
February 17, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.  Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-129800
PREPRINT

A Gamma Ray Burst Model

This paper was prepared for submittal to the
Second Oak Ridge Symposium on Atomic and Nuclear Astrophysics

Oak Ridge, TN
December 2-6, 1997

J. R. Wilson
J. D. Salmonson
G. J. Mathews



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government.  Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.



A Gamma Ray Burst Model

J R Wilsonyz, J D Salmonsony and G J Mathewsz

y University of California, Lawrence Livermore National Laboratory,
Livermore, California 94550

z University of Notre Dame, Department of Physics,
Notre Dame, Indiana 46556

Abstract.

We present a model for gamma ray bursts based on the compression of neu-
tron stars in close binary systems. Our general relativistic hydrodynamic
computer simulations of close neutron star binaries have found that as the
orbit shrinks the density of the neutron stars rises. This compressional ef-
fect has been estimated to produce thermal energies in the neutron stars of
the order of magnitude 1052 to 1053 ergs on a timescale of a few seconds.
This is a possible source of energy for gamma-ray bursts. The hot neutron
stars will emit neutrino pairs which will partially recombine to form an elec-
tron positron pair plasma. The pair plasma will recombine after expansion
to produce photons which closely mimic the characteristics of gamma-ray
bursts.

Introduction

To model gamma-ray bursts we have made hydrodynamic calculations of neutron star
binaries (NSBs). These calculations predict a compression and heating of the neutron
stars (NSs) prior to merger. The resultant heating of the NSs from these calculations was
then fed into a computer program modeling the hydrodynamics and neutrino di�usion
inside a NS. These transport calculations indicated substantial electron-positron (e+e�)
pair production. This resulting production of the e+e� plasma was then modeled using
a hydrodynamic code from which the gamma-ray signal was extracted.

Neutron Star Binary Calculations

Wilson et al [1, 2, 3, 4] have developed a general relativistic hydrodynamic computer
program in three spatial dimensions to study NSBs. It assumes that the spatial part
of the metric is conformally 
at. At each time step the Einstein constraint equations
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are solved. This means that at each time step we have a valid solution to Einstein's
equations. The hydrodynamic equations are then used to advance the 
uid variables
in the metric space just computed. The principal approximation in this scheme is the
neglect of gravitational radiation. The gravitational radiation is taken into account at
the quadrupole level. In this approximation it is found to be quite small,

_J
!J
� 10�4

where J is the angular momentum and ! is the angular frequency.

The key result observed in these calculations is that the closer the stars come
together the higher the stellar density. In these hydrodynamic calculations the matter
is taken to have zero temperature. The origin of the compression can be attributed
to two properties of the equations. First, the source terms for the metric potentials
have contributions from the kinetic energy of the matter. For example, the three-space
conformal factor � is given by

r2� = 2��5
�
D + E +

U2

2
(D + E + P

p
1 + U2) +

K2

16�

�
(1)

where D is the coordinate density of baryons and E is the coordinate density of internal
energy. P is the pressure and K2 is the square of the extrinsic curvature tensor. U2

is the squared magnitude of the spatial components of the four velocity. Second, the
accelerations due to the metric curvature terms can be put in the form:

dP

dr
�= �(D + E + P

p
1 + U2)

(1 + 2U2)p
1 + U2

d�

dr
(2)

for the case of stationary motion. � is the metric lapse function which is analogous to
the Newtonian gravitational potential and r is the radial distance from the center of each
star. This force enhancement factor only occurs in circular motion. Circular motion can
not be transformed away by a simple coordinate boost.

In Mathews and Wilson[2] the thermal energy that would arise from the compres-
sion discussed above was calculated. The energy of compression would �rst appear as
radial oscillations in the stars, but it is argued that non-simple swirling 
uid motions
observed in the hydrodynamic calculations would interact with the radial motions to
produce shock waves. In the above paper the generation of magnetic �elds due to the
non-simple swirling 
uid motion was calculated. The e-folding time for the magnetic
�eld was found to be one millisecond. The equipartition �eld is 1017 gauss. Magnetic
�eld reconnection should also help convert 
uid motions into thermal energy. In Figure 1
the thermal energy available in a pair of orbiting neutron stars is presented as a function
of the squared orbital velocity U2. Note that this energy release is a (v

c
)4 e�ect. The

right hand termini of the curves of Figure 1 arise from either the stars having spiraled
in to the last stable orbit or the stars having collapsed on to themselves to form black
holes. Figure 1 is for a particular matter equation of state. From calculations of other
equations of state we estimate that for two stars the energy available ranges from (0:3
to 1:0)� 1053 ergs.

In order to estimate the time scale for the evolution of the binary system we use
the formula for the emission of gravitational waves given by post Newtonian calcula-
tions. The gravity wave orbital energy loss formula then leads to a thermal energy time
dependence given by
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Figure 1. Released gravitational energy E52 (�1052 ergs) as a function of U2

for a range of star masses.

Eth(t) =
E0

th

[1� (64=5)(Mf)5=3ft]1=4
(3)

where t = 0 is the time at which the orbital frequency f is reached. Note that t < 0 for
this formula. Figure 2 shows the time evolution of the energies and neutrino luminosity.
The luminosity has been estimated by a simple neutrino di�usion calculation[2].

In summary, we observe from the neutron star binary hydrodynamic calculations
that thermal energies up to 1053 ergs are potentialy available in the stars. This thermal
energy would lead to central temperatures of the order of 50 MeV and luminosities
of 1053 ergs/sec. before the system collapses. The emission of neutrinos will lead, via
neutrino-antineutrino (��) annilation, to the production of an e+e� pair plasma outside
the neutron stars.

In order to estimate the properties of the e+e� plasma we put a thermal energy of
1052 ergs into a 1.45 solar mass neutron star and followed the stellar evolution through
the Mayle-Wilson supernova computer program[5]. The calculation was only run for 10
milliseconds. We found that the e�ciency of pair production to be 3% and the entropy
of the plasma to be 1010 per baryon. The radii of neutron stars in binaries at late
times are about 9 km while the last stable orbit about such a star is at radius 12 km.
The strong gravitational �eld will strongly bend the neutrino trajectories just above the
stellar surface. The bending is estimated to increase the �� annilation rate by about a
factor of 3. Thus we expect the energy of the e+e� pair plasma to be in the range 1051 to
1052 ergs. The high entropy of the plasma means that little baryonic matter is ablated
from the stellar surface.
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Figure 2. Estimated neutrino luminosity L� (�1053 ergs/sec), the total
accumulated internal energy Eth (�1053 ergs) and the rate of gravitational
energy release _Ein (�1053 ergs/sec), for a 1.40 M� star. Time t = 0 is when
orbital or stellar instability is reached.

Pair Plasma Hydrodynamics

Having roughly de�ned the initial parameters of the hot e+e� pair wind blowing o� the
surface of a NS, we wish to follow its evolution and characterize the observable gamma-
ray emission. To study this a spherically symmetric, special relativistic hydrodynamic
computer code is employed to track the 
ow of baryons, e+e� pairs and photons deposited
at the surface of an isolated NS.

The 
uid is modeled by the following special relativistic hydrodynamic equations:

@D

@t
= � 1

r2
@

@r
(r2DV r) (4)

@E

@t
= � 1

r2
@

@r
(r2EV r)� P

�
@


@t
+

1

r2
@

@r
(r2
V r)

�
(5)

@Sr

@t
= � 1

r2
@

@r
(r2SrV

r)� @P

@r
(6)

where D and E are the coordinate densities of baryonic and thermal energy (e+e� and
photons) respectively, and Sr is the radial coordinate momentum density. The radial
covariant component of the 4-velocity Ur, �, Lorentz factor 
 and the radial coordinate
velocity V r are de�ned by

Sr � (D + �E)Ur; � � 1 +
P


E

 �

q
1 + U2

r ; V r � U r



=

Ur



: (7)

To track the e+e� pairs we de�ne a pair equation. The observed pair annihilation
rate must be corrected for relativistic e�ects; speci�cally time dilation will slow down
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Figure 3. (Top) Proper baryon density pro�le. (Bottom) Proper internal
energy density pro�le.

the apparent pair annihilation process for a fast moving 
uid. Thus we take a continuity
equation analogous to Equation (4) and add a second term to account for annihilation:

@Npairs

@t
= � 1

r2
@

@r
(r2NpairsV

r) + �vNpairs(N
0

pairs(T )�Npairs)=

2 (8)

where the coordinate pair number density is Npairs and �v is the mean pair annihilation
cross-section times the thermal velocity. Although �v depends on T , it varies little in
the temperature range of interest and thus can be taken to be a constant. N0

pairs(T ) =
n0pairs(T )
, where n

0

pairs(T ) is the proper equilibrium e+e� pair density at temperature
T given by the appropriate Fermi integral with a chemical potential of zero.

The total proper energy equation, including photons and e+e� pairs, is

etot = aT 4 + epairs (9)

where coordinate energy in Equation (5) is related to proper energy by E = etot
 and
epairs is the appropriate zero chemical potential Fermi integral normalized to give the
proper e+e� pair density npair = Npairs=
 as determined by Equation (8).

To model the energy deposition at the surface of a NS we inject baryon and pair-
photon energy densities into the innermost zone (at r = 106 cm) of the computer code
at a rate determined by the time derivative of the heating energy given in Equation (3)
In the results presented here we have injected a total energy of 1051 ergs, consistent with
available energy estimated in NSB calculations above. Since the entropy per baryon of
the wind is quite high we take the rate of injection of baryons as _D = 10�10 _E.

The hydrodynamic equations are evolved, allowing the plasma to expand. Once
the system becomes transparent to Thompson scattering, (

R
Npair(r)�Tdr � 1 where �T
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is the Thompson cross-section) then we assume no further scattering, the calculation is
stopped and the photon gas is analyzed to determine the photon signal. Figure 3 shows
typical proper density and energy pro�les at the end of a calculation.

Observables

We �nd that the photons and e+e� pairs appear to decouple at virtually the same time
throughout the entire photon-e+e� pair plasma (when the cloud has reached a radius
� 1012 cm), thus we take this event to be instantaneous and to occur when the cloud
becomes optically thin to Thompson scattering. We then look at two observables, the
time integrated number spectrum N(�) and the total energy received as a function of
observer time "(t).

The Spectrum

To get the spectrum, as mentioned above, we assume that the e+e� pairs and photons
are equilibrated to the same T when they decouple. Thus the photons in the 
uid frame
(denoted with a prime: 0) make up a Planck distribution with the form

u0�0(T
0) � �03

exp( �0

T 0
)� 1

(10)

but u�
�3

is a relativistic invariant[7]. This implies �
T
is also a relativistic invariant. So a

Planck distribution in an emitter's rest-frame with temperature T 0 will appear Planckian
to a moving observer, but with boosted temperature T = T 0=(
(1�v cos �)) where v cos �
is the component of 
uid velocity (c=1) directed toward the observer. Thus

u�(�; v; T
0) � �3

exp(
(1� v cos �) �
T 0
)� 1

(11)

gives the observed spectrum of a blackbody with rest-frame temperature T 0 moving at
velocity v and angle � with respect to the observer.

In the present case we wish to calculate the spectrum from a spherical, relativisti-
cally expanding shell as seen by a distant observer. Since we know v and T 0 and radius
R of the shell, we integrate over volume (and thus, for a shell, angle) with respect to
the observer. We thus get the observed number spectrum N� =

R
u� dV olume

�
, per pho-

ton energy �, per steradian, of a relativistically expanding spherical shell with radius R,
thickness dR in cm, velocity v, Lorentz factor 
 and 
uid-frame temperature T 0 to be

N�(v; T
0; R) = 4�R2dR

�T 0

v

log

"
1� exp[�
�(1 + v)=T 0]

1 � exp[�
�(1� v)=T 0]

#
(12)

which has a maximum at �max
�= 1:39
T 0 eV for 
 � 1. We may then sum this spectrum

over all shells (the zones in our computer code) of our �reball to get the total spectrum
shown in Figure 4. Since we a priori assume the photons are thermal, our spectrum has
a high frequency exponential tail, but as seen in Figure 4, this spectrum is not thermal
up through � = 5 MeV.

A key feature of this spectrum is that its peak is consistent with observation. It
is interesting to note that, as seen in Figure 5, the bulk of the photons have a 
uid
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Figure 4. Photon number spectrum N37(�) (�1037photons=MeV=4�) from
e+e� pair plasma. A reference Planck number spectrum �tted to the peak of
N(�) is shown to illustrate the non-thermal nature of N(�).
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Figure 5. Photon gas temperature T 0 in the cloud.
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Figure 6. The product 
T 0 as a function of simple shell arrival time compared
to photon number n
. The temperature of the burst spectrum will rise and
then fall over the bulk of the burst.

frame temperature T 0 of only � � 5 � 15 eV, but are Lorentz boosted by a 
 gradually
increasing from 3 � 104 at radius 3 � 1011 cm to 8 � 104 at radius 1012 cm. Thus our
spectrum derives from a relativistic 
uid motion.

To see how the spectrum changes over time, we have plotted 
T 0 and n
 versus shell
time (light curve e�ects described in Equation(14) were not used). The temperature of
the burst spectrum (� 
T 0) will rise and then fall over the period of maximum photon
emission.

The Light Curve

To acquire the observed light curve "(t) we again decompose the spherical plasma into
concentric shells and consider two e�ects. First is the relative arrival time of the �rst
light from each shell: light from outer shells will be observed before light from inner
shells. Second is the shape of the light curve from a single shell.

Emission from moving stu� is beamed along the direction of travel within an angle
� � 1=
. The surface of simultaneity of a relativistically expanding spherical shell is an
ellipsoid[6]. The time of intersection of an expanding ellipse and a �xed shell of radius R
as a function of � (i.e. the time at which emission from this intersection circle is received)
is:

t =
R
2

v
(1 + v)(1� v cos �) �= R(1 + �2
2) (13)

for � � 1; 
 � 1. We �nd that, integrating our boosted Planck distribution of photons
(Equation 11) over frequency, a relativistically expanding shell of radius R will have a
time pro�le
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"(�; v; T 0; R) = 26�
2(1 + v)3(
T 0

�
)4R2dR

d�

v
� 1

� 4
(14)

for � > 1 and where � � vt
R
. The �nal light curve is then constructed by summing the

signal from all shells.

In Figure 7 we see an example of "(t) for NSB of equal star mass. Variation in
the ratio of star mass in the NSB e�ects the relative compression and heating rate of
each star, thus allowing a variety of GRB durations. This burst has a T90 = 25 seconds,
where T90 is the time interval over which 90% of the energy is received.

1. Conclusion

We �nd that the photon signature that is plausibly generated from the compressional
heating and e+e� pair emission of close NSBs matches that of observed gamma-ray bursts
very well. In particular:

� An adequate amount of energy (1051�52 ergs) is yielded in gamma-rays to account
for observed 
uxes at cosmological distances (� 1 Gpc).

� The peak of the photon spectrum is consistent with that of observations (Npeak �
200 keV).

� Duration and shape of the light curve matches that of the most common \long"
gamma-ray bursts; T90 > 10 seconds.
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We note that there are no free parameters in this model, only the following physical
parameters: the masses of the neutron stars, the equation of state of the neutron star
matter and magnetic �elds.

As seen in Figure 1 the energy available depends strongly on the neutron star mass.
The low mass binaries will evolve much faster than Equation (3) would imply since more
orbital energy will be lost by neutrinos than by gravity waves. The higher energy signals
should have shorter time scales. Unequal star masses should lead to longer time signals
since each star will evolve at a di�erent time. Studies of the e�ect of di�erent equations
of state[2] indicate that sti�er matter will lead to more energy release.

Grant support is NSF PHY-97-22086, PHY-9401636 and DOE W-7405-ENG-48 by
Lawrence Livermore National Laboratory.
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