the necessary M E
one can over-constrain the model and therefore test it. I shall call lattice
calculations of M E an “indirect” probe of Standard Model parameters
as one usually needs additional phenomenological/experimental input to
extract the unknown parameters via the master equation.

Physicists have been busy calculating and measuring these parameters
for the last 25 years, so one already has reasonable estimates. It is, there-
fore, useful to keep in mind the level of precision that lattice calculations
have to aim for to make an impact. Non-lattice estimates, taken from the
1996 Review of Particle Properties and from Prof. Buras’s lectures [10],
are
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d

Fig. 3. The Feynman diagram for the semi-leptonic decay D~ — K%~ 7,. The QCD
corrections are illustrated by the various gluons being exchanged between the initial and
final hadrons. The leptonic vertex can be calculated reliably using perturbation theory,

whereas the hadronic vertex requires non-perturbative methods.

Parameters Value Comments
mu(m, 2GeV) 3-4.5 MeV ¥PT, sum-rules
mg(MS,2 GeV) 5-8 MeV xPT, sum-rules
me(MS,2 GeV) 100-140 MeV xPT, sum-rules
me(MS,m.) 1.0-1.6 GeV J /4 sprectra
my(MS, mp) 4.1-4.6 GeV T spectra
MHiggs Not Found
“og(Mz) 0.118 = 0.003 World average
|Vaal 0.9736 £ 0.0010 n — pev, and

©—r Vel
A 0.2196 + 0.0023 K+ 5 n%ty, and

K} - n*eFy,
|Viss| (33+0.2+0.440.7)102 B - 7ly; B — plv
V] 0.040 + 0.003 B = X.v and

B — D*lv
le] 2.26 x 1073 K°® & K° mixing
le/€] 0-30x10"* K — 7w decays
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Note that only the magnitude of the CKM elements can be determined from
experiments. Clearly, the most enticing opportunity for lattice QCD is to
help determine the quark masses, o, and the essentially unknown Wolfen-
steln parameters p and 7. For other elements of Voxar one has reasonable
estimates, however here too further progress requires significant improve-
ment in the estimates of the hadronic matrix elements. Phenomenologists
are relying on LQCD to provide improved estimates for these.

Let me end this section by mentioning that in addition to validating

QCD as the correct theory of strong interactions by reproducing the mea-
sured spectrum of mesons, baryons, and glueballs, and the calculation of
weak matrix elements, simulations of LQCD will also allow us to
— Investigate the topological structure of the QCD vacuum, and the mech-
anisms responsible for confinement and spontaneously broken chiral sym-
metry. For a recent review see [12].
— Calculate hadronic properties like wavefunctions, decay constants, form
factors for electromagnetic, weak, and rare decays, and structure functions
for deep inelastic scattering. Estimate the pion nucleon sigma term and
the proton spin carried by the quarks by calculating the matrix elements
< N|gg|N > and < N|gv,vsq|N >. Some of these topics will be covered by
Prof. Martinelli, for others a good reference is the proceedings of LATTICE
conferences [9)]. .
— Analyze the behavior of QCD at high temperatures and address questions
like the nature of the phase transition, the transition temperature T, the
equation of state, and the collective excitations near and above T,. The
topic of QCD at finite temperature has been covered by J-P Blaizot at
this school, so I will only list for you my favorite pedagogical reviews of
the subject [13]. The lectures by Profs. Martinelli, Liischer, and me will
be confined to understanding and probing the properties of QCD at zero
temperature.

4. Overview of the Lattice Approach

LQCD calculations are a non-perturbative implementation of field theory
using the Feynman path integral approach. The calculations proceed ex-
actly as if the field theory was being solved analytically had we the ability
to do the calculations. The starting point is the partition function in Eu-
clidean space-time

Z = fDA” Dyp Dip =5 (4.1)



INTRODUCTION TO LATTICE QCD 15

where S is the QCD action
S = / dz (iF,L,,F‘“’ —yMy) . (4.2)

and M is the Dirac operator. The fermions are represented By Grassmann
variables ¢ and 1. These can be integrated out exactly with the result

Z = / DA, detM ef 4= (CiFu ™), (4.3)

The fermionic contribution is now contained in the highly non-local term
detM, and the partition function is an integral over only background
gauge configurations. One can write the action, after integration over the
fermions, as S = Sgauge + Squarks = fd4a: (%FWF‘“’) ~ 5, log(DetM;)
where the sum is over the quark flavors, distinguished by the value of the
bare quark mass. :

It is expedient to define the “quenched” approximation (QQCD) from
the very start due to the central role it has played in simulations. It con-
sists of setting DetM = constant which corresponds to removing vacuum
polarization effects from the QCD vacuum. Details and some consequences
of this approximation are discussed in Section 16.8.

Results for physical observables are obtained by calculating expectation
values

©) = - / DA, 05 . (4.4)

where O is any given combination of operators expressed in terms of time-
ordered products of gauge and quark fields. (Expectation values in the
path integral approach correspond to time-ordered correlation functions.)
The quarks fields in O are, in practice, re-expressed in terms of quark
propagators using Wick’s theorem for contracting fields. In this way all
dependence on quarks as dynamical fields is removed. The basic building
block for fermionic quantities is the Feynman propagator,
Sr(y,5,b;z,4,0) = (M‘l)y’J’b (4.5)

T, 0,0 °

where M ~! is the inverse of the Dirac operator calculated on a given back-
ground field. A given element of this matrix (M ‘I)Z’;’z is the amplitude for
the propagation of a quark from site z with spin-color %, a to site-spin-color
Y, 7,b.

So far all of the above is standard field theory. The problem we face
in QCD is how to actually calculate these expectation values and how to
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extract physical observables from these. I will illustrate the second part
first by using as an example the mass and decay constant of the pion.

Consider the 2-point correlation function, (0T}, O(z,t)O;(0,0)]|0)
with ¢t > 0, where the operators O are chosen to be the fourth component of
the axial current Oy = O0; = Ay = 14775t as these have a large coupling to
the pion. This 2-point correlation function gives the amplitude for creating
a state with the quantum numbers of the pion out of the vacuum at space-
time point 0 by the “source” operator O;; the evolution of this state to
the point (z,t) via the QCD Hamiltonian (or more precisely the transfer
matrix to be discussed in Section 5); and finally the annihilation by the
“sink” operator O at (w,t). The rules of quantum mechanics tell us that
O; will create a state that is a linear combination of all possible eigenstates
of the Hamiltonian that have the same quantum numbers as the pion, i.e.
the pion, radial excitations of the pion, three pions in J = 0 state, .... The
second rule is that on propagating for Euclidean time ¢, a given eigenstate
with energy E picks up a weight e~ ¥*. Thus, the 2-point function can be
written in terms of a sum over all possible intermediate states

01S 01(e,)0:0)10) = Y- NOAHHOND) - (46)

To study the properties of the pion at rest we need to isolate this state from
the sum over n. To do this, the first simplification is to use the Fourier
projection ) _ as it restricts the sum over states to just zero-momentum
states, so B, — M,. (Note that it is sufficient to make the Fourier pro-
jection over either O; or Oy.) The second step to isolate the pion, i.e.
project in the energy, consists of a combination of two strategies. One,
make a clever choice of the operators 0 to limit the sum over states to a
single state (the ideal choice is to set O equal to the quantum mechanical
wave-functional of the pion), and two, examine the large ¢ behavior of the
2-point function where only the contribution of the lowest energy state that
couples to O; is significant due to the exponential damping. Then

O 0500 =, UK e

The right hand side is now a function of the two quantities we want since
(0]A4(p = 0)|x) = My fr. In this way, the mass and the decay constant
are extracted from the rate of exponential fall-off in time and from the
amplitude.

Let me now illustrate how the left hand side of Eq. 4.7 is expressed in
terms of the two basic quantities we control in the path integral — the gauge

IS



INTRODUCTION TO LATTICE QCD 17

fields and the quark propagator. Using Wick contractions, the correlation
function can be written in terms of a product of two quark propagators

SFa
(0 3 Bz, st (z,¢) B0, 0)7475:6(0, 0)[0)

= (0] Y Sr(0;2,t)ya5Sr (2, £;0)7475]0).- (4.8)

This correlation function is shown in Fig. 4A. To illustrate this Wick con-
traction procedure further consider using gauge invariant non-local oper-

M - Y dzi
ators, for example take O = ¢(:1;,t)’)’4’75(77€fx 4 gA“(z))'(/)(y, t) where P
stands for path-ordered. After Wick contraction the correlation function
reads

v .
k1

(01 Se(0;2,01015(Pel” 741 Sp(z, 1y, 0 (Pels #4)[0). (4.9)

and involves both the gauge fields and quark propagators. This correla-
tion function would have the same long ¢ behavior as shown in Eq. 4.6,
however, the amplitude will be different and consequently its relation to
f» will no longer be simple. The idea behind strategies for improving
the projection of @ on to the pion is to construct a suitable combina-
tion of such operators that approximates the pion wave-function. For ex-
ample, if ¢(z) is the pion wave-functional, then the “smeared” operator
O = $(0)vays ( [ d®z¢(z)p(z)) is the ideal choice.

Finally, it is important to note that to get the 2-point function corre-
sponding to the propagation of the physical pion we have to average the
correlation function over gauge configurations as defined in Eq. 4.4, i.e. do
the functional integral.

An overview of how such calculations of expectation values can be done
consists of the following steps.

. o Defining a finite dimensional system: The Yang-Mills action for gauge
fields and the Dirac operator for fermions have to be transcribed onto a dis-
crete space-time lattice in such a way as to preserve all the key properties
of QCD - gauge invariance, chiral symmetry, topology, and a one-to-one
relation between continuum and lattice fields. This step is the most diffi-
cult, and even today we do not have a really satisfactory lattice formulation
that is chirally symmetric in the m, = 0 limit and preserves a one-to-one
relation between continuum and lattice fields, ¢.e. no doublers. In fact, the
Nielson-Ninomiya theorem states that for a translationally invariant, local,
hermitian formulation of the lattice theory one cannot simultaneously have




18 Rajan Gupta

(A) Local Interpolating operators

Sr 0
@ fﬁg{ (y,0)

Gauge
Links

x,0) Sr 0,0 -
(B) Extended Interpolating operators

Fig. 4. A schematic of the pion 2-point correlation function for (A) local and (B) non-
local interpolating operators.

chiral symmetry and no doublers [14]. One important consequence of this
theorem is that, in spite of tremendous effort, there is no practical formu-
lation of chiral fermions on the lattice. For a review of the problems and
attempts to solve them see [15-17] and [18].

o Discretization Errors: This problem is encountered when approximating
derivatives in the action by finite differences,

0.9(2) = Da(z) = - (Bl +0) — Bz — )

= % (6“3” - 6_06“)(;3(33) . (4.10)

As is obvious this introduces discretization errors proportional to the square
of the lattice spacing a. These errors can be reduced by either using higher
order difference schemes with coefficients adjusted to take into account
effects of renormalization, or equivalently, by adding appropriate combina-
tions of irrelevant operators to the action that cancel the errors order by or-
der in a. The various approaches to improving the gauge and Dirac actions
are discussed in Sections 12 and 13. In my lectures I will concentrate on
the three most frequently used discretizations of the Dirac action — Wilson
[19], Sheikholeslami-Wohlert (clover) [20], and staggered [21], which have
errors of O(a), O(asa) — O(a?) depending on the value of the coefficient
of the clover term, and O(a?) respectively. Reducing the discretization er-
rors by improving the action and operators increases the reliability of the
results, and for dynamical simulations may even prove necessary due to
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limitations of computer power. At the same time it is important to note
that there exists a well defined procedure for obtaining continuum results
with even the simplest formulation, Wilson’s original gauge and fermion
action [19]. In this case, however, it is necessary to quantify and remove
the discretization errors by a reliable extrapolation to a = 0.

o Generating background gauge fields: The Euclidean action § =
Jdtz( 2F,F* — Tr log M) for QCD at zero chemical potential is real
and bounded from below. Thus e~5 in the path integral is analogous to
the Boltzmann factor in the partition function for statistical mechanics
systems, i.e. it can be regarded as a probability weight for generating con-
figurations. Since § is an extensive quantity the range of S is enormous,
however, the distribution is very highly peaked about configurations that
minimize the free energy. Configurations close to the peak dominate the
functional integral. Such important configurations can be generated by
setting up a Markov chain in exact analogy to, say, simulations of the Ising
model. They are called “importance sampled” as they are generated with
probability of occurrence given by the weight e~%. For a discussion of the
methods used to update the configurations see [1] or the lectures by Creutz
and Sokal in [2].

o Calculation of the quark propagator on a given background gauge field: For
a given background gauge configuration, the Feynman quark propagator Sp
is a. matrix labeled by three indices - site, spin, and color. A given element
of this matrix gives the amplitude for the propagation of a quark with
some spin, color, and space-time point to another space-time point, spin,
and color. Operationally, Sr is simply the inverse of the Dirac operator
M. Once space-time is made discrete and finite, the Dirac matrix is also
finite and its inverse can be calculated numerically. Inverting the Dirac
operator is the key computational step in LQCD and consumes over 90%
of the CPU cycles. To construct the correlation functions requires S only
from a given source point to all other sites of the lattice. This corresponds
to 12 columns (or rows) of M !, one each for the 12 spin and color degrees
of freedom.

o Correlation functions: The correlation functions are expressed as path
ordered products of quark propagators and gauge fields using Wick contrac-
tion of the operator fields. There are two kinds of correlation functions that
are ‘calculated — gauge invariant correlation functions as discussed above
for the case of the pion, or those in a fixed gauge. _

o FEzxpectation values: The expectation value is simply an average of the
correlation function evaluated over the set of “importance sampled” con-
figurations. Even on a finite lattice the set of background gauge config-
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urations is infinite as the variables are continuous valued. Thus, while it
is possible to calculate the correlation functions on specified background
gauge configurations, doing the functional integral exactly is not feasible.
It is, therefore, done numerically using monte carlo methods.

My recommendation for the simplest way to understand the computa-
tional aspects of LQCD calculations is to first gain familiarity with the
numerical treatment of any simple statistical mechanics system, for exam-
ple the Ising model. The differences are: (i) the degrees of freedom in
LQCD are much more complicated — SU(3) link matrices rather than Ising
spins, and quark propagators on these background configurations evaluated
by inverting the Dirac operator; (ii) The action involves the highly nonlocal
term Ln Det M which makes the update of the gauge configurations very
expensive; and (iii) the correlation functions are not simple products of spin
variables like the specific heat or magnetic susceptibility, but complicated
functions of the link variables and quark propagators.

The subtleties arising due to the fact that LQCD is a renormalizable
quantum field theory and not a classical statistical mechanics system come
into play when analyzing the behavior of the correlation functions as a
function of the lattice spacing a, and in the quantum corrections that renor-
malize the input parameters (quark and gluon fields and their masses) and
the composite operators used in the correlation functions. At first glance
it might seem that we have introduced an additional parameter, the lattice
spacing a, in LQCD, however, as will be shown in Section 14, the coupling
g and the cutoff @ are not independent quantities but are related by the
renormalization group as

.1 2 —pB1/282
Aqep = lim e/ (gy6?(a)) /260 (4.11)

where Agcp is the non-perturbative scale of QCD, and By and 3; are the
first two, scheme independent, coeflicients of the g-function. In statistical
mechanics systems, the lattice spacing a is a physical quantity — the inter-
molecular separation. In a quantum field theory, it is simply the ultraviolet
regulator that must eventually be taken to zero keeping physical quantities,
like the renormalized couplings (Agep and quark masses), spectrum, etc,
fixed.

The reason that lattice results are not exact is because in numerical
simulations we have to make a number of approximations as discussed in.
Section 16. The size of the associated uncertainties is dictated by the
computer power at hand. They are being improved steadily with computer
technology, better numerical algorithms, and better theoretical understand-
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ing. I shall return to the issue of errors after discussing the formulation of

LQCD.

5. Connection between Minkowski and Euclidean Field Theory
and with Statistical Mechanics

This section is a brief recapitulation of technical issues regarding the Eu-
clidean path integral and extracting physics from Euclidean correlation
functions. For details see [3,4] or the texts on statistical field theory, for
example [22,23].

A D-dimensional Minkowski field theory (D — 1 spatial dimensions and
one time dimension) is connected to a D-dimensional Euclidean field theory
through analytical continuation. Under Wick rotation

To =1 —iTq E—iT,
Po=E —ips. (5.1)

The Euclidean convention is

z%:me =z? - :—z%,r,
=1
4

pr=) pi=p°*—E*=—p}. (5.2)
=1

The connection between statistical mechanics and a Euclidean field the-
ory in D-dimensions is most transparent when the field theory is quantized
using the Feynman path integral approach. This connection forms the ba-
sis of numerical simulations using methods common to those used to study
statistical mechanics systems. A synopsis of the equivalences between the
two is given in Table 1.

Let me start with a quick summary of the FBEuclidean the-
ory. Consider the generic 2-point correlation function I'p(t,k) =
(0| f d*ze=**T[F(x,t)F1(0,0)]|0) in Minkowski space. The Heisenberg
operator F(z,t) can be written as

.7'-(32, t) — ei%t—ipz}-e-i%t+ipz (53)
so that
Tt k) = (0| / dgeike (emt—iz’mfe~‘7“+iﬂff) |0) (5.4)
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Table 1
The equivalences between a Euclidean field theory and Classical Statistical Mechanics.
Buclidean Field Theory Classical Statistical Mechanics
Action Hamiltonian
unit of action h units of energy 8 = 1/kT
Feynman weight for amplitudes Boltzmann factor e~
o—S/h :e—det/h
Vacuum to vacuum amplitude Partition function zmn ;. e~PH
f Dé e—S/h
Vacuum energy Free Energy
Vacuum expectation value <0| (’)l 0> Canonical ensemble average <(9>
Time ordered products Ordinary products
Green’s functions <O|T[01 ... 0] |0> Correlation functions <(91 ... (9,,>
Mass M correlation length £ = 1/M
Mass-gap exponential decrease of correlation functions |
Mass-less excitations spin waves
Regularization: cutoff A lattice spacing a
Renormalization: A — oo continuum limit ¢ — 0
Changes in the vacuum phase transitions

where, in dropping the time-ordered product, it is assumed that ¢ > 0.
Using the invariance of the vacuum under time and space translations and
assuming F! = F for brevity, this becomes

T (2, k) = (0] f e (fe—iw“pmf) 10)

= (0|é(p ~ k) (fe—““f) |0). (5.5)

Since the time dependence is explicit, we can Wick rotate to Euclidean
space using t — —7 and keeping H unchanged

I'e(t) = (06(p — k) (Fe"’”}') 10) . (5.6)

To get the path integral representation we divide the time interval into N
steps 7 = Na and insert a complete set of states |¢}{$| at each step.

Te(t)=dp—k) > (0|F|p){(d1]e"™*|2)... .
¢1.--dN

o Apn—1]e ™|on){dn]|F|0) (5.7)

The discussion of how, by this introduction of the complete set of states,

one trades the operator form of the quantum mechanical amplitude by
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the sum over paths is standard and thus not repeated. On this “lattice”
the transfer matrix 7 = exp(—%a) plays the role of the time translation
operator, from which the continuum Hamiltonian is obtained as

.1
H=lim —= log7. (5.8)

In order for H to be a self-adjoint Hamiltonian it is necessary that 7 is
a symumetric, bounded, and positive operator acting on a Hilbert space
of states with a positive norm. The necessary condition for this, is the
Osterwalder-Schrader reflection positivity [24]. That this condition holds
for LQCD has been shown by an explicit construction by M. Liischer [25].
Therefore, the correlation functions in the desired physical Minkowski the-
ory can be obtained by analytical continuation of their Euclidean counter-
parts.

Assuming that the conditions for a sensible Euclidean theory have been
established, the vacuum to vacuum amplitude (also called the generating
functional or the partition function), in presence of a source J, is

Z|J] = / dpe=Se+7¢ (5.9)

where Sg is the Buclidean action. Correlation functions can be obtained
from this in the standard way by dlfferenhatmg log Z[J] with respect to J,
for example <0,¢($)¢(0)|O) 7w 57y 108 Z[J]|r=o-

Lastly, I summarize the relations between Euclidean and Minkowski
quantities. The basic tool is the repeated insertion of a complete set of
momentum states in Eq. 5.7. I use the relativistic normalization of states

(klp) = 2BL0),p.0k,p,00.p. "—3 2E(2m)°6°(p—k). (5.10)
Then, for a spectrum of stable isolated states [n) with masses M, that
couple to an interpolating field F,

ratr - 5 EDGED)

(5.11)

Now it is easy to obtain the connection between these M,, and the physical
spectrum. A fourier transform in Euclidean time followed by a rotation to
Minkowski space gives

/d’feip“"' e Mol = ! + 1
2M,, 2M, (M, —1ps) = 2M,(M, +ips)’
i B 1
T MZ4pE’




24 Rajan Gupta

1
P4-:—>1,E MZ EZ (512)
The M, are precisely the location of the poles in the propagator of [n). This
is why one can simply short step the necessary analytical continuation as
the masses measured from the exponential fall-off are the pole masses of
the physical states. For 7 — co only the lowest state contributes due to the
exponential suppression, and this provides a way of isolating the lightest
mass state.
This simple connection holds also for matrix elements. Consider, for
T2 >> 11 >> 0, the three-point function

/ d*zd®ye "0V (0|T[F¢(z, 72)O(y, 1) F:(0,0)]|0) = )

ZZ <0t]:fl“>e ~Me(n—m) (a|O[b) (b]F:]0) e~Mom .

2M,

(5.13)

The two factors on the left and right of (a|O|b) are each, up to one decay
amplitude, the same as the 2-point function discussed in Eq. 5.11. They,
therefore, provide, for large 72 — 71 and 7y, the isolation of the lowest states
in the sum over states. These can be gotten from a calculation of the 2-point
function. Consequently, <a,|(9|b> measured in Euclidean simulations is the
desired matrix element between these states and no analytic continuation
to Minkowski space is necessary.

These arguments break down once the sum over states is not just over
stable single particle states. Consider, for example, an F that is the p
meson interpolating field. In that case there are also the 27, 47 intermediate
states with a cut beginning at £ = /2M,. The physical characteristics
of p meson (mass and width) can be represented by a complex pole in the
propagator that, in Minkowski space, lies on the second sheet under the cut.
This physical pole can no longer be reproduced by measuring the “energy”
given by the exponential fall-off of Euclidean correlation function at large
7 [26]. It requires measuring the correlation function for all intermediate
states and momenta (all 7), and then doing the fourier transform in
followed by the analytical continuation py — —iFE. N

For the same reason there does not exist a simple way for calculating
n-particle scattering amplitudes. A general 2-particle scattering amplitude
{4-point correlation function) is complex precisely because the intermedi-
ate states involve a sum over resonances and a continuum with all values
of momenta. In principle this can be obtained from Euclidean correlation
functions but only by measuring them with essentially infinite precision for
all possible 7 and then doing the analytical continuation. In practice this
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is a hopeless possibility. The one exception is the amplitude at threshold
which is real. M. Lischer has shown how the 2-particle scattering am-
plitudes at threshold can be calculated from the energy shift in a finite
volume, the difference between the 2-particle energy and the sum of the
two particles in isolation [27-30].

6. Formulation of Lattice Gauge Theories

In 1974 Wilson [31] formulated Euclidean gauge theories on the lattice as
a means to study confinement and carry out non-perturbative analysis of
QCD. The numerical implementation of the path integral approach requires
the following five steps.

— Discretization of space-time.

— The transcription of the gauge and fermion degrees of freedom.

— Construction of the action.

— Definition of the measure of integration in the path integral.

— The transcription of the operators used to probe the physics.

Of these, the construction of the action and the operators is the most
intricate. Rather than give you the most recent and improved version of
the lattice action, which will be the subject of Martin Liischer’s lectures, I
have chosen to follow the original path of discovery.

6.1. Discrete space-time grid

There are a number of possible ways to discretize space-time in 4 Euclidean
dimensions. These include hypercubic, body-centered cubic [32], and ran-
dom [33] lattices. Of these the simplest is the isotropic hypercubic grid
with spacing ¢ = ag = ag and size N5 x Ng x Ng x Np. Since this grid
is used almost exclusively, it will be the only one discussed in these sets
of lectures. In the case of the random lattice even the free field analysis
becomes difficult [33]. In fact very little exploration of variant grid ge-
ometries has actually been done, as there is little expectation of significant
physics gains to offset the additional computational complexity. Recently,
proposals involving anisotropic lattices — a hypercubic grid with different
spacing in space and time directions — have shown promise for reducing the
discretization errors. I shall come back to this development in Section 18.3
when discussing the glueball spectrum.
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6.2. Lattice transcription of field variables 1(z) and A (z):

The lattice transcription of the matter fields 3 (z) is straightforward. The
quark field is represented by anticommuting Grassmann variables defined
at each site of the lattice. They belong to the fundamental representation
of SU(3). The rules for integration over a pair of fermion variables ¢ and
1 are those standard for Grassmann variables

[awdt = [apasv=[apdz7=0

Javw = [a55=

[avdzeT =1 6.1)

Since the fermion action is linear in both ¢ and ¥, these rules can be used
to integrate over them, and the path integral reduces to one over only the
gauge degrees of freedom. Thus, it turns out that in practice one does not
have to worry about transcribing grassmann variables on the lattice and
implementing the Pauli exclusion principle.

As an aside [ would like to mention that the rules of integration for
Grassmann variables are sufficient to do the fermion path integral. Con-
sider (¥(z1) ... ¥(zn) (1) - .. ¥(zs)). To get a non-zero expectation value
one needs to saturate each site with a 9. The sites not covered by
the fields in the operator have to come from the S}"" term in the ex-
pansion expSy = 1+ 87 + 87/2 + ..., where V is the total number of
sites. Since Sf = Y ¥(z) (I + m)y(z) is a sum over sites, the number of
terms in S}/_” poses an exponentially hard combinatorial problem. Fur-
thermore, each term contributing to the connected diagram will contain a
path-ordered product of gauge links (coming from the discretized I} term
in Sy. For example, see Eq. 7.5) connecting the sites in the operator, while
the fermionic integration is £mY ~™ with the sign given by the number of
times the 4 and ¥ are anti-commuted. You should convince yourself that
the fermionic functional integral is the sum over all possible paths touching
each site a maximum of one time. Having enumerated all such paths and
their weights, the gauge functional integral now requires integrating over
each link in each path. This is clearly a very formidable approach, and in
practice rarely considered.

The construction of gauge fields is less intuitive. In the continuum, the
gauge fields A, (z) carry 4-vector Lorentz indices, and mediate interactions
between fermions. To transcribe them Wilson noted that in the continuum
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a fermion moving from site = to y in presence of a gauge field A,(z) picks
up a phase factor given by the path ordered product

Y.
Ply) = Peld vy (6.2)
The eight types of gluons that mediate interactions between quarks are
written in terms of the matrix A,(z) = Af(z) - A./2, where the group

generators \, are normalized to TrA Ay = 2845. Eq. 6.2 suggested that
gauge fields be associated with links that connect sites on the lattice. So,
with each link Wilson associated a discrete version of the path ordered
product

Uz, z+(1) = Udz) = e@04u=ts) (6.3)

where, for concreteness, the average field A, is defined at the midpoint of
the link, and U is a 3 x 3 unitary matrix with unit determinant. Also, the
path ordering in eqn. (2.3) specifies that

U,z - ) = U_,u(z) = e 9%E=4) = Utz -p,2) . (6.4)
6.3. Discrete Symmetries of the lattice theory

The symmetry group of the continuum theory — Poincaré invariance — is
reduced to a discrete group. On a hypercubic lattice rotations by only 90°
are allowed so the continuous rotation group is replaced by the discrete
hypercubic group [34]. Translations have to be by at least one lattice unit,
so the allowed momenta are discrete

2nn

k= -E' n:O,l,L
or equivalently
2rn
k =+ — = .Lf2.
+ Ta n=0,1, /

On the lattice momentum is conserved modulo 2.

In addition to the local gauge symmetry and Poincaré invariance, the
lattice action is invariant under parity (P), charge conjugation () and
time reversal (7). The behavior of the field variables under these discrete
transformations is given in Table 2. '

6.4. Local Gauge Symmetry

The effect of a local gauge transformation V(z) on the variables (z) and
U is defined to be

P(z) = V(e)p(z)
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Table 2

The behavior of the gauge and fermion degrees of freedom under
the discrete transformations of parity, charge-conjugation, and time-
reversal. The charge-conjugation matrix C satisfies the relation

Cy.C71 = ——7;{' = —7,,, and shall be represented by C = 7472.
Note that in the Buclidean formulation 7 is a linear operator.
P C T
Us(z, ) Us(—,7) Ur(z,7) U_ys(z,—7)
Ui (=, ) U_i{—e,T) U?(=,7) U; (e, ~7) "

ver) | wien) | @@ | nwve-n)

Ple, ) P(—2, 7)1 —¢T (@, 7)C1 Pl@, —7)v57e

¥(z) = $(=)V(2)
Ua(z) = V(@)Uu(z)V (2 +5) (6.5)

where V() is in the same representation as the U, i.e., it is an SU(3) ma-
trix. With these definitions there are two types of gauge invariant objects
that one can construct on the lattice.

— A string consisting of a path-ordered product of links capped by a fermion
and an antifermion as shown in Fig. 5a. A simple example is

Tt $(2) Uu(o) Un(z + ). Uply — §) 9(y) (6.6)
where the trace is over the color indices. I will use the word string for a
generalized version; a single spin and color trace as defined in Eq. 6.6, or
a product of elementary strings that are path-ordered and do not have a
spatial discontinuity. On lattices with periodic boundary conditions one
does not need the ¢, caps if the string stretches across the lattice and is
closed by the periodicity. Such strings are called Wilson/Polyakov lines.
— Closed Wilson loops as shown in Fig. 5b. The simplest example is the,
plaquette, a 1 X 1 loop,

Wit = Re Tr (Uulz) U(z + ) Ul(z +2) Ul(z)) . (6.7)
Unless otherwise specified, whenever I use the term Wilson loops I will as-
sume that the real part of the trace, Re Tr, has been taken. For SU(N > 3)
the trace of any Wilson loop in the fundamental representation is com-
plex, with the two possible path-orderings giving complex conjugate values.
Thus, taking the trace insures gauge invariance, and taking the real part
is equivalent to averaging the loop and its charge conjugate.

Ezercise: Convince yourself that there do not exist any other independent
gauge invariant quantities.
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Fig. 5. The two gauge invariant quantities. a) An ordered string of U's capped by a
fermion and an anti-fermion and b) closed Wilson loops.

Ezercise: Convince yourself that to preserve gauge invariance one has to
formulate the lattice theory in terms of link variables U, rather than the
A, directly.

A gauge invariant action, therefore, has to be built out of loops and
strings. However, note that these two basic gauge invariant objects can be
of arbitrary size and shape. Furthermore, they can be taken to lie in any
representation of color SU(3). The only necessary constraint is that it give
the familiar continuum theory in the limit ¢ — 0. The reasons for wanting
to preserve gauge invariance at all a is that otherwise one would have
many more parameters to tune (the zero gluon mass, and the equality of
the quark-gluon, 3-gluon, and 4-gluon couplings are consequences of gauge
symmetry) and there would arise many more operators at any given order in
a (these are irrelevant operators, but at finite a give rise to discretization
errors as discussed in Section 8). In fact, one would like to preserve as
many symmetries of the theory as possible at all values of @ and not just
in the continuum limit. It turns out to be relatively simple to maintain
local gauge invariance, however, maintaining chiral symmetry, which has
proven so important in the phenomenology of light quarks, and a one-to-one
relation between Dirac and lattice fermion degrees of freedom has eluded
us. This is discussed in Section 9. Also, discretization de facto breaks
continuous rotational, Lorentz, and translational symmetry. The key idea
of improved discretization schemes, to be discussed in Sections 8, 12, and
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13, will be to implement the breaking of these symmetries by operators
that come with sufficiently many powers of a so that their effect is very
local, and thus small on physical (long-distance) quantities.

7. Simplest Formulation of the Lattice Action
7.1. Guauge Action

The gauge action can bé expressed in terms of closed loops. I will outline
the construction for the simpler case of the abelian U(1) model in which the
link variables are commuting complex numbers instead of SU(3) matrices.
Consider the simplest Wilson loop, the 1 x 1 plaquette W1

Wt =U,(@)U,(z + B)UL(z + )U (=)
— eioglAu(e+ )+ A (it )~ Au(24+0+5) ~ Ay (a+ )] (7.1)

o

Expanding about z + f%— gives

exp [iazg(B“A,, —-0,4,) + i’ 9(83 813,AM) + ..
atg?
= 1+iangp,, - TF‘“,FPW + O(GG) + ... (72)
The real and imaginary parts of the loop give
ReTr(1— W, ") = Fu.,F"” + terms higher order in a
Im(W, ) =a gFM,, . (7.3)

So far the indices ¢ and v are uncontracted. There are 6 distinct posﬂ:lvely
oriented plaquettes, {¢ < v}, associated with each site. Summing over
u,v, and taking care of the double counting by an extra factor of %, gives

4
= Z D ReTr(l-Wit) = %— YD FuF* > % /d‘*azFWFW
z u<v T Y

Thus, to lowest order in a, the expansion of the plaquette gives the
continuum action. The steps in the derivation for non-abelian groups are
identical and the final expression (up to numeric factors) is the same. The
result for the gauge action for SU(3), defined in terms of plaquettes and
called the Wilson action, is

Sy = 2ZZReTr—(1—W1’<1 : (7.4)

. pulv
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For historic reasons the lattice calculations are mostly presented in terms
of the coupling 3 = 6/g*. Since 3 is used for many other quantities like
1/kT or the B-function, I shall try to be more explicit in the use of notation
(g versus () if there is a possibility for confusion.

Exercise: Repeat the Taylor expansion for the physical case of SU(3). Show
that the non-abelian term in F,, = 8,4, — 8, A, + g[A,, 4] arises due to
the non-commuting property of X matrices. The details of the derivation
Jor §U(2) are given in section § of Ref. [8].

There are four important points to note based on the above construction
of the lattice action.

1) The leading correction is O(a?). The term %iF#,,(aﬁA,, —834,) is
present in the expansion of all planar Wilson loops. Thus at the clas-
sical level it can be gotten rid of by choosing an action that is a linear
combination of say 1 x 1 and 1 x 2 Wilson loops with the appropriate
relative strength given by the Taylor expansion (see Section 12).

2) Quantum effects will give rise to corrections, i.e. a2 — X (g*)a® where in
perturbation theory X (¢%) = 1+c1¢® +.. ., and will bring in additional
non-planar loops. Improvement of the action will consequently require
including these additional loops, and adjusting the relative strengths
which become functions of g?. This is also discussed in Section 12.

3) .The reason for defining the action in terms of small loops is compu-
tational speed and reducing the size of the discretization errors. For
example the leading correction to 1 x 1 loops is proportional to a?/6
whereas for 1 x 2 loops it increases to 5a2/12. Also, the cost of simula-
tion increases by a factor of 2 — 3.

4) The electric and magnetic fields E and B are proportional to F,,.

Eq. 7.3 shows that these are given in terms of the imaginary part of
Wilson loops.

7.2. Fermion Action
To discretize the Dirac action, Wilson replaced the derivative with the

symmetrized difference and included appropriate gauge links to maintain
gauge invariance

Y= - 9() 3 Wllu(ep(at ) = Ulte =) (o= ] (1)
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It is easy to see that one recovers the Dirac action in the limit ¢ — 0 by
Taylor expanding the U, and ¥(z + i) in powers of the lattice spacing a.
Keeping only the leading term in @, Eq. 7.5 becomes

2—1a¥($)7u[ (1 +iagA,(z + %) +...) (W) +ap'(z)+...) -

- i
(l—zagAM(a:—E))-{—...) (Y(z) —ad'(z) +...) ]
— a2 3
= P(z)yu(0u + Fa“ +...)¢¥(z)
s a® 1. 2
+igp(z)yulAu + 9 (ZauAu + (0 Ap)ou + Aﬂay,) +.. (=) ,
which, to O(a?), is the kinetic part of the standard continuum Dirac action

in Buclidean space-time. Thus one arrives at the simplest (called “naive”)
lattice action for fermions

sN =my 3 P(a)(a)
+ 2_1a ZE(“;)')’N[U;&@)’/’@U + i) — U):(m ~ )p(z — )]
= > P@)MEUI() 6)

where the interaction matrix MY is

1 N ~
le,\;[U] = mqéij + %Z [7HU7:1H07:’J.—M - 7/1Uzj-—u,u6iyj+11] (77)
n

The Euclidean -y matrices are hermitian, -y, = 7):, and satisfy {7y, 7} =
26,. The representation I shall use is

0 o 1 0 0 1
7_(—ia 0) ’74:(0 —1) "75:(1 0)’ (7.8)

which is related to Bjorken and Drell conventions as follows: +v; = iv%p,
Y4 = Y%ps ¥5 = Y%p. In this representation v,7vs are pure imaginary,
while ~2, 74, vs are real.

The Taylor expansion showed that the discretization errors start at
O(a?). For another simple illustration consider the inverse of the free-field
propagator m + ¢/a 3>, vusin(pua). Set p = 0 and rotate to Minkowski
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space (ps — 4E, i.e. sinpsa — isinhEa). Then, using the forward propaga-
tor (upper two components of v4), gives

ole,, _  _:
ng"‘a = sinhEq (7.9)

for the relation between the pole mass and the energy. This shows that,
even in the free field case, the continuum relation E(p = 0) = m is violated
by corrections that are O(a?).

Symmetries: The invariance group of the fermion action under rotations
in space and time is the hypercubic group. Full Euclidean invariance will
be recovered only in the continuum limit. The action is invariant under
translations by ¢ and under P, C, and T as can be checked using Table 2.

The naive action ;/)_wa;\;zpy has the following global symmetry:

b(a) — “y(z)
(@) » Pla)e™ (7.10)

where # is a continuous parameter. This symmetry is related to baryon
number conservation and leads to a conserved vector current. For my = 0
the action is alse invariant under

P(z) — e¥Vp(x)
(@) > Pla)en (7.11)

Having both a vector and an axial symmetry in a hard-cutoff regularization
would imply a violation of the Adler-Bell-Jackiw theorem. It turns out that
while the naive fermion action preserves chiral symmetry it also has the
notorious fermion doubling problem as explained in Section 9. The chiral
charges of these extra fermions are such as to exactly cancel the anomaly.
In fact the analysis of 8% lead to a no-go theorem by Nielsen-Ninomiya. [14]
that states that it is not possible to define a local, translationally invariant,
hermitian lattice action that preserves chiral symmetry and does not have
doublers.

We will discuss two fixes to the doubling/anomaly/chiral symmetry
problem. First, include an additional term in the action that breaks chi-
ral symmetry and removes the doublers (Wilson’s fix). Second, exploit
the fact that the naive fermion action has a much larger symmetry group,
Uv(4) @ UA(4), to reduce the doubling problem from 2¢ = 16 — 16/4 while
maintaining a remnant chiral symmetry (staggered fermions). In both cases
one regains the correct anomaly in the continuum limit. Before diving into
these fixes, I would like to first discuss issues of the measure of integra-
tion and gauge fixing, and give an overview of Symanzik’s improvement
program.
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7.3. The Haar Measure

The fourth ingredient needed to complete the formulation of LQCD as a
quantum field theory via the path integral is to define the measure of inte-
gration over the gauge degrees of freedom. Note that, unlike the continuum
fields A, lattice fields are SU(3) matrices with elements that are bounded
in the range [0, 1]. Therefore, Wilson proposed an invariant group measure,
the Haar measure, for this integration. This measure is defined such that
for any elements V' and W of the group

f dUF(U) = / dUFUV) = / U F (W) (7.12)

where f(U) is an arbitrary function over the group. This construction is
simple, and has the additional advantage that in non-perturbative studies
it avoids the problem of having to include a gauge fixing term in the path
integral. This is because the field variables are compact. Hence there are
no divergences and one can normalize the measure by defining

aUu = 1 (7.13)
/

For gauge invariant quantities each gauge copy contributes the same
amount. Consequently the lack of a gauge fixing term just gives an overall
extra numerical factor. This cancels in the calculation of correlation func-
tions due to the normalization of the path integral. Note that gauge fixing
and the Fadeev-Papov construction does have to be introduced when doing’
lattice perturbation theory [36].

The measure and the action are invariant under C, P, 7 transformations,
therefore when calculating correlation functions via the path integral we
must average over a configuration I and the ones obtained from it by the
application of C, P, 7. In most cases this averaging occurs very natu-
rally, for example, Euclidean translation invariance guarantees P and T
invariance. Similarly, taking the real part of the trace of a Wilson loop is
equivalent to summing over U and its the charge conjugate configuration.
A cook-book recipe for evaluating the behavior of correlation functions af-
ter average over configurations related by the lattice discrete symmetries
is given in Section 17.

One important consequence of these symmetries is that only the real
part of Euclidean correlation functions has a non-zero expectation value.
This places restriction on the quantities one can calculate using LQCD. For
example, simulations of LQCD have not been very successful at calculations
of scattering amplitudes, which are in general complex [48]. The connection
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between Minkowski and Euclidean correlation functions was discussed in
Section 5. To get scattering amplitudes what is required is to first calculate
FEuclidean amplitudes for all values of the Euclidean time 7, followed by a
fourier transform in 7, and finally a Wick rotation to Minkowski space. For
such an procedure to work requires data with phenomenal accuracy. Unfor-
tunately, simulations give Euclidean correlation functions for a discrete set
of 7 and with errors that get exponentially magnified in the rotation. The
best that has been done is to use Liischer’s method that relates scattering
phase shifts to shifts in two particle energy states in finite volume [27,28].
So far this method has been tested on models in 2-4 dimensions, and used
to calculate scattering lengths in QCD [29,30].

7.4. Gauge Fizing and Gribov Copies

Gauge invariance and the property of group integration, fdU U =0, are
sufficient to show that only gauge invariant correlation functions have non-
zero expectation values. This is the celebrated Elitzur’s theorem [37]. It
states that a local continuous symmetry cannot be spontaneously broken.
In certain applications (study of quark and gluon propagators [38], 3-
gluon coupling [39], hadronic wavefunctions [40], and determination of
renormalization constants using quark states [41]) it is useful to work in
a fixed gauge. The common gauge choices are axial (n,4, = 0 where
7 in Minkowski space is a fixed time-like vector. The common choice is
A4 = 0), Coulomb (9;4; = 0), and Landau (8,4, = 0). Their lattice
analogues, assuming periodic boundary conditions, are the following.
Maximal Axial Gauge: On a lattice with periodic boundary condi-
tions one cannot enforce Ay = 0 by setting all links in the time direction
to unity as the Wilson line in each direction is an invariant. The gauge
freedom at all but one site can be removed as follows. Set all time-like
links Us = 1 on all but one timeslice. On that time-slice all U, links are
constrained to be the original Wilson line in 4-direction, however, one can
set links in £ direction Us = 1 except on one z-plane. On that z-plane set
U; links to the Wilson line in that direction and all links in ¢ direction
U, = 1 except on one y-line. On this y-line set all U links to the value
of y-lines and links in £ direction U; = 1 except on one point. While such
a construction is unique, the choice of the time-slice, z-plane, y-line, and
x-point and the labeling of z,y, 2, axis are not. Also, this gauge fixing
does not respect Euclidean translation invariance and it is not smooth.
Coulomb Gauge: The lattice condition is given by the gauge transfor-
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mation V(z) that maximizes the function
FIVI=)_) ReTrV(z) (Ui(m)VT (z+1)+ Uz -)Vi(z~ %)) (7.14)

separately on each time-slice and ¢ runs over the spatial indices 1 — 3.

Landau Gauge: This is defined by the same function as in Eq. 7.14
except that the sum is evaluated on the whole lattice and i = 1 — 4.

The maximization condition, Eq. 7.14, corresponds, in the continuum,
to finding the stationary points of F[V] = [[AY|| = [d*aTr(A})*(z).
What we would like is to find the global minimum corresponding to the
“smoothest” fields A, or the copies in case it is not unique. For any gauge
configuration there is an infinite set of gauge equivalent configurations ob-
tained by applying the set of transformations {V'(z)}. This set is called the
gauge orbit. The first question is whether the gauge fixing procedure gives
a unique solution, i.e. whether the gauge-fixing algorithm converges to the
same final point irrespective of the starting point on the gauge orbit. For
the maximal axial gauge, the construction is unique (the configuration {U}
and {VUV1} for any {V'} give the same final link matrices), so the answer
is clearly yes. For the Coulomb and Landau gauge choices the answer is
no — there are a number of solutions to the gauge-fixing condition. These
are the famous Gribov copies [42]. For a recent theoretical review of this
subject see [43].

The algorithms for fixing to either the Coulomb gauge or the Landaur
gauge are mostly local. Local algorithms generate, for each site, a gauge
matrix v;(z) that maximizes the sum, defined in Eq. 7.14, of the link ma-
trices emerging from that site. This gauge transformation is then applied
to the lattice. These two steps are iterated until the global maximum is
found. The ordered product [], v;(z) gives V(z). For all practical purposes
we shall call this end-point of the gauge fixing algorithm a Gribov copy. It
is, in most cases and especially for the local gauge-fixing algorithms, the
nearest extremum, and not the global minimum of ||[AY|]. A set of Gri-
bov copies can be generated by first performing a different random gauge
transformation on the configuration and then applying the same gauge-
fixing algorithm, or by using different gauge-fixing algorithms. For recent
studies of the efficacy of different algorithms see [44,45].

The Monte Carlo update procedure is such that it is highly improbable
that any finite statistical sample contains gauge equivalent configurations.
So one does not worry about gauge copies. In the gauge-fixed path integral
one would a priori like to average over only one Gribov copy per config-
uration and choose this to be the “smoothest”. Finding the V(z) which
gives the smoothest configuration has proven to be a non-trivial problem.
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The open questions are: (i) how to define the “smoothest” solution of the
gauge-fixing algorithm (¢.e. defining the fundamental modular domain), (i)
how to ascertain that a solution is unique (lies within or on the boundary
of the fundamental modular domain), and (iii) how to find it.

The ultimate question is — what is the dependence of the quantities one
wants to calculate on the choice of Gribov copy? A number of studies have
been carried out 46}, however the results and their interpretation are not
conclusive. Firstly, it is not known whether the smoothest solution lying
within the fundamental modular domain can be found economically for all
configurations and over the range of gauge coupling being investigated. In
the absence of the smoothest solution it is not clear whether (i) the residual
gauge freedom simply contributes to noise in the correlation function, and
(ii) one should average over a set of Gribov copies for each configuration to
reduce this noise. In my opinion these remain challenging problems that
some of you may wish to pursue.

The problem of Gribov copies and the Faddeev-Papov construction (a
gauge fixing term and the Faddeev-Papov determinant) resurfaces when
one wants to do lattice perturbation theory or when taking the Hamilto-
nian limit of the path integral via the transfer matrix formalism. This
construction is analogous to that in the continuum [36]. Finally, let me
mention that in a fixed gauge, the lattice theory has only a BRST invari-
ance [27]. While BRST invariance is sufficient to prove that the theory
is renormalizable, the set of operators of any given dimension allowed by
BRST invariance is larger than that with full gauge invariance. In the
analyses of improvement of the action and operators it is this enlarged set
that has to be considered [47].

8. Continuum limit and Symanzik’s Improvement program

The Taylor expansion of the simple Wilson action for the gauge and fermion
degrees of freedom showed the presence of higher dimensional operators.
Since these are suppressed by powers of the lattice spacing, they are ir-
relevant operators in the language of the renormalization group, ¢.e. they
vanish at the fixed point at @ — 0. Another way of expressing the same
thing is as follows. The lattice theory with a hard cut-off at w/a can be re-
garded as an effective theory [49]. Integration of momenta from oo — 7 /a
generates effective interactions. Thus, in general, we can write the action
as

Sc = SL(ar/a)-I-ZZa”C?A?(W/a) (8.1)
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where S¢(Sp) is the continuum (lattice) action, and the first sum is over all
operators of a given dimension, and the second over all dimensions greater
than four. Similarly, the operators used to probe the physics can be written
as

Oc = Op(x/a)+ ) Z a" DO (7 [a) (8.2)

where in this case quantum corrections can induce mixing with lower di-
mension operators also. The coefficients C}?* and D7 are both functions
of the coupling a,. Parenthetically, one important reason for preserving
gauge, Lorentz, and chiral symmetries at finite a is that they greatly restrict
the set of possible operators of a given dimension.

Now consider the expectation value of a given operator

(OC)Z/dUOce_SC

= / dU{0,+ 3% a"DrOr}e e 1o ClAT

= /dU{OL + ZZa"D?O?}{l - ZZ“MC{“A?‘ b Yems
Z/dUOLe“SL

+/dU(0L{ZZGmC?A;“+...})e—sL
+ de(ZZa"Dz‘O?{l =Y P anCrAT 4. e (83)

Note that the operators A7, which appear in the action, are summed over
all space-time points. This leads to contact terms in Eq. 8.3 which I shall,
for brevity, ignore as they necessitate a proper definition of the operators
but do not change the conclusions.

The basis for believing that LQCD provides reliable results from sim-
ulations at finite a is that the contributions of the lattice artifacts (last
two terms in the last expression) are small, can be estimated, and thus
removed. At this point I will only make a few general statements about
the calculation of expectation values which will be embellished on in later
lectures.

— The contribution of the last two termsin Eq. 8.3 vanishes in the limit a —
0 unless there is mixing with operators of lower dimension. In such cases
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the mixing coefficient has to be determined very accurately (necessitating
non-perturbative methods) otherwise the a — 0 limit is divergent.

— Calculations have to be done at values of a at which contributions of
irrelevant terms organized in successive powers in a decrease at least geo-
metrically.

— To achieve continuum results simulations are carried out at a sufficient
number of values of a to allow reliable extrapolation to ¢ = 0. The “fine-
ness” of the lattice spacing a at which to do the calculations and the number
of points needed depends on the size of the corrections and how well we
can~determine the functional form to use in the extrapolation.

— To improve the result to any given order in a, one has to improve both
the action and the operators to the same order. Such an approach, based
on removing lattice artifacts organized as a power series expansion in a, is
called the Symanzik improvement program.

Eq. 8.3 shows clearly that there is fair degree of flexibility in constructing
LQCD. We are free to add any irrelevant operator with a sensible strength
and still recover QCD in the continuum limit. The only difference between
various constructions of the action is the approach to the continuum limit.
What we would like to do is improve the action and operators so as to
get continuum results on as coarse lattices as possible. On the other hand
improvement requires adding irrelevant terms to both the action and the
operators. This increases the complexity of the calculations and the sim-
ulation time. Thus, the strategy for minimizing discretization errors is a
compromise — optimize between simplicity of the action and operators (de-
fined in terms of the cost of simulation, code implementation, and analyses)
and the reduction of the discretization errors evaluated at some given fixed
value of the lattice spacing, say @ = 0.1 fermi. The remaining errors, pre-
sumably small, can then be removed by extrapolating the results obtained
from simulations at a few values of ¢ to a = 0.

The number of floating points operations needed in the simulations of
LQCD scale roughly as L® in the quenched approximation and L*® with dy-
namical fermions. Current lattice simulations of QCD are done for lattice
spacing a varying in the range 2 GeV < ¢! < 5 GeV. For these pa-
rameter values the corrections due to the O(a), O(ma),O(pa),0(a?),...
terms in the Wilson action are found to be large in many observables. The
importance of improving the lattice formulation (action and operators) is
therefore self-evident, especially for full QCD. Thus, the search for such
actions is a hot topic right now. Before discussing these let me first sum-
marize what one hopes to gain by, and the criteria by which to judge, such
an improvement program.
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1. Improved scaling, i.e. discretization errors are reduced. Consequently
one can work on coarser lattices (smaller L = Ng) for a given accuracy.
Even a factor of 2 reduction in L translates into 2'° ~ 1000 in computer
time!

2. Better restoration of rotational and internal symmetries like chiral,
staggered flavor, etc..

3. The trajectory along which the continuum limit is taken should not
pass close to extraneous phase transitions that are artifacts of the lat-
tice discretization (see Section 15 for a discussion of phase transitions
in the lattice theory). The problem with such transitions is that in
their vicinity the desired continuum scaling behavior can be modified
for certain observables, i.e. the artifact terms in Eq. 8.3 may not have a
geometric convergence in a and may thus be large.

4. The study of topology on the lattice is particularly sensitive to short
distance fluctuations that are artifacts of discretizing the gauge action.
For the Wilson gauge action one finds that the topological charge, cal-
culated using Liischer’s geometric method [50], jumps from 0 — 1 at a
core radius of the instanton of p.a = 0.7, whereas the action of such
instantons, S,_, is significantly less than the classical value §¢ = 8% /p.
The entropy factor for such small instantons with § < S° overwhelms
the Boltzmann suppression, leading to a divergent topological suscepti-
bility in the continuum limit. These short distance artifacts are called
dislocations and it is not @ posterior: obvious how to separate the phys-
ical from the unphysical when p & p.. It is, therefore, very important
to start with a lattice formulation in which such artifacts are excluded,
and there exist only physical instantons, ¢.e. those with mean core size
that has the correct scaling behavior with g. One finds that dislocations
are suppressed by improved actions, ¢.e. improving the gauge action in-
creases S, [51] and better definition of the topological charge [52].

5. Lattice perturbation theory becomes increasingly complicated as more
and more irrelevant operators are added to the action. Even though,
with the advent of non-perturbative methods for determining renor-
malization constants, the reliance on lattice perturbation theory has
decreased, perturbative analyses serve as a valuable guide and check,
so we would like to retain this possibility. What one expects for an
improved action is that the lattice and continuum value of a,, and the
coefficients of the series expansion in a; for a given observable, are much
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closer. In that case a much more reliable matching between the two the-
ories is possible. At present the 1-loop matching between the lattice and
continuum theories is one of the larger sources of uncertainties.

6. The Adler-Bell-Jackiw (ABJ) Anomaly: In the continuum the flavor
singlet axial current has an anomaly. This shows up as part of the
UV regularization scheme. In the Pauli-Villars scheme one introduces
a heavy mass as the cutoff. This breaks -5 invariance, while in dimen-
sional regularization, <5 is not well-defined away from 4 dimensions.
Naive fermions, as shown below, preserve the ~5 invariance but at the
expense of flavoer doubling. A consequence of the doublers is a pair-
wise cancellation and no net anomaly. A viable lattice theory should
reproduce the ABJ anomaly.

Before discussing such “improved” actions, it is instructive to revisit the
construction of the naive Dirac action to highlight its problems.

9. Fermion Doubling Problem in the “naive” action

The problem with the naive discretization of the Dirac action, specified
by the operator M¥ in Eq. 7.7, is that in the continuum limit it gives
rise to 2¢ = 16 flavors rather than one. This doubling problem is readily
demonstrated by the inverse of the free field propagator (obtained by taking
the fourier transform of the action with all U,(z) = 1).

_ i _
S7Hp) = mq + =D vu sinpua | (9.1)
“

which has 16 zeros within the Brillouin cell in the limit m4 — 0. Defining
the momentum range of the Brillouin cell to be {—#/2,37/2}, the zeros
lie at p, = 0 and 7. As discussed later, this proliferation holds under very
general conditions specified by the Nielsen-Ninomiya theorem [14], and
is intimately related to simultaneously preserving chiral symmetry. The
inclusion of the gauge fields does not solve the doubling problem.

Before discussing partial fixes, it is useful to investigate the properties
of these extra zero modes under chiral transformations. Let us define a
set of 16 4-vectors IT* = {(0,0,0,0), (#,0,0,0),..., (r,7,7,7)} with A =
{1...16}, and consider the expansion of the massless propagator about
these points. Then

_ i .
§7Hp,m=0) = - v, sinpua
u
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Table 3

The chiral sign and degeneracy factor for the doublers.
A Degeneracy x4
(0,0,0,0) 1 +1
(1,0,0,0) 4 -1
(1,1,0,0) 6 +1
(1,1,1,0) 4 -1
(1,1,1,1) 1 +1

= 127“ sin(IT4 + k) .a
%
. S, sink
= ;nyp ., sink,a
o

= % 3" 5, sinkga, (9.2)
73

where S;f = {+1,—-1} depending on whether the y component of IT# is
{0,7}. In the last expression a new representation of gamma matrices has
been defined by the similarity transformation %, = YA'qui where

Ya= H('YM'YS)H‘/? (9'3)

s

and n;} are {0,1} depending on whether the momentum expansion in the
p direction is about 0 or 7. Now, 75 = Yays Y] = SASASASAvs = XAvs,
with the signs X# given in table 3. Thus, the sixteen species break up
into two sets of 8 with chiral charge 1, and render the theory anomaly-
free. Consequently, this “naive” discretization is phenomenologically not
acceptable. The presence of doublers can, in fact, be traced to a larger
flavor symmetry of the naive fermion action as I now discuss.

In the continuum the mass-less Dirac action is invariant under the
U(1l)v ® U(1) 4 flavor transformations

P = Vi, YL PLV]
Yr = VrYr, _"ER - ERVIE . (9.4)

Since the left and right handed fields are only coupled through the mass
term, the vector symmetry Vi, = Vi = €% holds for all m, whereas the
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axial symmetry Vz = V} = ¢® (or equivalently Vi = Vg = €¥%) holds
only for m = 0. The naive fermion action Sy for a single flavor has a much
larger symmetry group, U(4)y ® U(4) 4, under

$(x) = T, (-;- (1~ elzhe) Vi + 5 (1 + e(a:)'y5)VR> Tty(z)

5(e) > P@)Ts (V)5 (14 ela)e) + VA5 (1~ o)) )Y 95)

if one considers translations by 2a. T'; is given in Eq. 11.1, the phase ¢(z)
in Eq. 11.4, and T,vTf = €(z)ys. Here Vi g are general 4 X 4 unitary
matrices acting on the spinor index of the fermions. Even though there is,
in Eq. 9.5, a dependence on z through €(z), this is a global symmetry as
specifying it at one point fixes it at all points.

To see how doubling arises, consider the vector (Vz = Vg) discrete
subgroup with the thirty two elements {£Y,} defined in Eq. 9.3. Eq. 9.2
shows that the Y4 shift the momenta by 7 /a along the direction specified
by A,

YaSp(K)Y] = Sp(k+ = 4). | (9.6)

Since this is a similarity transform, the sixteen regions of the Brillouin
zone related by this transormation are physically equivalent. This analysis,
which relied only on the spinor structure of the action, makes it easy to
see why the doublers exist even for the interacting theory. In Section 11
this symmetry will be exploited to construct staggered fermions. In this
formulation the sixteen doublers are reduced to four, and at the same time
a U(1)v ® U(1). symmetry (corresponding to when Vz, g are just phases)
is retained. The U(1). plays the role of a chiral symmetry at finite @ and
in the continuum limit becomes the U(1) 4.

9.1. Generalities of Chiral Symmetry

In the massless limit of the continuum theory, the flavor symmetry at the
classical level is Uy (1) x Ua(1) x SUy(nys) x SUa(ng), where ny is the
number of light fermions. The unbroken Uy (1) gives rise to baryon number
conservation. The U, (1) is broken by instanton contributions and the flavor
singlet axial current is anomalous. The SU4(ny) is spontaneously broken
and the quark condensates acquire a non-zero expectation value in the
QCD vacuum. Associated with this spontaneously broken symmetry are
(n?c — 1) goldstone bosons, i.e. the pions. Chiral symmetry has played a
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very useful role in the continuum theory. For example, one can (i) classify
operators under distinct representations of SUy(nys) x SUg(ny), and chiral
symmetry prohibits mixing between operators in different representations,
(ii) derive relations between matrix elements of a given operator between
states with different number of pions in the final state (for example K —
mr ¢ K — wrn), (iii) exploit the operator Ward identity, and (iv) derive
relations between correlation functions, :.e. the Ward-Takahashi identities.
It is therefore desirable to preserve chiral symmetry at finite a and not
just in the continuum limit. To determine if this is possible one needs to
understand the relationship between doublers and chiral symmetry in the
lattice theory.

The chiral symmetry defined in Eq. 7.11 is realized by the lattice theory
provided ys M + M~s = 0. It is easy to verify that the niive lattice action
satisfies the hermiticity property

w5 Moys = Mt (9.7)

Thus, in the massless limit, the Euclidean lattice action has to be anti-
hermitian for chiral symmetry, Eq. 7.11, to hold. This is true of M¥
given in Eq. 7.7, and was accomplished by simply taking the symmetric
difference for the derivative. The important question is — what are the
general conditions under which a lattice theory with this realization of
chiral symmetry exhibits doublers. The answer is given by the Nielsen-
Ninomiya theorem [14]. Consider a generalized action such that §~1(p,m =
0) = iF(p). Then, if

e the function F(p) is periodic in momentum space with period 27/a.
(This is a consequence of translation invariance.)

o the lattice momenta are continuous in the range {0,27}. This is true in
the L — oo limit at all values of the lattice spacing,.

e F'(p) is continuous in momentum space. This is guaranteed if the inter-
actions are local.

e F'(p) = pu~y, for small p, and as @ — 0 to match the continuum theory.

e the action has chiral symmetry, ¢.e. it satisfies the hermiticity property
s M~s = M1 and the massless Dirac action is anti-hermitian.

-

the theory will have doublers. It is easy to understand this from the
schematic one dimensional plot of F'(p) shown in Fig. 6 which highlights
the fact that F(p) has to have an even number of zeros under the above
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F(p)

—T7t/2 « p 31t/2

v

Fig. 6. A schematic 1-d representation of the massless inverse propagator F(p).

conditions. The =+ slopes imply that one state is left moving while the other
is right moving. In 1-dimension the direction is the same as handedness,
consequently left-handed and right-handed fields come in inseparable pairs,
and together form a Dirac fermion.

The key consequence of the Nielsen-Ninomiya theorem is that one cannot
define a lattice theory with chiral fermions. For example if one writes
down M?¥ for a left-handed Dirac fermion, then its doubler will be right-
handed but have the same transformation under L ® R. Consequently, the
two “states” coexist to form a Dirac fermion. Assuming that the Nielsen-
Ninomiya theorem is air-tight, then how does one proceed to (i) define a
lattice theory without doublers and which recovers chiral symmetry in the
continuum limit, and (ii) define chiral gauge theories on the lattice?

The answer to the first question will be given by explicit reconstruction of
Wilson’s and staggered fixes. An alternate very exciting new development,
which I will not do justice to, is the resurrection [53] of the Ginsparg-Wilson
condition for a chirally symmetric formulation [54]

v5D + Dvys = aDysD. (9.8)

Liischer has recently presented a clear analysis of how this condition al-
lows the construction of a lattice theory without doublers and with chiral
symmetry, avoids the NN theorem, and gives the ABJ anomaly [55]. Un-
fortunately, the bottleneck with this alternative is the lack of a closed form
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expression for the lattice Dirac action that is sufficiently local to make
simulations feasible.

The second question — construction of chiral gauge theories — is still
unresolved. For those interested in this very important unsolved problem,
a good starting point are the reviews [15-17] which contain some of the
recent efforts.

10. Wilson Fermions (WF)

In Section 8, it was shown that the lattice action is not unique. One has the
freedom to add an arbitrary number of irrelevant operators to the action, as
these do not change the continuum limit. Wilson’s solution to the doubling
problem was to add a dimension five operator arty ¢, whereby the extra

fifteen species at p, = 7 get a mass proportional to r/a [56]. The Wilson
action is

AY = mg > P(z)(z)

+ i ZJ(E)’Yu[UN(m)qp(w +4) — Ul(z - p)p(s— )]

Ty

~ % zg(w)[Un(wﬁ/}(w +4) —2¢(z)+ U;(m — )z — )]

T4

= e ) S S a)ipla)

+ 512,; > PO = r)Uu(@)p(@+ ) = (3 +7) Uz = B)p(z ~ )]

3 B ML (10.1)
Z,y

where the interaction matrix MW is usually written as

Mm[