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EVALUATION OF THE DISCRETE COMPLEX-IMAGE METHOD
FOR A NEC-LIKE MOMENT-METHOD SOLUTION *

G. J. Burke
Lawrence Livermore National Laboratory
P.O. Box 5504, L-156, Livermore, CA 94550

Abstract

The discrete image approximation for the field of a half-space is tested in the NEC antenna
modeling program as an alternative to the interpolation method presently used. The accuracy
and speed of the discrete image approximation are examined for varying number of images and
approximation contour, and the solution for current is obtained on a horizontal wire approaching
the interface.

1. INTRODUCTION

A common extension to frequency domain moment-method codes is to model structures in a
stratified medium or at least near a homogeneous ground. The solution then requires the Green’s
function for the stratified medium or half-space, which in its exact form involves an integral
over an infinite spectrum of waves [1, 2]. The moment-method solution generally requires many
evaluations of the Green’s function for numerical integration over sources, so evaluation time and
accuracy become critical. A number of methods have been used in this evaluation, including
integration over the real radial wavenumber or on a contour deformed to the steepest descent
path [3]. Linear filters have been very effective for lossy media [4]. Lindell [5] has converted the
spectral integrals of Sommerfeld into integrals over an image distributed in complex space. While
this solution remains exact, it still requires numerical integration over the distributed images,
although the integrals may be more easily evaluated than the spectral form. The code NEC [6] uses
an interpolation method for a half-space [7). The Sommerfeld integrals are evaluated numerically
on contours deformed to accelerate convergence [8]. The values are then transformed using the
approximate quasistatic or asymptotic behavior of the fields to remove rapid variations, and are
stored in tables from which the required values are obtained by interpolation. Alternatively,
a “model” containing functions from the asymptotic solution and variable parameters is fit to
the computed values in a technique known as model-based parameter estimation [9]. These
interpolation methods are fast, accurate and reasonably simple when source and evaluation points
are in the same medium, but can get complicated for interactions across interfaces.

More recently a simple approximation of the Green’s function for a stratified medium or
half-space has been developed in terms of a sum of discrete images in complex space [10]. This
method has been applied to the solution of microstrip problems [11, 12] and to antennas over a
homogeneous ground [13] using the mixed-potential form of the integral equation. In this paper
results of using the discrete image method in a solution with continuous current expansion and
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point matching of the field are reported. The accuracy of the discrete image approximation is
investigated, and the speed is compared with the interpolation method in NEC.

2. THE DISCRETE IMAGE APPROXIMATION FOR A HALF-SPACE

The discrete image approximation is obtained by numerical z =
processing of the Sommerfeld integrals for the potentials due to
a half-space, after first extracting a quasistatic term to improve
convergence. The method is outlined here to obtain the field source @ 2/
components needed in NEC. The solution for the field of a source
in the presence of a half-space can be found in many references, €2 92, Ko Y
for example [1, 2]. The geometry of the problem is shown in €1, 01, Ko
figure 1, using the convention that the lower medium is medium
1 and the upper is medium 2. The wavenumbers are k; = ko(ej—
jo1/weo)/? and ky = ko(ez — joz/wen)'/? with ko = w+/foeo o F
and e/** time variation assumed. The form of the solution used F‘g' lval c?;’,’f‘et;; tiol;;gzc:
here is from [2] in terms of the potentials Uz and Va2 which, ;x;lf_:pacga on P
together with the free-space Green’s functions for the source and
its image, yield all of the components of electric field in the upper medium due to vertical and
horizontal electric dipoles in the upper medium. The potentials involve infinite integrals over the
radial component of wavenumber k, which can -be written in terms of either Bessel or Hankel
functions in k, as
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and k1 = (k — k)2 and knp = (k2 — k2)1/2 with Im(k,1, kz2) < 0. The basic contours for
evaluating these mtegra.ls on the real axis are shown in figure 2 as Cp for the Bessel function form
and C} for the Hankel function form.

As R; = [p? + (2 + 2/)%]'/2 becomes small the integrals in (1) converge more slowly, leading
to a Rl"l singularity in the integrals. The quasistatic term containing this singularity can be
extracted by subtracting the constant limits that Ry and Ry approach as k, or k.2 become large.
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Fig. 2. Contours for evaluation of the Sommerfeld integrals: a) contours in the k,, plane, b) contours in the k,
plane, with branch cuts from k; and ks.

The remainders of the potentials after subtracting the quasistatic terms are

Vo = 2 / Ro(lsz) S——— Jo(kpp)k, dk, (2)
0 z2
oo e—Jka(z+7)
U =2 /0 Ruller) S Jo(kpo)kp b, (26)
where
kzZ 1 kzz 1
ko) = _ , kpp) = —22 2 3

The extracted quasistatic terms can be combined with the free space Green’s function for
the image by applying the Sommerfeld identity,

00 g jkaa(ete) e—ikaR:

The equations for the electric field components are then

EY = ‘iﬂ;féﬂo aﬁ; - (G22 + %Gm) +87 (5a)
B = —Zr;?‘o ( ;: 5 + k%) (G'zz + %Gbl) +5Y (5b)
By = “ﬁé"" ( aa; + k%) (G’zz - ]’:g—:r%:cm) cos ¢+ S (50)
Bl = i‘;-’g;—%“" Ga% + kg) (G’zg - %;—:g-@l) sin + SH (5d)
, EF = —.i‘;’rz;/‘o 6;?; ( 09 — Zg_;:z;GgO cos ¢ — S’X cos ¢ (5e)

where the subscripts on E or S indicate the cylindrical component of the field and the superscript
indicates a vertical electric dipole (V) or horizontal dipole on along the z axis (H). Go2 and Goy



are the free space Green’s functions for the source and its image, Ga2 = exp(—jkeR2)/R2 dnd
Go1 = exp(—jkoR1)/R1 with R; = [,o2 +(zx 2 )2] Y2 The final terms, containing the remaining
Sommerfeld integrals, are

S5 = —34:25”0 aaa Ko (6a)
-0 (3
SH = _—j%gﬂp- cos ¢ (6;p2 +ug2 + G2 — E%—%G21> ‘ (6c)
Sf = Jwﬁuo sin ¢ (%8_;%2 +ug2 + Ga1 — kgz_lr_zk% G21) (6d)

~

The final Go; terms are included in (6¢) and (6d) to complete the field of the quasistatic image
in (5) as the field of a source in free space. After subtracting the quasistatic terms, the remaining
integrals ug2 and we2 remain finite as Ry goes to zero, while the field components in equations (6)
have 1/R; singularities from the derivatives of vg2. The advantage of extracting the quasistatic
components for the discrete nnage approximation is that the functions Ry(k.2) and Ry(k:2)
in equation (3) decay as k for large k2, and these decaying functions are better suited to
approximation by a sum of exponentials than are Ry and Ry which become constant. The
quasistatic terms are also subtracted in the interpolation method used in NEC, where the singular
remainders in equation (6) are multiplied by R; so that they can easily be approximated with linear
or quadratic interpolation. Alternatively, the singularities in equations (H) can be approximated
[6] and also the next constant terms can be obtained. For example, in S

%90 k%(lc2 k%) ( sin ) 1
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for small Ry, where

c 2(k1 — ko) (k% — kika + k3) 1/ k2 + k2
k= 2kF — 4k3ky + 5k2k2 — 4k k3 + 2k3

with Im(Cy) < 0 and sina = (2 + 2')/R;.

For the discrete image approximation Ry(k:2) and Ry(k.2) are approximated with a sum of
exponential functions in k2 by means of the Prony [14] or Matrix Pencil [15] methods. Since these
methods require equally spaced samples in a real variable, the substitution k.2 = ka[tq +t(tp —ta))
is made. Applying the Matrix Pencil method with equally spaced samples over 0 < ¢ < 1 yields
the exponential approximation over the range ko € (kotq, koty) as

Ng Nt
R(t) =) APt Ry(kn)~ ) a2

i=1 i=1



with a; = Aze~Bite/t—ta) and b, = Bi/[ka(ts — ts)]. When the exponential approximation of
Ry (k.2) is substituted into (2) the integral for each term can be evaluated using the Sommerfeld
identity (4) to get a sum of discrete images

N _ikoR,
e—JikaRy
2R 2 (8)
i=1

with R; = [p2 + (2 + 2/ + 75:)?]1/2. Thus V22, and similarly uz2 are approximated by a sum of
free-space Green’s functions for images in complex space.

In applying the discrete image method a contour similar to C2 in figure 2 is usually chosen
for the approximation [10]. Hence, t; =1 and #; is a negative imaginary value. This deformation
from Cp yields a linear path in the ko plane and also avoids surface-wave poles that would occur
for a stratified medium. It also moves the path further from the Zenneck pole in Ry, making the
approximation easier.

3. NUMERICAL RESULTS

The accuracy of the discrete image approximation was tested against the numerical evaluation
routines in SOMNEC (6] after reducing the error limits in the Romberg adaptive integration by
two orders of magnitude and increasing the accuracy of the Bessel and Hankel functions. With
these changes the relative error in the integration seems to be around 10~% to 10-7.

The error from the discrete image approximation for va2 is shown in figure 3a for a lossy
ground with the number of images N; varied. The matrix pencil method was used with N, = 300
samples and p = —410. N; = 12 was the maximum number of terms that could be obtained from
the matrix pencil method with the tolerance in the singular-value decomposition set to 1019,
The approximation is seen to converge rapidly in the region of 0.1 < R; /Ao < 1. The error with
varying i; is shown in figure 3b, where N; was always the maximum returned by matrix pencil.
The increased error for small R; is due to the truncation of the approximation contour at koty as
the integrand converges more slowly, so a larger t; reduces the error. The use of the Sommerfeld
identity for equation (8) implies an integration contour to infinity, but the error is uncontrolled
beyond kst and increases as the integrand decays. The increased error in figure 3b for large Ry
and large ¢ is due to insufficient sampling, and would be reduced with a larger N, at the cost
of increased time for determining the image parameters. Figure 3c shows the error with varying
ty for grazing incidence along the ground. The error due to truncation at ¢ occurs sooner as R;
is decreased than for points off the interface, since the integrand decays more slowly without the
e~Ik2(2+7) term. In numerical integration the Hankel function form of equation (1) could be used
in this case, with the integration contour deformed downward to a steepest descent path. The
contour C used in the discrete image approximation is more nearly optimum for large (24 2/)/p.
For large R; the error increases rapidly, apparently from difficulty in approximating R, near the
Zenneck pole near k,o = ko. A small t» reduces the error for large R; with increased error for
small R;. Figure 3d shows the same result as 3¢ but for dielectric ground. In this case the error
increases more rapidly for large Ry, perhaps due to the difficulty in approximating the lateral
wave. Although the lateral wave, with wavenumber k1, must be synthesized from exponentials in
ko the approximation is successful for a number of cycles determined by the number of discrete
image terms. For example, the lateral wave was approximated to about Rj/\ = 0.7 with 5
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Fig. 3. Error in the discrete image approximation of v with IV; images and N, samples. The ground permittivity
is € = € — jo/weg and 6 = tan~[p/(z + 2')]. '

images, to R;/A = 1.3 with 10 images and to R;/\ = 3 with 22 images. Beyond these distances
the approximation diverged rapidly.

Figure 4 shows the relative error in approximating 9%vq/8p? for the E};{ field component
needed to model a horizontal wire over ground. The increased error over the approximation for
vo2 shows that the 1/R; singularity in this second derivative is not contained in the discrete
image approximation. When integrated over a filament of current, this 1/R; term contributes to
the log singularity in the field parallel to the filament, although the importance of it relative to
the integral of the quasistatic image terms depends on the coefficients multiplying the terms. If
necessary the approximations from equation (7), shown as curves A; and Aj in figure 4, can be
used to reduce the error.

A version of NEC—? has been set up to use the discrete'image approximation instead of
interpolation for arbitrary wire structures above ground. As an initial test, a horizontal /2
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dipole over ground was modeled, since it was expected to be a more difficult test than a vertical
wire. Results with varying numbers of images, with and without the quasistatic approximation
in equation (7), were in excellent agreement with the standard NEC-2. Figure 5 shows the result
with one discrete image for ugs and zero discrete images for w2, and the agreement is very good.
With three images for each potential the noticeable difference between the curves essentially
disappears. If the single discrete image for ugs is dropped, using only quasistatic terms, the error
in impedance for small h/)g is about twenty percent, and the wiggles between 0.1 and 1 in h/)g
are not tracked well. Hence it appears that for the horizontal A/2 dipole close to the ground, the
quasistatic images are most important, and a relatively crude approximation of the remainder is
sufficient. Other structures, such as a long horizontal wire or top loaded monopole may put more
demand on accuracy of the discrete image approximation and will be investigated in the future.
The result of using the Fresnel plane-wave reflection coefficient is also shown in figure 5 and, as
expected, is accurate for h/)\ greater than about 0.1.

The CPU time for evaluating all field components in equation (6) by the discrete image
method on a DEC 3000/400 computer was 89 us with 3 images for each potential and 283 us with
10 images. For comparison, the time for a single evaluation by the NEC-2 interpolation is 7.2
ps. The difference is mainly due to the number of complex exponentials that must be evaluated.
The time to compute the parameters of the discrete image approximation is proportional to N3,
and ranged from 0.04 s with 50 samples to 58 s with 600 samples, while the time to generate the
NEC-2 interpolation table was 1.3 s.

4. CONCLUSION

The discrete image approximation can provide a simple and accurate approximation for
the field over ground for separations of image and evaluation points in the range of about 0.01
to several wavelengths. The limit for large distance is most restrictive along the interface where
surface and lateral waves are significant, but asymptotic approximations can fill the gap to infinity.



Accuracy decreases for very small distances due to truncation of the approximation contour, but
the errors become less significant relative to the quasistatic terms. The approximation contour
and number of images can be adjusted to optimize the approximation for a given range of distances
and accuracy. The discrete images provide a simple and highly compact representation for the
field. The code to obtain the image parameters using the matrix pencil method was about 24,000
lines using the LAPAC routines, but simpler routines should be available.

The discrete image approximation can also be used when source and evaluation points are
on opposite sides of the interface, but its usefulness seems much more limited since the image
parameters must be recomputed for each new source location, or for each new evaluation point
[10]. It still might be usable in a moment-method with efficient “bookkeeping” in filling the

maitrix.
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