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Abstract

A direct solver method is developed for solving Poisson’s equation

numerically for the electrostatic potential ¢(r, z) in a cylindrical region
(r < Ryeit, 0<z< L). The method assumes the charge density p(r, z)

and wall potential ¢(r = Ryaqu, z) are specified, and 0¢/9z = 0 at the

axial boundaries (2 =0, L).
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Many calculations in plasma physics require a rapid solution of Poisson’s

equation
V2¢ = —4mp, (1)

where ¢ is the electrostatic potential, and p is the charge density. This
paper was motivated by the need to determine the potential variation in an
axisymmetric Malmberg-Penning trap confining a pure electron plasma [1-3].
Hughes [4] has previously described a direct solver for Poisson’s equation in
cylindrical (r, z) coordinates, but the potentials on axis (r=0) and at some
radius r = ro must be known. Often, the axial potential is not known a
priori. Trunec [5] has also developed a direct Poisson solver in cylindrically
symmetric geometry without requiring knowledge of the axial potential. Both
Hughes and Trunec utilize a Fourier transform in the axial direction, but
Trunec approximates the radial solution using the basis functions for cubic
splines, while Hughes finds a radial solution using only the finite-difference
form of the radial differential equation. Trunec’s approach allows for unequal
grid spacing in the radial direction, but the benchmarking results suggest
that the spline approximation introduces more error than Hughes’ method
of solving the finite-difference equations directly. The purpose of this Note
is to extend Hughes’ solver so that it does not require knowledge of the axial
potential.
For 0/30 = 0, Poisson’s equation in cylindrical (r, z) coordinates is
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where ¢ is the electrostatic potential, and p is the known charge density. The
potential is assumed to be specified at radius r = Ry, and J¢/0z = 0 at
the axial boundaries (z = 0, L). The latter assumption is appropriate for the
applications of interest, but can easily be modified to describe the case where
¢ = 0 at the axial boundaries or the case of periodic boundary conditions by
using a sine or Fourier transform instead of a cosine transform.

We begin the analysis by applying a discrete cosine transform in the
axial (%) direction to Poisson’s equation. The cosine transform uses cosines
only to form a complete set of basis functions in the interval from 0 to
2w, and guarantees that the solution will have zero derivative at the axial

boundaries [6]. The cosine transform is defined by
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Here, the prime on the summation symbol means that the & = 0 term has a
coefficient of 1 multiplying (2/N)Fo.
We consider the (r,z) plane covered by a uniform mesh with constant

spacing A, and A, in the r and z directions:

1
2= (i+3) A, i=0,1,.,Nz-1,

ro= j-A, j=01,..Na (5)




where A, and A, = R . The cosine transform can be written as

o(r,z) = — Z Si(r) cos A7rl}:\zr' . (6)

Z k=0

Substituting Eq. (6) into Poisson’s equation (2) yields
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where p has been similarly transformed.
The next step is to write these equations in finite-difference form. Away

from the axis (j > 1), Eq. (7) becomes

qzk,j+1 - 2<;~5k,j + <7>k,j-1 n <{7>k,j+1 — %k,j—l
A2 25A2

1 ~ -
A2 (N) bei = —4mhr; (G2 1),

Collecting terms yields

. A2 (7k\*] - 1\ - 1 i
Prj {2 + ZE (—]\7—) ] = ki1 (1 - 5) — Phjt1 (1 + 5) = 4 A2pr ;.
(9)




Defining

Ski = ATAIPr,
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we can rewrite Eq. (9) as
—Y3®ri-1 + Mg — Bidrin = Sk (11)

Equation (11) corresponds to the set of equations
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where it appears that there are Np—1 equations and Ngr+1 unknowns. How-

ever, we have assumed that the potential is specified at the radial boundary




so that ¢y is known. The set of equations is then
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We could similarly assume that the potential on axis, qgk,o, is specified and
we would have a set of Ng — 1 equations and Ng — 1 unknowns.

Instead, we will find an additional equation utilizing the symmetry on
axis. To proceed, a finite-difference form of Poisson’s equation is required
that is valid for 7 = 0. To find such an expression, we take the limit of Eq.
(7) (the cosine-transformed Poisson’s equation in differential form) as r — 0,
ie.,
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The second term can be expressed differently in this limit. Using L’Hospital’s




rule, we find
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Thus, in the limit as » — 0, the cosine-transformed Poisson’s equation be-

comes
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The finite-difference form of Eq. (16) is
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where 7 = 0 has been substituted since we will use this equation only on axis.
Next, utilizing the axial boundary condition 3¢/0r| _, = 0, we find that
czk,__l = ék,+1- This result might have been anticipated simply by noting the
assumed azimuthal symmetry in the problem. To show that the boundary
condition also implies this result, recall that a three-point finite-difference
approximation for a derivative is [7]
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The finite difference form for the axial boundary conditions used here is

therefore
o
dr

= [Pr41 — Pr1]/(2D,) = 0,

T'=0




or

Br41 = i1 (19)

Substituting Eq. (19) into Eq. (17) yields
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which can be expressed as
(2+ Ae)Bro — 4be1 = Sko. (20)

The complete set of equations then becomes
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This tridiagonal system of Ng equations in Ng unknowns can be quickly




solved in O(Ng) operations and the solution can be encoded very concisely
[6]. This process is repeated for each wavenumber &, and finally the inverse
cosine transform is used to find the potential ¢(r, z). |

A Poisson solver based on Eq. (21) has been written and benchmarked
against a few analytically solvéble cases. The first case is that of constant
charge density p from r = 0 to r = R,u(l —¢), 0 < € < 1, and constant

wall potential ¢| Ry.y a6 7= Ruau. The analytic solution (in MKS units) is

Hr) = Blpny + e (Rl = 7%) (22)

wall

We choose the potential at the wall, §] Ruan = 05 the charge density p =
1 Coulomb/m?, and the wall radius, Ry = 0.01 m. Substituting into Eq.

(22) gives
é(r) = 2.824 - 10'°(107* — r®) Volts. (23)

Figure 1 shows a plot of the potential calculated directly from Eq. (23) and
a plot of the difference between the potential calculated using the Poisson
solver and by using Eq. (23). Thirty-two radial grid points were used for the
Poisson solver.

The second case is that of a vacuum potential (zero charge density) with a
sinusoidal wall potential Vj cos(27z/L). The analytical solution to Poisson’s

equation is

Vo

mm(zm/Lﬂo(m/L), (24)

H(r,z) =




where Io(z) is the modified Bessel function of order zero. Figure 2(a) shows
an r—z plot of Eq. (24) with V5 = 1V, Ryen = 0.02m and L = 0.08 m. Figure
2(b) shows the difference between the analytic solution and the solution found
from the Poisson solver using 32 radial and 32 axial grid points.

The maximum error in the potential is found to deérease initially as the
square of the number of radial grid points used. This is likely due to the error
involved in the finite-difference approximation of the derivatives. The first
and second derivatives both have errors that are dependent on the square of

the grid spacing, i.e.,

Fleo) = slileo+A) = flan—A)l~ 2796,

F(a0) = lf(zo—A) = 2f(as) + flzo + A)] — T FO(E)

(25)

for some £ in the interval zo — A < £ < 7o+ A [7]. However, the error in the
potential eventually reaches a minimum and begins to increase with increas-
ing number of grid points (decreasing grid spacing A) because of round-off
error.

In conclusion, the direct solver developed here is a fast and straight-
forward approach to solving Poisson’s equation in cylindrically symmetric
geometry given only the potential variation at some radius, ¢(r = Ryau, 2),
and the charge density distribution, p(r, z).
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Figure 1: Figure 1(a) shows a plot of ¢(r) obtained from Eq. (23). Figure
1(b) shows the difference between the potential calculated using the Poisson
solver and by using Eq. (23) normalized to the theoretical potential at r = 0.
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Figure 2: Figure 2(a) shows a plot of ¢(r, z) in Eq. (24) with Vo = 1V, Ryan =
0.02m and L = 0.08 m. Figure 2(b) shows the difference between the poten-
tial calculated using the Poisson solver and by using Eq. (24).
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