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Abstract

When the resonance condition of the particle-wave interaction is varied adiabatically, the
particles trapped in a wave are found to form phase space holes or clumps that enhance
the particle-wave energy exchange. This mechanism can cause increased saturation levels
of instabilities and even allow the free energy associated with instability to be tapped in a

system in which background dissipation suppresses linear instability.
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I. INTRODUCTION

"There are many cases in plasma physics where the resonant interactions of particles and
waves determine interesting physical phenomena. A common example arises when a coherent
mode, a perturbation of the electromagnetic field and the majority of plasma particles, is
destabilized through a particle-wave resonance with a minority component that is supplying
“free energy” to feed the wave. Examples vary from the basic bump-on-tail instability?
to applications that arise in coherent radiation generators such as free electron lasers.®*
Tokamak theory is rich in applications that include current drive,® energy “channelling,”®
and instability arising from fusion produced alpha particles that excite Alfvén waves.”"10 A
more complicated example in tokamaks is the so-called fish-bone instability,1*~!3 where the
minority species is needed to both form and stabilize the wave.

In this note we wish to emphasize a mechanism whereby the transfer of energy from
particles to waves can be enhanced from the prediction of linear theory. Particles trapped
by a coherent wave can be adiabatically transported in phase space as the resonance location
is continuously swept. However, most of the passing particles do not penetrate the trapping
region inside the separatrix. As a result large phase space gradients in the distribution
functions build up at the interface between the passing and trapped particles. This gradient
allows for enhanced energy transfer. A similar mechanism has been applied to extracting
energy in a free electron laser with a variable wiggler,’4 and has been suggested as a means
of obtaining enhanced dissipation of high power radio frequency waves in a tokamak.!® A
theory using particle drag!® which is mathematically identical with resonance sweeping, also
exhibits enhanced energy transfer. Other studies of such effects have been discussed by
Mynick and Pomphrey,!” where they primarily addressed how particles can be extracted by
frequency sweeping and they noted that energy can also be extracted by this method, and by



Hsu et al.,'® who .noted that frequency chirping can lead to particle loss. Here we show how
to determine the field amplitude and energy conversion level as a result of sweeping. We shall
show that the large phase space gradients, which depending on the direction of the frequency
scan, form either phase space “holes”® (where the trapped distribution is depressed from
neighboring regions) or phase space “clumps”?® (where the trapped distribution is enhanced
from neighboring regions) and they enhance the energy transfer rate of the resonant particles
to the wave compared to linear theory. This phenomenon can cause much higher mode
saturation levels than otherwise would be expected in an unstable system. In a system
linearly stabilized by background dissipation, the enhanced energy exchange associated with
this mechanism, allows the wave to grow from an imposed low level seed perturbation, which
can facilitate energy channelling, as background dissipation no longer sets a stringent bound

for tapping the particle free energy.

II. POWER TRANSFER BY ADIABATIC RESONANCE
SWEEPING

In order to tap the free energy reservoir of weak instabilities it is normally necessary
for the instability drive to overcome dissipation from mechanisms related to the background
plasma. The total power that pumps the wave and determines the rate of change of wave
energy, W, which is proportional to the square of the wave amplitude, is equal to the power
extracted from the linear drive, minus the power absorbed by the background plasma through
dissipation. In linear theory, all the terms in this power transfer equation are proportional
to W, and can be written as,

ow

55 = W - 2uW, (1)

Related to the wave amplitude is the nonlinear bounce frequency, wp, for particles deeply
trapped in the wave. It turns out that the response of any physical system with weak

instability is universal in terms of wp. Taking into account that wgp is proportional to the

3




square root of the wave amplitude, we rewrite Eq. (1) as,

5B = 2L @ — 2740 (2)

with @p an appropriate average of wp.

It has been shown®~?® that under many conditions a single mode saturates at a level
where @Wp ~ v = 91 — 74 The energy released by particles to the wave, AW, is then
proportional to 4%. For the bump-on-tail instability one can show that

AW = Wi (1)3 X 3)
w/ L
where Wr is the free energy that in principle can be transferred to the waves. Note that
AW is a small fraction of Wp; the latter is generally comparable to the kinetic energy of the
fast partaicles. This is a rather low level of conversion of free energy to wave energy.

We now note that we can convert considerably more free energy if we can slowly change
the resonance position in time. This problem has already been analyzed in Ref. 16, where
it was assumed that the destabilizing particles were slowing down due to drag, and that
diffusive processes such as pitch angle scattering, were unimportant. In fact it turns out
that the treatment of the problem is identical whether the resonance function Q=w-—-kv
for the electrostatic problem) for a particle changes, due to drag (then % = —wv), or due
to the mode frequency changing in time as % = vw. The analysis shows that if %‘Z— <L W,
there will be an adiabatic invariant that causes the particles trapped in the wave field to
remain trapped as the resonance changes. The particles that are originally trapped at a phase
velocity 99 = vp1(0), with a distribution weight of f, (’uph(O)) , keep their distribution weight
as they adiabatically track the resonance. When the phase velocity becomes “’k‘ = vpn(t),
the weight of the deeply trapped particles will still be f, (v,,,,(())) £ fo (v,,,,(t)). Therefore
a strong gradient of f develops near the instantaneous phase velocity of the wave which

enhances the particle to wave power transfer.
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A quantitative expression for the power transfer arises from a straightforward physical
picture. We first obtain this expression for the one-dimensional bump-on-tail instability with
the resonance function Q = w — kv, where we take w to be time dependent, and k a constant
wavenumber. The electrostatic field is taken as E = & sin(%), with ¢ = kz — [) ’ wdt, and
we define the quantity v = w/w.

From basic principles, the energy, AE, added to the wave is AE = AM w/k, where
AM is the momentum that is removed from the particles in a time At. This momentum is

transferred to the wave. The power transfer, P, is then P = %ﬁ—f %

Let us compare the phase space distribution of the particles constituting the free energy
reservoir at a time ¢y and a time ¢y + At, where we take % > At > #2. The phase space
plot is shown in Fig. 1. We assume v, %91 > 0. Note that in this case we have phase space
holes where the f-values inside the separatrix at t = ty + At are below the f-values outside
the separatrix. As the hole shifts to higher velocity, it is clear that the particle distribution

has less energy at the later time, and this missing energy has thus been converted to wave

energy.
We now calculate the energy transfer systematically. We assume that v <« w}/w, so that
the particle adiabatic invariant J is conserved with

JE . 27, =1 f{ ay [w(k) +\/—( eE‘(t) cos'dz) 1/2] (@)

mk

where ¢ is the particle energy per unit mass in the wave frame, which is considered con-
stant in the 9 integration. For passing particles, & > leE(t)/mk|, the loop integral means
that ¢ varies from —m to . For trapped particles, ¢ starts from a turning point ¥ =
—cos~! (%3) = —1tr, goes to ¥ = 1), and then back to —¢,. On the return path, the
square root in Eq. (4) changes sign. Thus, for trapped particles the w(k)/k terms cancels




over the complete path, and the trapped particle adiabatic invariant, J;, is given by

P =~ 1/2
. 2v/2 E(t
iei | 20 ©

—e
Note that Eqs. (4) and (5) can in principle be inverted to obtain & = g(J), and we can define
the quantity dv(¢, J) as

: - 1/2
So(J, ) = v — —](c-tl - \/g [s(J) + ‘3]5(2#] . (6)

If the mode phase velocity changes faster than the mode amplitude, then a passing par-
ticle typically remains passing as it goes around the‘ trapping region from say above the
separatrix to below the separatrix, by slipping through the z-point.!® The J-value, J,, for
a passing particle near the separatrix for which e%eE‘(t) /mk is found from Eq. (4) to be
Jp= A4 sz wp(t), with wp(t) = [ekE(t)/m]Y/2. Further, the distribution weight f(Jp)
remains conserved as the passing particles move away from the separatrix. The trapped
particles near the separatrix have J; values given by J, = S“ngg = Joep(t), and all other
trapped particles satisfy J; < Jeep(t). As the resonance is swept, the trapped particles move
with the separatrix and maintain their J;-invariance, and their distribution weight F'(J;).
If E(t) increases with time, a few of the passing particles will be constrained in the
trapping region inside the separatrix at an f-value that is characteristic of the passing particle

distribution. Thus, for trapped particles near the separatrix at time ¢,
8 . w(t')
£ [ 2®) = Zws®)] = £ [T] (7

where f is the original unperturbed distribution function. Equation (7)isvalid for 0 < ' < t.
A few particles near the bottom of the well have an f-value that depends on the initial
conditions at ¢t = 0. For our model, we will assume the distribution is flat in this region,

with fi(J:) = fo (w(0)/k), for 0 < J, < 2 wp(0). We now delete the subscripts ¢ and p.



Now the difference of momentum (averaged over a spatial period) of the free energy

reservoir at o + At and ¢, is given by

n/k 0
AM=%_4¢ cl:z:_[o dvmv f(to+At)—f(t0)]

£ (to)+6u(J¥)

-7

- [ F(to+At)+6u(Jy)

dvv (f(to+At)-fo) -

%(t0)—6u(J%)

dvv (f(to+At)—fo)] . (8)

£ (to+At)-6u(J )
At time tg + At, we have v = ﬂt"%mz + v = ﬂ%‘ﬁ- + I/Atﬂ,:—"l + 6v, and at time ¢, we have
v= Egkm + dv. Note that f(to+ At) — fo = f(to) — fo, because f(t) = f(J) is constant and
there are negligible changes in the passing particle distributions, due to the small difference
of phase velocity, (vAtw/k). We then find

Jaep(to)
AM = mwvAt / dJ ( F(J) - fo) . 9)
0
The power (per unit volume) transferred to the wave is P = —%£ 54,

If we assume J-l “ﬂ < fo / , we can somewhat simplify Eq. (9). We use the

approximation,

FD= fo (@) N (w(f(J)) _w(O)) 8fow(0)/k) )

k k k ov

Then we substitute f(J) into Eq. (8), use J(¢') = 8wg(t')/wk?, convert the J to a ¢’ integral,

integrate by parts using %t"— = yw and use the above relation between P and AM, to find

P=?m ;33)’(&1(15)/7“)/(#, 5(t) (11)

Note that P is independent of the sign of v. If w/k increases in time, holes are generated,
while if w/k decreases in time, clumps are generated. In both cases there is less kinetic
energy in the distribution function in the final state than in the initial state; difference is

converted to wave energy.




Now using Eq. (11) and the relation between wave energy and bounce frequency, we
find that the change in wg due to the adiabatic frequency shift and dissipation is roughly
(neglecting numerical factors) given by

4 t
%5 ~ vty [ (@) - yah. (12)
0

A rough integration of this equation over a time ¢ ~ 1/v, shows that, for a sufficiently low
damping,
wp = (ya?)e. (13)
In terms of the free energy, the energy release, AW, is found to be
/3
AW = Wy (ZTL) . (14)
When damping is considered, the energy release produced by Eq. (14) is only achieved if v is
fast enough so that the effects of damping in the power transfer can be ignored, a condition
that requires ¥ > 4. For v < -y, the level of the wave energy is somewhat lower, and can

be found from Eq. (12) by balancing the terms on the right-hand side. One then finds that,

after a time ¢ ~ 1/v, that the level of wp is-

2 1/3
wp ™ (w 7Ly) . (15)
Yd

Also note that if the background demping determines the level of wg, more energy dissi-
pates to the background plasma than instantaneously exists in the wave (this is the original
channeling mechanism discussed in Ref. 6). The amount of energy, AWy, that is channelled

to the background plasma is o 4 fy - dtwt, is found to be

L\ /3
AWy = Wgp (7—[‘ -—) : V<9 (16)
W Yd

Note that, according to Eq. (14), there is still more energy released when v > 4, and hence
the optimum strategy to extract free energy is to have v > v4. Once this wave energy is
“gathered” it can be allowed to be absorbed by the background plasma through dissipative

processes, or perhaps even directly converted to a grid using the external antennae circuitry.
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III. AMPLIFICATION IN STABLE SYSTEMS

There can be a start-up problem that is especially important in stable systems, where
¥4 > vz. In this case the transfer of the kinetic energy to wave energy can only be achieved
if large phase space gradients are produced so that an enhanced power transfer can occur.
The formation of large phase gradients is prevented if the scan rate is too fast, v > w¥ Jw, so
that trapped particles do not remain trapped, or if collisional effects prevent large gradients
from arising.

Let us first neglect collisional effects on the energetic particles. Equation (12) then

governs the evolution of wg. With «; neglected, the solution is
wp = (W) 3 (vt)?3, (17)

When vt = 1, this result gives the optimal saturation level, wp = (wyL)Y? = Wpmax, that
is estimated in Eq. (13). However, the neglect of the 4 term in Eq. (12) requires 4t < 1.
Thus, if 44/v > 1, the upper limit on wg is established in Eq. (17) by setting ¢ = 1/4,

w2y 2 1/3 .
wp =~ ( ’Yg . (18)
Y

Now, in an unstable system we can impose a field that produces a bounce frequency
wpo. Amplification arises if the value of wg, estimated from Eq. (18), exceeds wgy when the

maximum value that v can have (i.e. v = w},/w) is used. We thereby obtain the criterion,

2
Wgo > —4-. (19)

YL
Note that this result means that for stable systems, the initial bounce frequency of an
imposed mode, has to be larger than the bounce frequency, wp ~ v, associated with the
natural saturation mechanism of an unstable system. Once the minimum wpq is imposed,

amplification to wg ~ wgm., can always be achieved by increasing v with time, with the

optimal choice being v ~ w} /w.




The other important physical process is particle scattering from either small angle col-
lisions or velocity space diffusion arising from external heating. This process makes the
achievement of an adiabatic scanning process more difficult. Straightforward dimensional
arguments show that diffusion processes cause trapped particles to escape from the trapping
region at a rate given by veg = v,w?/w%, where v, is the rate of relaxation of the overall
velocity distribution. Then, if we scan the frequency for a time greater than 1 /Vest, the

change in the distribution, Af, in the trapping region, is

Of vw 1
Af~%7g- (20)

Thus, if the scan time is greater than 1/v.s, we need to replace (w(#/(J)) — w(0))/k by
vw/(vegk) = vw}/(wvsk). This result has been rigorously obtained in Ref. 16. An interpo-

lation formula for arbitrary veg is obtained if in Eq. (11) we make the replacement,

t t t
/ dtws(t) — / dtws(?) exp (— / dt”z/eﬁ(t”)). (21)
0 0 ¥
Thus, when vegt > 1, Eq. (12) changes to
owg V2
’ Ta-t—B' = V—sw%’)’[, _ ’de%. (22)

We now observe that if v, is too large wp = wpmax cannot be achieved. The value of v, for
which this transition occurs is determined by the conditions, veg = v,w? Jwh=v, v <uwh/w
and wp < Wpmax = (yzw?)Y3. From these conditions we find that if

4/3

YL

Vg > —75=
3 w1/31

(23)

then wg < Wpmax. If Vs < 7}/ 3 Jw!/3, it is possible to achieve wg & Wgmex if Wag is sufficiently
large. To obtain the relevant criteria, let us integrate Eq. (22) when v, is neglected, and we

set v = wh/w. We find
wh 1
who (1 —1t/Tung)

(24)
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with Teng = ovsw®/whyyy, and @ is a constant of order unity. Note that wp does not change
appreciably until ¢/T,,. ~ 1. At t/Tsng =~ 1, a singularity in wg occurs. This singular
behavior means that for ¢ ~ Ting, one needs to change the evolution equation for wg to
Eq. (12), from which one finds that wgp = wpgy,, is achieved. However, one also needs
Tung < w/why, or else the frequency scans out of the resonance region before the singular

transition occurs. Thus we find the restriction, wgy > },';-w. An additional restriction

on v comes from the requirement that Eq. (22) be in the correct collisionality regime,

. . . 1/5 .
ie. vy ;“’,B% Ting > 1, which leads to the condition, wgq < (5,%’1) . The final restriction for

our solution is that the damping term in Eq. (22) be unimportant, leading to the relation

wpgo > (%14) 18 (or equivalently y4Tsng < 1). Thus, the conditions that need to be satisfied

. 4/5
to achieve wp =~ Wpmax, When v, < 7L/ Jw/5, are

2, 4\ 1/5 2 1/3
v,
("3“’ ) > wpo > <——“’ ’7") , (”"") . (25)
YL 7L L
Note that these conditions require v, > ;géq, which shows that
w2v 1/3 2
wpo > (——ﬁd > E,
7L 7L

and hence with collisions a somewhat larger seed value for wgg is needed. Further, from the
conditions, 'yz/ 3 Jw'? > vy > 45 /42w?, we find that the optimal wpmay can only be achieved

if yg < w3433,

IV. NONADIABATIC FREQUENCY SCANNING

We now note that in unstable systems wp can be amplified above the natural level,
wp ~ 7, when the frequency is scanned nonadiabatically (v > w3/w). However, the
potential amplification level is still lower than in the adiabatic case.

In the nonadiabatic regime, new particles enter the region of resonance at the rate

dAN ww

11




where AN is the number of trapped particles. If oo > wp, the trapped distribution does
not have a chance to flatten, and the wave will continue to grow. On the other hand, the
change of the frequency is comparable to its original value in a time ¢ ~ 1 /v. Thus, in order

to have at least one growth time of amplification in the nonadiabatic regime, we need
L > v > whw. (27)

Thus, the level of a}B that can be reached in a nonadiabatic scan is wp < (wy;)Y/2, which is

a lower level than is in principle achievable with an adiabatic scan.

We can model these effects quantitatively as follows. We let the conventional growth rate

satisfy the relationship

’ YL

Y = :
[+ ]

For wp = 0 we recover linear theory. If there are no sources (v = 0,veg = 0), we have

(28)

7Y — 0 when wg — 37z, which is a result previously observed in particle simulations. In
Ref. 16, it is shown the ¥ = 1, veg/wp if veg/wp < 1, where v.g represents the rate at which
particles re-enter the flattened resonance region due to diffusion. Here we have conjectured
that by scanning the frequency rapidly, we have introduced a similar source as Ve, Which is
now given by vw/wp. We can then write a model equation that includes all the processes

we have described. In the adiabatic term we include a cut-off when vw > w%. The model

equation is
dw43 4 ! 4 vw 2 f f " ~4
= = Vv + Ywg + exp -y (wv) 'yL/dt’wB exp —/dt Vet | + @y () (va — )
B 0 £

(29)

where @p(t) is included to describe an imposed external perturbation.
V. GENERALIZATION TO TOROIDAL SYSTEMS

The preceding considerations also apply to more complicated systems. For example,

one can show that Egs. (1)~(3) are valid for low-frequency waves in a toroidally symmetric

12



tokamak plasma, where the perturbation varies as A(t) sin(n¢—wt). The concept of particles
trapped in a wave at a bounce frequency wg oc A2 is also valid in this case. The resonance
function is Q = w — n@y(H, Py, p) — lwe(H, Py, 1), where Wy, and @y are the toroidal and
poloidal drift frequencies of a particle, n and £ are integers, H is the particle energy, P,
is the toroidal angular momentum and y is the magnetic moment. It follows from general
arguments that H' = H — % P, is conserved as a particle interacts with a toroidal wave.
Also, p is conserved in the low-frequency wave. If we consider an adiabatic sweeping of the
frequency (i.e. dw/dt = vw < w}), then for a particle trapped in the wave, P, will change

according to the relation

dQ dP; o
E{ = Uw_%a—.& (anb'f‘&Uo) =0 (30)
Hip

while H’ and p remain constant. As the resonance moves, most of the passing particles will
skim the separatrix and remain passing on the other side of the separatrix, while the trapped
particles will track the resonance. One will again generate large phase space gradients.

Similar to Eq. (4), the adiabatic invariant can be written as

1/2
J=f%%{[e+( wp cosY )2} \/§+P¢,} (31)

09/0P,

Hp

where

_ (Ps—=Pp)? whcosy

= — .
2 (3

Also similar to the one-dimensional electrostatic problem is the expression for the power

Q(P@-) = 0, £ (32)

converted to the wave
_ AE _ w AM¢

P At n At

(33)
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where AMy is the toroidal angular momentum that is lost by the resonant particles during
the time interval At as the frequency is swept. We then find that

Jeep(t)
w v / Ijspds [P¢, _ Pw(t)] / dJ |:fo(P¢,-(t)) - f(J)
Py ey 0
WAL g li P2 lpy— B o . / dtws(t, o B') (39
¢ H'yp o

where we used the relation

f(J)= fo(Pw(t)) + [Pq&r (t’(J)) (t)] dfo

H'ip

This expression is a generalization of the expression obtained in Ref. 16 where the calcula-
tion was done for a plasma slab when the mode frequency is much less than the diamagnetic
frequency of the kinetic component. Observe that in terms of an average bounce frequency,
Wp, nearly all conclusions of the bump-on-tail problem apply to the more complicated prob-
lem. The main difference is that @p is now a suitable average over particles in resonance,

whereas in the bump-on-tail problem there is only one point resonant in phase space.
VI. DISCUSSION

In summary we discuss our results and their implications.

(1) If the frequency changes there can be an enhanced saturation level of an unstable wave.
Without a frequency change, the saturation level for the initial value problem is given
by wp & ;. This level can be enhanced to wp ~ (y7w?)3 min(1, =) by an adiabatic
scan of the frequency, where the frequency scan rate, v, satisfies v < w%/w. In a single
scan, the fraction of free energy that can be converted to wave energy is (y/w)!/3.
High efficiency of energy conversion of free energy to wave energy may be possible with

multiple scans. When v > w}/w, the response is nonadiabatic, and the level of wg

14



that can be achieved in this case is limited to wg ~ (wyL)M?, which is lower than that

for an adiabatic scan.

Normally, there is no reason to expect the frequency to vary during an instability
of a stationary system. However, instabilities often arise in a plasma where the back-
ground properties vary with time. In the fishbone experiment, the plasma is being
heated and is reaching parameters that approach marginal stability for MHD waves.
In this case the frequency of the fishbone is sensitive to the closeness to marginal sta-
bility. It may be that the approach of the background plasma to marginal stability
allows the frequency to change. In any event, if there exists a mechanism that allows
the frequency to shift, the processes described here allows large wave amplitudes to
grow and perhaps give rise to the kind of energetic particle transport that has been

observed experimentally®~!! and discussed in computer simulations. 1826

For a stable system, the adiabatic response to a frequency change can allow waves
to spontaneously grow from a “seed” perturbation. Our analysis shows that growth
is feasible if either the initial perturbation is large enough, or if the frequency scan
rate is made to increase as the mode grows. Sufficiently rapid diffusion in velocity
space sets limits to obtaining large amplifications of wg. Once a wave is created, its
energy can be extracted by terminating the frequency scan, thereby allowing the wave
to damp because of dissipation to the background plasma (this is energy channelling)
or by transferring the wave energy back to a grid through appropriate phasing with an
external antennae. This latter procedure is a form of direct conversion, and a further
study is needed to assess the feasibility of this method. If feasible, this form of direct
conversion may be applicable to a D-He® fusion system, where 15 MeV protons are a

principal fusion product.
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(3) We have indic#ted a mechanism that allows plasma to amplify a low level signal to
a level that one would not expect on the basis of linear theory. This arises because
it is possible to use particle adiabaticity to create phase space holes or clumps. The
scaling given here is generic to kinetic syétems. The increased amplitudes achievable
with frequency sweeping may then allow mode overlap to occur, thereby producing

global plasma transport.

We note that varying the frequency can be difficult when an external antennae
excites a normal mode for which the frequency is defined by the plasma. In this case
it may be necessary to change the mode frequency by changing plasma parameters in
time. Another possibility is to use a wave-packet that changes its phase velocity as it
propagates in an inhomogeneous plasma. This can have an effect similar to frequency

sweeping.

It would be interesting to exhibit the enhancement of the power extraction rate in
a laboratory experiment under controlled conditions. Such experiments can be devised

on a variety of different plasma systems, from a Q-machine to a tokamak.
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FIGURE CAPTIONS

FIG. 1. Instantaneous phase space contours for the particles in the presence of a wave with
variable frequency (a) at time ¢o; (b) at time £, + At. Contours of constant distri-
bution function are plotted. If the distribution function increases with velocity in
the passing region, and there is a hole in the trapped region, the system at time
t = tp + At has less kinetic energy than at time ¢y, and this can increase the wave

energy.
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