1
The submitted manuscript has been authored

by a contractdr of the U.S. Government ANL~HEP-CP=-95-70 ’

under contract No. W-31-109-ENG-38.

* * ;| Accordingly, the U. S. Government retains a
‘| nonexclusive, royaity-free license to publish a o NF — ; 3 7. =)
or reproduce the published form of this REC El V E D
contribution, or allow others to do so, for : '

U. 8. Government purposes.
DATA ANALYSIS IN AN OBJECT REQUEST BROKER
ENVIRONMENT *

, trademark,

DAVID M. MALON, EDWARD N. MAY

y agency thereof, nor any of their
ute or imply its endorsement, recom-
ent or any agency thereof. The views

ecessarily state or reflect those of the

Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, IL 60439, USA

, or assumes any legal liability or responsi-
or usefulness of any information, apparatus, product, or

ts use would not infringe privately owned rights. Refer-

al product, process, or service by trade name,

ROBERT L. GROSSMAN

University of lllinois at Chicago
Chicago, IL, USA

DISCLAIMER

> CHRISTOPHER T. DAY, DAVID R. QUARRIE

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

or otherwise does not necessarily constit

mendation, or favoring by the United States Governm
and opinions of authors expressed herein do not n

United States Government or any agency thereof.

Computing for the Next Millenium will require software interoperability in heteroge-
neous, increasingly object-oriented environments. The Common Object Request Broker
Architecture! (CORBA) is a software industry effort, under the aegis of the Object
Management Group (OMG), to standardize mechanisms for software interaction among
disparate applications written in a variety of languages and running on a variety of dis-
tributed platforms. In this paper, we describe some of the design and performance impli-
cations for software that must function in such a brokered environment in a standards-
compliant way. We illustrate these implications with a physics data analysis example as

a case study.

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor an

employees, makes any warranty, express or implied

bility for the accuracy, completeness,
ence herein to any specific commerci

process disclosed, or represents that i

manufacturer,

1 Introduction

1.1 Background

The promise of brokered-request object architectures is alluring—my software will
talk to your software, even if I know neither in what language your software is
written, nor where it runs. The idea is this: no matter what language you use to
implement your software, you describe its interface in a single, application-language-
neutral Interface Definition Language (IDL), and place an interface description in
a repository. You then register your implementation so that it can be found by
system utilities.

When I wish to invoke your software, T use standard utilities to find its interface,
and pass my request to an Object Request Broker (ORB). The ORB looks for a
server capable of handling my request—its location may be transparent to me.
The ORB may instantiate such a server if none is already running. The ORB then
forwards my request to your software and returns any results, handling the language
mapping at both ends.

Services commonly required by many objects—lifecycle services, persistence ser-
vices, query services, and others—are the subjects of standardization specifications

as well.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 55

Work supported by the U.S. Department of Energy, Division of
High Energy Physics, Contract No. W~31-109~ENG-38.

1




Is this environment appropriate for high-performance physics applications? If
the physics community ignores these approaches, does it do so at its own peril?
Among the questions that must be addressed are these:

o Is the Interface Definition Language rich enough to capture the interfaces
required by data-intensive physics applications?

e Is the performance penalty of brokered interactions inherently too great?

o Can we use an ORB simply to connect our applications, and then get it out
of the way?

e If the ORB does get out of the way, do we lose langnage-independence, and
are we back to home-grown low-leve] interfaces?

o What is the appropriate level of granularity for brokered interactions?

o The potential location transparency provided by an ORB is appealing, but
will performance considerations require that I provide a “smart proxy” to run
on your machine when you invoke software on my machine, in order to sustain
brokered interactions at a reasonable cost?

¢ If so, is proxy support a nightmare for providers of general-use software, or
can proxy generation be standardized or automated?

¢ What are the implications of proposed persistence services specifications in
this environment?

We have explored these and other issues in a case study, in which we used
commercially available request brokers in an examination of a variety of potential
implementations of a statistical computation on physics data extracted from a per-
sistent data store. This paper describes a few of our observations based upon this
experience.

2 Interface Definition Language (IDL)

An ORB architecture such as CORBA can be effective only if its interface definition
language is rich enough to support an application’s object interactions. OMG’s IDL
was minimally sufficient for our case study; it does, however, lack several desirable
features, including templates and method overloading. A catchall type any serves
as a mechanism to overcome some of these deficiencies.

Type any was designed to support passing arbitrary types through interfaces,
at the expense of type safety. An any manages to be seif-describing by inclusion
of a TypeCode. While the TypeCode interface allows an arbitrary any to be deci-
phered, construction of an arbitrary TypeCode is potentially highly implementation-
dependent; moreover, initial versions of the CORBA specification do not require
type any to support all constructed data types. Even some of OMG’s own Ob-
ject Services specifications (e.g., Object Query Services?) will fail under minimally

CORBA-compliant ORBs.




The lack of template support makes implementation of common interfaces need-
lessly difficult. A collection of physics Events, for example, provides essentially the
same interface as a collection of Muons—only the type of the contained objects is
different. There is no way to express this commonality in IDL, and one must either
generate an enormous amount of redundant code (collections and iterators for ev-
ery type of contained object), or build collection interfaces based upon the catchall
type any. The latter strategy poses difficulties, both because it is not type-safe, and
because every client must shoulder the artificial burden of packing or unpacking an
any with every collection interaction.

3 Portable CORBA Compliance

A question that is often obscured in early application efforts is the extent to
which one can write pure CORBA-compliant code (as opposed to IONA /Orbix?-
or IBM/DSOM?- or other vendor-complaint code). Thanks to IDL, interfaces are
easily portable across ORBs. (Note, though, that with products such as DSOM,
it is often nearly essential to include DSOM-specific directives in the interface def-
inition file, albeit enclosed in an ifdef block.) Client code, too, is largely portable,
except for lifecycle, location, and naming services, but there is hope that these can
be largely standardized as well.

What may be substantially more difficult is portability of implementations.
Declaration of and access to instance variables is problematic, especially with in-
heritance. “IDL interface inheritance does not require that the corresponding C++
classes are related, though that is certainly one possible implementation.”® The
problem is especially vexing today, when C++ bindings are still essentially the ex-
tended C bindings that vendors provided while waiting for approval of the C++
specification. Even “wrapper” interfaces, which merely forward method invocations
to an underlying language-specific object instance, while trivial in many cases, can
be quite difficult to support (even non-portably!) for cooperating objects.

Another dilemma facing implementors is that particular vendors’ ORBs offer
features that are extremely valuable, but non-standard. Some examples in DSOM
include cooperative metaclasses, the ability to describe the inheritance behavior of
proxies, and a number of additional classes and frameworks. Smart proxies, for
example, may be essential to high-performance applications, but it is unclear how
one might provide them without sacrificing portability among ORB products.

4 Proxies Everywhere

When a client invokes a method on a CORBA object, he is, in practice, talking
to an object prozy, which dispatches the request via an ORB to the actual object,
which may in turn reside on a different machine. This location transparency is an
appealing part of the ORB architecture, and well suited to objects that interact at
a coarse level of granularity. Consider, though, what happens when a user wishes to
reach a Set_of_Events object referred to by a Run object, in one standards-compliant
implementation.?




The user talks to a Run proxy, which talks to a Run. The Run talks to its
data via an interface, and hence, via a RunData proxy, which talks to a RunData
object. The RunData object must instantiate and connect a Set_of Events and a
Set_of EventsData object, whose data location of described by a PID (persistent
ID) object. (This work may be accomplished by means of a Factory object; details,
which may be quite complex, are omitted here.) In any case, the RunData object
acquires and returns up the chain a proxy to the Set_of_Events object.

At the end of this process, how many objects have proxies to the Set_of Events
object? (How many ought to?) Proxy management is not automatic, and problems
akin to memory leaks in C++4 may be distributed across a number of processors.
From a user’s point of view, though, the primary problem may be the performance
implications of so many proxied interactions. Note that it is entirely plausible that
the user code, the Run, the RunData, the PID, and the Set_of_EventsData are all
on different processors, and it is not far-fetched to think that other objects in this
example may be on still other processors. -

One can certainly improve performance by the use of smart proxies to reduce
the number or proxied interactions; for example, a Run proxy could maintain a
local copy of its data. This is a perilous practice today—ORB vendors generally
support smart proxies, but they are highly vendor-dependent; moreover, it is not
clear that one would want to write and maintain separate proxy objects for each
type of object in a physics database.

5 Software Maintenance and the Code Explosion

A conspicuous aspect of ORB-based programming is the code explosion. In DSOM,
for example, the IDL for a Muon interface with 5 data attributes and no other
methods generates 842 lines of code, with client bindings for only one language
and no implementation-specific code. More significantly, supporting this Muon
interface requires approximately 30 files, even with only one client language binding.
This count includes files corresponding to the Muon object, a MuonData object, a
MuonCollection object, a MuonCollectionData object, and a Muonlterator object;
it does not include link libraries and interface repositories. Admittedly, many of
these files may not require human intervention (though such intervention turns out
to be necessary more often than one might expect), but even management of the
files themselves is a burden.

There is a serious need for more software tools if applications development for
ORB architectures is to become widely viable. Even when our conceptual model for
implementing other particle interfaces is identical, for example, to that for Muons,
there are no tools to automate equivalent, tedious, error-prone work.

6. Conclusions

Distributed object architectures are here to stay, and the high energy physics com-
munity cannot afford to ignore them. Some evolution in current ORB environments
is required to address the deficiencies cited in this paper; nonetheless, it is possible
today to use such architectures successfully for applications with sufficiently large

4




interaction granularities. Current developers who wish to write CORBA-compliant
implementations that are portable across ORBs are in a bit of a predicament, al-
though their situation will improve in several respects when implementations of the
OMG’s Common Object Services Specifications become more generally available.
Fine-grained applications may wish to wait for additional refinements in ORB envi-
ronments. For all potential developers, the availability of appropriate software tools
may be the key to successful implementation and support of large-scale ORB-based
distributed object applications.

Acknowledgments

The submitted manuscript has been authored by a contractor of the U.S. Gov-
ernment under contract No. W-31-109-Eng-38. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes.

References

1. Object Management Group, The Common Object Request Broker: Architec-
ture and Specification, Revision 1.2 (OMG, Draft 29 December 1993).

2. Jon Siegel et al, Persistent Object Service Specification, OMG Document Num-
bers 94-1-1 and 94-10-7 (Object Management Group, 1994).

3. Digital Equipment Corporation et al, IDL C++ Language Mapping Specifica-
tion, OMG Document 94-9-14 (Object Management Group, 1994).

4. IBM et al, Joint Submission: Object Query Service Specification, OMG TC

Document 95-1-1 (Object Management Group, 1995).
. SOMobjects Developer Toolkit Users Guide, Version 2.0 (IBM, 1993).
6. Orbiz Programmer’s Guide 1.3 (IONA Technologies Ltd, 1995).

(93]




