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Executive Summary

The U.S. Department of Energy, through the Yucca Mountain Site Characterization Project
Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate U.S.
geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will
determine the suitability of the Yucca Mountain site for the potential waste repository. K the site is
determined suitable, subsequent studies and characterization will be conducted to obtain
authorization from the Nuclear Regulatory Commission to construct the potential waste repository.
A principal component of the characterization and licensing processes involves numerically
predicting the thermal and hydrologic response of the subsurface environment of the Yucca
Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic
response of the subsurface environment to the repository is anticipated to include complex
processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase
transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of
these subsurface phenomena are required to make numerical predictions of the thermal and
hydrologic response of the Yucca Mountakn subsurface environment. The engineering simulator
called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the
Yucca Mountaha Site Characterization Project Office to produce numerical predictions of
subsurface flow and transport phenomena at the potential Yucca Mountain site. This document
delineates the design architecture and describes the specific computational algorithms that compose
MSTS. Details for using MSTS and sample problems are given in the "User's Guide and
Reference" companion document.

The fundamental purpose of MSTS is to produce numerical predictions of thermal and
hydrologic flow and transport phenomena in variably saturated subsurface environments, which are
composed of unfractured or highly fractured porous media. The simulator is designed to
numerically model the flow of liquid water, water vapor, air, and heat through fractured porous
media. Additionally, MSTS is capable of modeling the two-phase transport of radionuclides, heavy
metals, or other contaminants through porous media. Quantitative predictions from MSTS are
generated through the numerical solution of partial differential equations that describe subsurface
environment transport phenomena. The description of the contaminated subsurface environment
formulated irl MSTS is founded on governing and constitutive equations. Governing equations are
partial differential equations for the conservation of water mass, air mass, thermal energy, and
species mass. Constitutive equations relate independent variables to coefficients of the governing
conservation equations. Solution of the governing partial differential equations is by the integral
volume f'mite-dffference method. The governing equations that describe thermal and
hydrogeological processes are solved simultaneously using Newton-Raphson iteration to resolve
the nonlinearities in the governing equations. Species mass conservation governing equations are
solved sequentially, by a direct application of the integral volume finite-difference method, once the
coupled thermal and hydrological equations have been solved for the current time step.

Modeled transport processes within the subsurface environment at Yucca Mountain are
described by the governing conservation equations and associated constitutive functions.
Component mass transport through the subsurface environment occurs in response to gradients in
phase pressures, gravitational body forces, and gas-phase vapor concentration differentials. Mass
advective fluxes from pressure gradients and gravitational body forces follow Darcy's flow
equations for the aqueous and gas phases. Diffusion of components through the gas phase occurs
according to Fick's law modified for porous media with soil tortuosity parameters. Interphase mass
transfer of water between the liquid and gas phases depends on an assumption of thermodynamic
equilibrium. Solubilities of air within the aqueous phase follow Henry's law for chemical
equilibrium. Heat transport within the subsurface environment occurs by thermal diffusion and
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advection. Solid- and liquid-phase pathways for thermal diffusion are considered; thermal
diffusion through the gas phase is neglected. Both sensible and latent advection of thermal energy
are considered. Species transport through the subsurface environment occurs by diffusion,
dispersion, and advection. Species diffusion, dispersion, and advection transport contributions are
combined into a single transport coefficient with a power-law approxhnation to the exact solution.

Constitutive equation calculations represent a major portion of the total computational effort.
Parameters computed through the constitutive equations include thermodynamic equilibrium
parameters, physical properties, transport properties, rock or soil saturations, relative permeabilities,
interphase mass transfer parameters, species partition functions, and thermal properties. Liquid
water and water-vapor properties are computed from the International Formulation Committee's
steam table functions. Air properties are computed from empirical functions. Rock or soil
saturation, relative permeability, and capillary pressure functions were derived from several
theoretical models for air-water porous media systems subject to arbitrary saturation paths. These
theoretical models do not consider hysteretic saturation paths, nor do they include the effects of air
occlusion or entrapment during imbibition.

The source code for MSTS is written in FORTRAN 77, following the American National
Standards Institute (ANSI) standards, and includes calls to machine-dependent time and data
subroutines for numerous computing platforms. Verification of MSTS h_ been performed
through comparisons against analytical solutions, other numerical simulators, and experimental
data. The source code is controlled and maintained under a quality assurance program that requires
change documentation, new version testing, and systematic backups. Inpnt fries for MSTS can be
generated with either an interactive graphical user interface or a conventior:al text editor. The
graphical user interface, a Macintosh system program, allows the user to specify simulation
parameters through a controlled interactive environment. Output generated by MSTS is completely
controlled by the user through input specifications and includes thermal and hydrologic field states
and fluxes (e.g., temperatures, pressures, saturations, component mass fractions, Darcy velocities,
and heat transfer rates). Species transport output also includes field states and fluxes. Special
screen outputs can be requested by the user to trace histories of field and flux variables interactively
during the simulation. Both spatial and temporal output of field and flux wariables can be generated
for subsequent graphical analysis.
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Glossary of Symbols

Roman Symbols

a Jacobian coefficient matrix (banded matrix solver)

A area, m2

A Jacobian coefficient matrix

ai j, A i j water-vapor constant

at, _ ag,r species transport coefficients (aqueous, gas), m/s

lit ,

a_,r' ag,r conjugate species transport coefficients (aqueous, gas), m/s

ay species transport coefficients, rrds

bij, B ij Liquid water constant

bp species transport solution vector coefficient, mol/s m2

C Jacobian coefficient matrix (conjugate gradient solver)

ca specific heat @ constant volume (air), J'/kg K

C, Cl, Cs, Cs species concentration (per total volume, per aqueous volume, per gas Volume,
per soLidvolume), tool/ma

De, 7 thermal diffusive flux term, W/m2

De..,_Dg._ combined species diffusive and dispersive flux term, rrds

Die, Ddg species diffusion coefficient (aqueous, gas), m2/s

Dh,, soecies hydraulic dispersion coefficient (aqueous), m2/s

D_h,,,D_h,,,D_ht hydraulic dispersion coefficient (east-west, north-south, top-bottom), m2/s

D_gB gas-phase diffusivity _nonpolar gas pair), m2/s

D_w air/water-vapor binary diffusivity, m2/s

Dgaw* reference air/water-vapor binary diffusivity, m2/s

E energy accumulation term, J/m3

¢"(x) continuous function

V
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Roman Symbols (contd)

Fc, _ species surface flux, mol/m2 s

Fe, _ thermal advective flux term, W/m2

F_', F _ gas-phase advective flux vector (water, air), kg/m2 s

F_', F _t aqueous-phase advective flux vector (water, air), kg/m2 s

g acceleration of gravity, m/sZ

h_, h_ gas-phase component enthalpy (water, air), J/kg

ht, hg enthalpy (aqueous, gas), J/kg

h w, h a enthalpy (water, air), J/kg

Hgag Henry's constant, gas-aqueous phase (air), Pa

.l Jacobian index matrix (conjugate gradient solver)

J_, J _ gas-phase diffusive flux vector (water, air), kg/m2 s

intrinsic permeability tensor, m2

k x, k Y, k z intrinsic permeability (east-west, north-south, top-bottom), m2
N

kf, km intrinsic permeability tensor (fracture, matrix), m2

ke equivalent thermal conductivity tensor, W/m K

kX, k ey, kez equivalent thermal conductivity
(east-west, north-south, top-bottom), W/m K

ki water saturation line constant

kt thermal conductivity (aqueous), W/m K

kr.,, krg relative permeability (aqueous, gas)

krtb, krtt, krgm aqueous relative permeability (bulk, fracture, matrix)

k'su, k'ss solid thermal conductivity tensor (unsaturated, saturated), W/m K

KD partition coefficient (solid-aqueous systems)

Kgg partition coefficient (aqueous-gas systems), kg/m3

vi
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Roman Symbols (contd)

l (j) liquid water constant

Li liquid water constant

m van Genuchten model curve-fit'ring parameter

mc, mm van Genuchten model curve-fitting parameter (fracture, matrix)

rhw, rh a mass source rate (water, air), kg/m3 s

M TM, M a mass accumulation term (water, air), kg/m3

MWt , Mat molecular weight (water, air), g/mol

MAt, MBwt molecular weight (component A, component B), g/mol

n van Genuchten model parameter

n surface normal vector

hf, nm van Genuchten model parameter (fracture, matrix)

n (/') liquid water constant

no, nE, n:r porosity (diffusive, effective, total)

nDt, nDm porosity (diffusive-fracture, diffusive-matrix)

n_ reference diffusive porosity

P system pressure, Pa

p* reference pressure, Pa

P_', Pca, Pcs critical pressure (water, component A, component B), Pa

Pcap capillary pressure at residual saturation, Pa

P_', P_ gas-phase partial pressure (water, air), Pa

Pg reference gas pressure, Pa

Pe, Pg pressure (aqueous, gas), Pa

Pr reduced pressure

P_' saturation pressure (water), Pa

vii
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Roman Symbols (contd)

_) thermal energy source power density, W/m3

Q total energy source power density, W/m3

Qc,_, species flux, mol/s m2

Q_e,7 diffusion heat flux, W/m2

QJ, _', Qg',r mass flux (aqueous, gas) kg/m2 s

r west-east coordinate (cylindrical coordinate systems), m

R w, R a gas constant (water, air), J/kg K

Re energy conservation equation residual, W

Rw, R a mass conservation equation residual (water, air), kg/s

R vector of conservation equation residuals

/_c species reaction rate, 1/s

Sc species source, mol/m3 s

st, Sg saturation (aqueous, gas)

st b, st t, st m effective aqueous saturation (bulk, fracture, matrix)

st effective aqueous saturation

szt"Stm effective aqueous saturation (fracture, matrix)

str residual aqueous saturation

Slrf Sfrm residual aqueous saturation (fracture, matrix)

Ssr entrapped air saturation

Ss coefficient of specific storage, 1/m

t time, s

T temperature, °C or K

T* reference temperature, °C or K
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Roman Symbols (contd)

Tca, TcB, T_c critical temperature (component A, component B, water), °C or K

To 273.15 K

Tr reduced temperature

u east-west Darcy velocity, rn/s

u}v, u_ gas-phase internal energy (water, air), J/kg

ul, ug, Us internal energy (aqueous, gas, solid), J/kg

v north-south Darcy velocity, m/s

V volume, m3

Vr, Vg Darcy velocity vector (aqueous, gas), m/s

w top-bottom Darcy velocity, rn/s

x west-east coordinate (Cartesian coordinate systems), m

x independent variable

x (/') liquid water constant

x_', xi gas-phase mass fraction (water, air)

x_', x,q aqueous-pl,,,se mass fraction (water, air)

y south-north coordinate (Cartesian coordinate systems), m

Y, Y' water-vapor canonical function parameter

z bottom-top coordinate (Cartesian and cylindrical coordinate systems), m

?.. bottom-top coordinate gradient

z (,/') liquid water constant

Z water-vapor canonical function parameter

Zra Rackett compressibility factor

ix



Greek Symbols

a van Genuchten model curve-fitting parameter, 1/m
!

at', arn van Genuchten model curve-fitting parameter (fracture, matrix), 1/m

aL longitudinal hydraulic dispersivity, m

ap pore compressibility, 1/Pa

aT pore expansivity, l/K; transverse hydraulic dispersivity, m

tip fluid compressibility, 1/Pa

F control volume area, m2

Darcy velocity magnitude, rrds

r/D diffusive water content = nE - (1 - st) nD

0 angular coordinate (cylindrical coordinate systems), radians

fl_', /.z_ gas-phase component viscosity (water, ai.r),Pa s

/lt, /.rg viscosity (aqueous, gas), Pa s

pP' critical density "_wat,_r),kg/m3

p_', p_ gas-phase component density (water, air), kg/m3

Pis, Pis saturated density (aqueous, aqueous ref.), kg/m3

Pr, Pg, Ps density (aqueous, gas, solid), kg/m3

Pe aqueous reference density, kg/m3

oa_ air-water surface tension, N/m

rr, Vg tortuosity (aqueous, gas)

t_gk viscosity interaction parameter (gas)

Z_', Z_ gas-phase mole fraction (water, air)

Z_', Z_ aqueous-phase mole fraction (water, air)

minimum drainage capillary pressure head, m
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Greek Symbols (contd)

COsrk Hankinson-Brobst-Thomson correlation parameter

Subscripts

B bottom surface; bottom node

c critical property; species

d diffusion

D diffusive

e equivalent

E east surface; east node; effective

f fracture

g gas phase

i index i; component i

j index j; component j

t aqueous phase

m minimum; matrix

N north surface; north node

p constant pressure

P local node

r residual

ra Rackett

s solid phase; saturation state

S south surface; south node

T top surface; top node; total

vap vaporization

W west surface; west node

xi



Subscripts (contd)

WB west boundary surface

wt weight

surface indicator

Superseripts

a air component

A component A

aw Mr-water system

B . component B

e energy

m/n minimum

n iteration index

t time

w water component

x east-west direction

y north-south direction

z top-bottom direction

3t time step

* reference value; effective

per unit time

- tensor

xii



Mathematical Symbols

A bold lettering indicates vector or matrix

summation operator

I inte_graloperator

.0 partial differential operator

8 f'mite-differenceo_rator

V divergence operator

( ) function operator

I I absolute value operator'

surface interface-average operator

[--_ upwind surface interface operator

max(, ) maximum function operator
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1.0 Introduction

Yucca Mountain, Nevada, has been selected by the U.S. Department of Energy (DOE) as a
potential site for construction of a deep geologic repository for the permanent storage of high-level
radioactive waste. The site must now be characterized (studied) to determine its suitability to
contain the waste. The strategy for site characterization has been outlined in the Site
Characterization Plan (SCP; DOE 1988) by the DOE Office of Civilian Radioactive Waste
Management (OCRWM). Data collected during the site characterization phase of repository
analysis will be used to analyze the performance of the repository with respect to the statutory
requirements of the Nuclear Waste Policy Act (Public Law 97-425), the Nuclear Waste Policy
Amendments Act (Public Law 100-203), 10 CFR 60, and 40 CFR 191. DOE is required to submit
a license application to the U.S. Nuclear Regulatory Commission (NRC).

Performance assessment analyses are under way to determine ff unfavorable conditions
exist that would preclude licensing of a potential repository at Yucca Mountain. Another purpose
of performance assessment analyses is to provide input to site characterization. Data that have been
collected to date at Yucca Mountain provide initial estimates of hydraulic and geochemical
properties. These initial estimates of Yucca Mountain properties provide the basis for OCRWM to
begin development of performance assessment tools and strategies that will be used in the license
submittal to NRC. Of primary importance is development of the conceptual and numerical models
that are needed to increase current understanding of conditions at Yucca Mountain and to provide
direction to the field and laboratory activities described in the SCP. Pacific Northwest Laboratory1
has provided total systems performance analyses to assist DOE in assessing the performance of the
potential repository based on current designs and hydrologic data.

1.1 Yucca Mountain Hydrogeology Overview

Yucca Mountain is located within the physiographic Basin and Range Province, which is
characterized by mountain ranges trending generally north-south and intervening valleys. Yucca
Mountain (Figure 1.1) is a prominent group of north-trending fault block ridges. Major structural
geologic features of the mountain include the Solitario Canyon and Ghost Dance faults. The
elevation of northern Yucca Mountain is approximately 1500 m, and the ridge is approximately
300 m above the valley floor. Yucca Mountain consists of a thick sequence of both welded and
nonwelded volcanic tufts that dip 5 to 10 degrees to the east (Montazer and Wilson 1984). The
tufts extend well below the water and form a thick unsaturated zone. The densely welded ruffs
typically are highly fractured with low saturated matrix hydraulic conductivities (Peters and
Klavetter 1988). The nonwelded ruffs that are vitric have few fractures and relatively highly
saturated matrix hydraulic conductivities; the zeolitic nonwelded tufts are characterized by relatively
few fractures and low matrLx hydraulic conductivities.

The unsaturated zone at Yucca Mountain is characterized by a low recharge rate. A
conceptual model of flow through Yucca Mountain (Montazer and Wilson 1984) is presented in
Figure 1.2. In the Montazer and Wilson conceptualization of flow through the mountain, a small
fraction of the annual precipitation at the mountain migrates as recharge downward through the tuff
units toward the water table. Some water movement within Yucca Mountain occurs as water vapor,
which can move in an upward direction. Water-vapor movement will be more important when waste

1 Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle
Memorial Institute.

1.1



m m mm mmmm_ ,mm ,m

I

I NEVADA

_, n_ I
I

Las Vegas

116°4s' _ l

=_' NYE
, COUNTY _"

NEVADA
TEST
SITE

CRATER
FLAT

I,
% I

% i
I

%

Lathrop Wells

Base from U.S. Geological Survey

1:250,000, Death Valley, California;

Nevada, 1970

0 5 10 15KILOMETERS

I I I
i
5 MILES

Figure 1.1. Physiographic Features of Yucca Mountain and Surrounding Region
(modified from Montazer and Wilson 1984)

1.2

' Iqq _rI rl,



I VAPOTRANSplRA "lION

Frn

CHn _ "_

.................................

:.: .................

WATER TABLE ......................................._:_:_:_:_*_:_:_:::::_i_i_i_!_:i!:::i::................................
......

::::

.......... !:i ' .".','.," ".'"

::::::::::::::::::::: -......, ,........:.::..............

::::::::::::::::::::::::::::::::::::::::::::::::::::.........

WEST EAST

Liquid-Water Flow

l Vapor-Water FlowQAL Alluvium

TCw Tiva Canyon Welded UnitPTn Paintbrush Nonwelded Unit Normal Fault

2"TSw Topopah Spring Welded Unit
CHn Calico Hills Nonwelded Unit
CFu Crater Flats (Undifferentiated) Unit V , Water Table

? Unit Uncertain
Possible Perched-Water Zone

Saturated Zone

Figure 1.2. Generalized East-West Section Through Yucca Mountain Showing Conceptual
Moisture-Flow SystemUnder Natural Conditions (modified from Montazer and
Wilson 1984)

1.3

qr



is emplaced in the potential repository. Under ambient conditions, most of the liquid water likely
moves predominantly in a vertical, downward direction, and its movement is irffluenced by
interactions between the fractures and the matrix. The fractures present in the welded and
nonwelded tufts at Yuccz Mountain represent heterogeneities where the flow properties vary by
several orders of magnitude, depending on the local hydraulic conditions.

1.2 Simulator Overview

The site characterization studies conducted at the Yucca Mountain site necessitate numerical
predictions of the thermal and hydrologic response of the subsurface environment to the potential
nuclear waste repository. This thermal and hydrologic response of the repository environment is
anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-
phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical predictions of
complex phenomena can be realized through empirical, semiempirical, or mechanistic-type models.
Empirical and semiempidcal models invclve applying an expression of observed data from a
particular system to predict the response of a similar system. Mechanistic models describe the
fundamental processes of a particular system through mathematical expressions (known as the
governing equations and constitutive equations). Whereas both general types of models can yield
numerical predictions about the state of the subsurface system, the empirical and semiempirical
models are generally limited in applicability to systems similar to those used to develop the
empirical model. The mechanistic approach allows numerical predictions to be made of novel or
untested systems over extended periods of time. This document describes the Multiphase
Subsurface Transport Simulator (MSTS), a mechanistic numerical simulator for predicting the
thermal and hydrologic flow and transport phenomena in fractured porous media.

Computer codes that simulate transport processes in geologic media are typically classified
according to capabilities related to phases, components, and saturation levels. Under this
classification strategy, MSTS would be classified as a two-phase, two-component numerical
simulator, with a dilute species, for variably saturated geologic media. This classification arises
because MSTS models two phases (aqueous and gas) and two c_mponents (water and air). In
contrast, single-phase, single-component subsurface transport simulators typically model a single
fluid (e.g., water or liquid organic) that is composed of a single component or completely miscible
mixture. In reality, these types of single-phase simulators are pseudo-two-phase models, because a
nonparticipating gas phase is assumed to exist. Another type of two-phase, two-component
subsurface simulator is possible that should be distinguished from the MSTS code. These
simulators typically model two immiscible fluid phases (e.g., water and liquid organic), and their
applications differ significantly from those for MSTS. As with their single-phase, single-
component counterparts, these simulators are restricted to modeling flows of weak thermal
gradients without significant phase changes. Moreover, these types of two-phase simulators could
be considered pseudo-three-phase models, because of the assumption of a nonparticipating gas
phase.

Single-phase, single-component subsurface transport simulators are capable of modeling
fluid flow, heat transfer, and mass transport (through a dilute species) in variably saturated media
for numerous applications. The single-phase, single-component simulators, however, are
inappropriate for modeling flow situations characterized by phase change or strong thermally driven
flow fields. Typically for single-phase, single-component simulators capable of modeling variably
saturated conditions, the presence of an air phase is acknowledged only through the functional
dependence of the fluid hydraulic conductivity on relative saturation. A separate equation to
determine the pressure in the vapor phase is not explicitly solved. The MSTS code specifically
addresses the additional phenomena of air and water-vapor transport, two-phase heat transfer, and
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two-phase mass transport by solving an additional conservation equation and phase-change-related
constitutive equations. The requirements for modeling nonisothermal two-phase flow are motivated
by the importance of accurately predicting the movement of liquid, vapor, heat, and species in the
tuffaceous media within and surrounding the potential waste repository at Yucca Mountain.

The principal design goal for MSTS was that it contain the capabilities for generating
numerical predictions of the complex flow and transport phenomena occurring in the subsurface
environment at Yucca Mountain over a period of 10,000 years. Secondary design goals were that
MSTS: 1) be accessible and exploitable to scientists and engineers familiar with subsurface
environment phenomena but not necessarily numerical modeling technicalities; 2) have enough
general applicability to attract or generate a user group that is capable of supporting training,
maintenance, and enhancement activities; 3) be verified by comparisons witl', analytical solutions
and benchmarked against existing simulators; 4) be validated against germarle laboratory and field
experiments; and 5) have controlled configuration and documentation under an appropriate quality
assurance program. This document primarily describes those portions of the simulator and support
software that are associated with the primary design goal. Issues relathlg to the secondary design
goals and simulator use are described in the companion document called the "User's Guide and
Reference" (Nichols and White 1992).

The source code for MSTS is written in FORTRAN 77, following the American National
Standards Institute (ANSI) standards, and includes calls to machine-dependent time and data
subroutines for numerous computing platforms. Input fries for MSTS can be generated with either
an interactive graphical user interface, for Macintosh systems (Nichols and White 1992), or a
conventional text editor. The graphical user interface allows the user to specify simulation
parameters through a controlled interactive environment. Output generated by MSTS is completely
controlled by the user through input specifications and includes thermal and hydrologic field states
and fluxes (e.g., temperatures, pressures, saturations, component mass fractions, Darcy velocities,
and heat transfer rates). Species transport output also includes field states and fluxes. Special
screen outputs can be requested by the user to trace histories of field and flux variables interactively
during the simulation. Both spatial and temporal output of field and flux variables can be generated
for subsequent graphical analysis.

An established quality assurance program is followed for the maintenance and control of the
MSTS software. This program is designed to ensure documentation and verification of engineering
and/or scientific software. The current version of MSTS has been verified against a selected series
of problems for which analytical and/or numerical solutions were available. A portion of these
problems are described in the "User's Guide and Reference" document (Nichols and White 1992).
The subject quality assurance program has three principal components: software maintenance and
control, software use, and software database management. The software maintenance and control
component of the quality assurance program requires that a systematic procedure be adopted for
distinguishing among versions of the software and recording ali changes between versions.
Furthermore, the program requires that systematic backups are performed, that new versions of the
software are verified to ensure that changes were installed correctly, and that software continues to
satisfy its design requirements. The software use component of the quality assurance program
requires that ali applications are reproducible by documenting versions and known errors or
modifications for the software in use. This component also requires that appropriate testing has
been performed and documented prior to using the software for application simulations. Moreover,
any software transferred to a new computing environment for application-type simulations will be
reverified and documented prior to performing application simulations. Because MSTS does not
use databases, other than those constants used to compute physical properties, the database
management component of the subject quality assurance program is not applicable to the software.
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This software theory manual is divided into six principal sections. Section 2 describes the
specific scope of applications addressable by the simulator and the goveming conservation
equations that mathematically describe multiphase flow, thermal transport, and species transport in
fractured subsurface environments. Included in this section are discussions of the fundamental
assumptions used to construct the mechanistic models in MSTS. Section 3 describes the
constitutive equations that relate the principle unknowns (i.e., primary variables) to the coefficients
(i.e., secondary variables) of the governing equations. Section 4 is dedicated to discussions of the
numerical techniques used to solve the governing conservation equations. This section covers a
broad spectrum of topics, including primary variables, secondary variables, variable switching,
discretization techniques, linearization methods, boundary conditions, and linear equation solvers.
Section 5 describes the code architecture, and the references are listed in Section 6.
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2.0 Flow and Transport Theory

Design of MSTS was directed at predicting the thermal and hydrologic response of the
subsurface environment surrounding the potential nuclear waste repository at Yucca Mountain, over
a 10,000-year period. Required prediction capabilities include those for multiphase transport and
radioactive decay of radionuclides and/or heavy metals. To numerically predict the thermal and
hydrologic response of Yucca Mountain, mechanistic models are required that accurately describe
multiphase fluid flow, interphase mass transfer, heat transfer, and species transport phenomena in
subsurface environments. The Yucca Mountain subsurface environment consists of fractured or
unfractured porous media filled or partially f'tUedwith either air or water. Furthermore, the
subsurface environment will be assumed to consist of three phases: an aqueous phase composed of
liquid water and dissolved air, a gas phase composed of water vapor and air, and a solid phase
composed of the porous media. With this phase description, radionuclides or heavy metals are
assumed to occur adsorbed on the solid phase and/or dissolved in the fluid phases. An important
distinction exists between components and phases when describing multiphase and multicomponent
subsurface transport phenomena. For example, conservation equations are written for component
masses transported by phases; however, phase mass is not a conserved quantity.

Numerical models for subsurface transport yield quantitative descriptions of transport
phenomena. Numerical models may be classified as empirical, semiempirical, or fundamental.
Empirical models are typically developed from observed or experimentally measured quantities, and
are generally used to predict the response of a particular system to a limited number of parameter
variations. Empirical models are applicable only to systems that are roughly equivalent to the
system used_to develop the empirical model and associated data sets. Fundamental models describe
phenomena through accepted physical laws (e.g., conservation of mass and conservation of energy).
In general, fundamental models have a broader range of applicability than empirical models.
Semiempirical models contain elements of both empirical and fundamental models. Typically,
semiempirical model: are formulated from fundamental principals for idealized systems with
empirically derived parameters serving to adjust the model for real systems.

All three types of numerical models (empirical, serniempirical, and fundamental) are
incorporated into MSTS in various degrees. Four fundamental equations that express the
conservation of component mass, species mass, and energy form the simulator's governing
equations. Empirical and semiempirical models relate the governing equations' principal unknowns
(primary variables) to the equations' coefficients (secondary variables). These empirical and
semiempirical equations are referred to collectively as the constitutive equations. An example of a
semiempirical equation embedded in a governing fundamental equation is one that describes the
component mass conservation equations. The conservation equations for water and air mass
contain expressions of phase Darcy velocities. Darcy velocities or phase mass fluxes are computed
from Darcy's semiempirical relationship that relates phase volumetric rates to phase pressure
gradients and _avitational body forces. The functional relationship between aqueous-phase
saturation and capillary pressure, commonly referred to as the soil characteristics, is an example of
an empirical model that relates the primary variables of pressure to the second variable of aqueous-
phase saturation.

Flow of air and water components in the subsurface environment is expressed in MSTS
through component conservation equations. Mass conservation equations are fundamental
equations that mathematically balance the amount of component mass entering and leaving a control
volume with the time rate of change of the component's mass within the control volume. The
component mass crossing the control volume surfaces is described by Darcy's flow equation for
porous media, where Darcy's equation relates the phase mass flux to gradients in pressure head and
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gravitational body forces. Component fluxes crossing a control volume surface are computed from
phase mass fluxes by multiplying the component mass fraction for a particular phase by the Darcy
mass flux for that phase. Diffusion of air and water component masses across the control volume
surfaces is considered for the gas phase. Gas-phase diffusive flow of components is described by
Fick's law, modified for porous media with saturation-dependent tortuosities. The time rate of
change of a component mass within the control volume depends on the time rate of change of the
following parameters: component mass fractions for both phases, phase saturations, phase
densities, and diffusive porosity. The conservation equations for water and air mass, expressed in
partial differential form, make up the governing equations for component flow in the subsurface
environment. For isothermal systems, uncontaminated with radioactive or heavy metal elements,
these conservation equations describe two-phase flow phenomena in porous media.

Because heat will be generated within the waste forms emplaced in the potential nuclear
waste repository at Yucca Mountain, the ability to compute heat transport phenomena in the
subsurface environment is critical to describing the thermal and hydrologic response of the
repository. Analogous to mass flcw, heat transfer in the subsurface environment is described with a
conservation equation for energy. The energy conservation equation is a fundamental equation that
mathematically balances the amount of energy entering the control volume with the time rate of
change of energy within the control volume. Heat transfer crossing the control volume surfaces
occurs by diffusion and/or advection. Diffusive heat transfer is described by Fick's law and
assumed to occur through the aqueous and solid phases. Heat conduction through the gas phase is
neglected. Furthermore, latent and sensible heat transfer contributions from components diffusing
through the gas phase are ignored. Advective heat transfer includes both sensible and latent
components. Interphase mass transfer of water and air is computed assuming thermodynamic
equilibrium conditions exist. The time rate of change of energy within the control volume depends
on the time rate of change of the following parameters: phase internal energies, phase saturations,
phase densities, and diffusive porosity.

Transport of radionuclides or heavy metals in the subsurface environment is described by a
species component conservation equation. A fundamental assumption associated with the species
transport equation is that species concentrations remain dilute with respect to computing the
physical properties of the aqueous and gas phases. The species conservatic_n equation is a
fundamental equation that mathematicaUy balances the quantity of species mass entering the control
volume with the time rate of change of species mass within the control volume. Species mass
transport across the control volume surfaces occurs by molecular diffusion, hydrodynamic
dispersion, and/or advection. Diffusive and advective transport of species mass is considered in
both the aqueous and the gas phases and is dependent on the species concentration for a particular
phase. Dispersive transport is considered only for the aqueous phase. Species partitioning among
the solid, aqueous, and gas phases depends on the aff'mity of the species for each particular phase
according to composition and local geochemistry. As with the energy equation, geochemical
equilibrium is assumed in computing the species partitioning. The time rate of change of species
mass within the control volume depends on the time rate of change of the following parameters:
species concentration in each phase, phase saturations, and diffusive porosity.

2.1 Application Scope

The four fundamental equations for conservation of component mass, energy, and species
mass that compose MSTS essentially def'me the simulator's application scope. A fundamental
restriction with respect to the MSTS application scope is that ali applications are strictly limited to
subsurface porous media environments. This restriction holds because of the application of
Darcy's law to compute phase volumetric fluxes. Furthermore, driving forces for fluid flow are
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limited to pressure gradients and gravitational body forces. MSTS is classified as a two-
component, two-phase simulator. This classification implies that MSTS is capable of computhag
flow and transport processes only for subsurface systems that contain no more than two
components and two phases. Moreover, components are confined to water and air, ,andphases are
confined to aqueous and gas systems. Subsurface systems contaminated with significant
concentrations of an organic compound would fall outside the application scope of MSTS. Low
solubilities are assumed for expressing the quantity of air dissolved in the aqueous phase. Within
the gas phase, component mass fractions are completely variable. Liquid saturations and relative
permeabilities are computed neglecting hysteretic and air entrapment effects. The flow model for
highly fractured systems assumes that the porous medium and fracture are continuously in thermal
and hydraulic equilibrium. Although discrete fractures can be modeled with MSTS, the simulator is
inappropriate for modeling transient fracture-matrix interactions with the dual porosity model.

The energy conservation equation expands the application scope by allowing thermal
gradients to influence flow fields. The energy equation formulation allows for both sensible and
latent heat transfer. Sensible heat transfer occurs by thermal diffusion through the solid and liquid
phases and by advection through the fluid phase. Diffusive heat transfer through the gas phase is
neglected. Latent heat transfer by evaporation and condensation processes is consirered for the
water component. Because interphase mass transfer computations depend on d',e assumption of
thermodynamic equilibrium, MSTS is not applicable for systems requi_g disequilibrium or kinetic
modeling of the thermodynamic processes. Sensible and latent heat transfer associated with
diffusing or dispersing components is neglected. Therefore, enhanced heat transfer by vapor
migration under thermal gradient conditions must be included empirically in the effective thermal
conductivity coefficient.

Species transport processes are solved by assuming loose coupling between multiphase
fluid flow and species transport processes. Because of the strong dependence of phase pressures
and temperature on the secondary variables that compose the fundamental equations for mass and
energy conservation, these fluid flow and heat transport fundamental equations are solved
simultaneously (coupled). The principal assumption associated with the specie,s transport
processes is that the species are numerically considered passive scalars. Physically, this
assumption implies that the secondary variables of the mass and energy conservation equations are
independent of species concentrations. A passive scalar species limits the applicability of the
engineering simulator to dilute species concentrations. Species concentrations may be considered
dilute whenever the physical, thermal, or transport properties of the transport fluid remain unaltered.
The dilute concentration assumption and decoupled solution approach also allow consideration of
multiple species and transport modeling of radioactive decay products. No accounting is made of
chemical reaction and/or radioactive decay products.

2.2 Governing Equations

Four partial differential equations form the governing equations that are assumed to
mathematically describe the transport of water, air, thermal energy, and a dilute species in the
subsurface environment at the potential Yucca Mountain waste repository. Each partial differential
equation represents an expression of conservation of component mass, thermal energy, or species
mass. The conservation equations balance the time rate of change in the conserved quantity within a
control volume against the surface fluxes of the conserved quantity entering the control volume.
The conserved quantifies are water mass, air mass, thermal energy, and species mass. Transport of
the four conserved quantifies through a porous medium is modeled within two distinct phases,
aqueous and gas. The aqueous phase is composed primarily of water, with relatively small amounts
of dissolved air, whereas the gas phase is composed of various compositions of air and water vapor°
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2.2.1 Water Mass Conservation Eq_.lation

The con_e_,ation equation for water mass, expressed in partial differential equation form, is
shown in Equation (2.1) The term on the left-hand side of Equation (2.1) represents thetime rate
of change of water mass _ 'thin the control volume. Water occurs within the soil pores as liquid in
the aqueous phase and as vapor in the gas phase. Unconnected pore spaces are considered to be
filled with liquid water but isolated from the continuous pore spaces, and therefore do not contribute
to the water mass accumuJadon term. Interphase mass transfer of water between the aqueous and
gas phases is computeg by assuming thermodynamic equilibrium conditions. This equilibrium
assumption implies that time scalcs for thermodynamic processes are significantly shorter than
those associated with transport. The two gradient terms on the right-hand side of Equation (2.1)
represent the mass flux of water mass into the control volume through aqueous and gas phases,
respectively. Water rn_ss flux occurs by advection in both phases and by diffusion through the gas
phase. ,_dvective transport is governed by Darcy's law for flow through porous media, where phase
pressure gradients and gravitational forces drive the flow fields. For unsaturated porous media,
advective transport depends 6.a saturation-dependent relative permeabilities for each phase.
Component diffusion rates through the liquid phases are neglected as a transport mechanism.
Diffusion tbxough the gas phase is governed by the classical mass diffusion equation, modified by
the porous media tortuosity. The driving forces behind diffusive transport are component
concentration or mass fractiov gradients in the gas phase. The last term on the right-hand side of
Equation (2.1) represents the water mass source rate within the control volume.
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2.2.2 Air Mass Conservat_.on Equation

The conservation equation for air mass, expressed !n partial differential equation form, is
shown in Equation (2.2). The term on the left-hand side of Equation (2.2) represents the time rate
of change of air mass in the control volume. Air occurs within the soil pores as dissolved air in the
aqueous phase and as gaseous _.irin the gas phase. Occluded air within the aqueous phase is
neglected, bv assuming that airentrapped by imbibing water would eventually dissolve into the
aqueous phase. Unconnected pore spaces are considered to be filled with liquid water but isolated
from the continuous pore spaces, and therefore do not contribute to the air mass accumulation term.
Interphase mass transfer of air between the aqueous and gas phases is computed by assuming
thermodynamic equilibrium conditions. This equilibrium assumption implies that time scales for
thermodynamic processes are significantly shorter than those associated with transport. The two
gradient terms on the right-hand side of Equation (2.2) represent the mass flux of air mass into the
control volume through aqueous and gas phases, respectively. Air mass flux occurs by advection in
both phases and by diffusion through the gas phase. Advective transport is governed by Darcy's
law for flow through porous media, where phase pressure gradients and gravitational forces drive
the flow fields. For unsaturated porous media, advective transport depends on saturation-dependent
relative permeab;,lities for each phase. Component diffusion rates through the aqueous phase are
neglected as a transport mechanism. Diffusion through the gas phase is governed by the classical
mass diffusion equation, modified by the porous media tortuosity. The driving forces behind
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diffusive transport are component concentration or mass fraction gradients in the gas phase. The
last term on the fight-hand side of Equation (2.2) represents the air mass source rate within the
control volume.
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2.2.3 Thermal Energy Conservation Equation

The conservation equation for thermal energy, expressed in partial differential form, is
shown in Equation (2.3), where phase velocities are defined by Equations (2.4) and (2.5), for the
aqueous and gas phases, respectively. The term on the left-hand side of Equation (2.3) represents
the time rate of change of heat content in the control volume. The total heat contained in the control
volume depends directly on temperature, liquid saturations, phase compositions, and soil physical
properties. For the thermal energy conservation equation, a modified aqueous-phase saturation
applies that accounts for the thermal capacitance of unconnected pore spaces, which are assumed to
be fdled with liquid water. Internal energies and densities of the aqueous phase are those for pure
liquid water. This assumption follows directly from the principal assumption of relatively low
solubilities of air in the aqueous phase. Disparately, the internal energy of the gas phase is strongly
dependent on phase composition. The first tema on the fight-hand side of Equation (2.3) represents
heat transfer into the control volume by advection. Analogous to the evaluation of internal energies,
the enthalpy of the aqueous phase is that for pure liquid water, whereas the gas-phase enthalpy is
strongly dependent on phase composition. The second term on the right-hand side of Equation
(2.3) represents heat transfer by conduction and mechanical dispersion. The equivalent
conductivity tensor represents the combination of solid- and liquid-phase conductivities along with
the mechanical dispersion coefficient. Typically, the mechanical dispersion tensor is neglected by
assigning zero to the longitudinal and transverse dispersivities. Thermal conductivity through the
gas phase is neglected. "]?helast three terms on the right-hand side of Equation (2.3) represent
internal heat generation quantities from thermal energy sources and sinks within the control volume,
and the change in internal energy associated with water and air mass sources and sinks within the
control volume, respectively. The internal heat generation quantities from mass sources represent
the enthalpy associated with a mass source.
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2.2.4 Species Mass Conservation Equation

The conservation equation for species mass, expressed in partial differential equation form,
is shown in Equation (2.6). The term on the left-hand side of Equation (2.6) represents the time
rate of change of total species mass within a control volume. Interphase species mass transfer
between solid and fluid phases is computed by assuming that thermodynamic and geochemical
equilibrium conditions apply. These equilibrium condition assumptions require that time scales for
thermodynamic and geochemical phenomena be small when compared with those for transport
phenomena. For transport through geologic media, these assumptions are generally appropriate.
The first term on the right-hand side of Equation (2.6) represents the migration of species mass into
the control volume by advection through the aqueous and gas phases. Advective transport is
dependent on the species concentration and Darcy velocity within each phase. The second term on
the right-hand side of Equation (2.6) represents the hydrodynamic dispersion of species in the
aqueous phase. The third term on the right-hand side of Equation (2.6) represents the diffusion of
species mass into the control volume in the aqueous and gas phases. Typically, diffusion
coefficients for the gas phase will be several orders of magnitude greater than those for the aqueous
phase. Species diffusion fluxes are phase-specific and depend on the gradients in species phase
concentrations, phase pore areas, and phase tortuosities. The fourth term on the right-hand side of
Equation (2.6) represents the generation of species within the control volume. The last term on the
right-hand side of Equation (2.6) represents the radioactive decay or consumption rate of species
mass.
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2.3 Solution Options

One of the design goals for MSTS was to create an efficient numerical simulator for
predicting flow and transport phenomena in the subsurface environment. Because of the diversity
of subsurface flow problems, a single-solution option would result in a numerical simulator that
was computationally inefficient for a majority of problems. For example, if the simulation problem
involved generating predictions of radionuclide transport by water under isothermal conditions, then
it would be superfluous to include gas-phase transport and heat transfer in the solution scheme.
The preferred solution scheme in terms of computational efficiency would be to sequentially solve
the water mass conservation and species mass conservation equations. However, if the simulation
problem involves nonisothermal aspects and if species transport through the gas phase is
significant, then the solution scheme would require the coupled solution of both component mass
conservation equations and the energy equation, along with the sequential solution of the species
transport equation. To avoid simulating the negligible aspects of a particular subsurface flow and
transport problem, several solution options are available with MSTS. This approach yields a
simulator that matches computational effort to the problem characteristics.

Solution modes or options are characterized by the specific solved conservation equations.
The conservation equations are divided into coupled and auxiliary conservation equations according
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to their interdependencies. The governing conservation equations for water mass, air mass, and
energy are considered coupled equations because they are solved simultaneously. The species
mass conservation equation is considered an auxiliary equation because it is solved sequentially to
the coupled conservation equations. The lowest-order solution modes are those that involve the
solution of a single coupled conservation equation (e.g., water mass conservation, air mass
conservation, or energy conservation). These lower-order solution modes generally require more

'1 assumptions about the subsurface system to be applicable. The next-higher-order solution modes
are those that involve the coupled solution of a pair of conservation equations. These solution
modes typically eliminate one of the primary assumptions associated with a single-equation
solution mode. The highest-order solution mode requires the coupled solution of both component
mass conservation equations and the energy conservation equation. The computational effort
increases roughly with the square of the coupled equations solved (i.e., three coupled equations
require eight times the computational effort required for a single equation). All solution modes can
include the solution of the auxiliary species conservation equation.

Solution modes are chosen by the user according to the coupled conservation equations
selected for solution. Considerable computational savings may be achieved through the proper
choice of a solution mode for a particular application. Choosing lower-order solution modes (i.e.,
those with fewer equations) generally requires that some assumptions be made about the problem.
Some assumptions are obvious (e.g., eliminating the air mass conservation equation for isothermal
water flow problems, or eliminating the energy conservation equation for isothermal problems).
Other assumptions require previous modeling experience, experimental evidence, or field
observations t,<)support the elimination of a specific equation. For example, what thermal gradients
constitute the inc!usion of vapor transport through the gas phase to accurately predict heat transfer
rates? Answering this type of question requires specific property information about the porous
media and anticipated thermal gradients.

The following subsections (Sections 2.3.1 through 2.3.7) describe the seven solution
modes available in MSTS. Each subsection is labeled with a solution mode tide, followed by a brief
general description of the solution mode and the type of problems to which it applies. Each
subsection also contains primary, secondary, and velocity variable lists. Primary variables refer to
the principal unknowns for the solution mode. The numbers of primary variables and equations
solved always coincide. Fixed primary variables refer to primary variables that must be specified
according to the problem assumptions. Fixed primary variables are specified, not computed. For
example, the gas-phase pressure for a water flow problem solved in the "Water" mode might be
fixed to atmospheric conditions, or 101325.0 Pa. Secondary variables are physical properties,
transport properties, and saturations that are computed from the unknown and fLxedprimary
variables. Fixed secondary variables are physical properties, transport properties, and saturations,
required for the solved equations, that are independent of the unknown primary variables. For
example, liquid viscosities are generally considered independent of liquid pressures. Velocities
refer to flow velocities or diffusion mass fluxes computed by MSTS from the solution of the
unknown pressure field. Fixed velocities are those ve!ociries or diffusion mass fluxes computed for
inactive phases from fixed pressure fields, soil characteristics, and transport properties.
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2.3.1 Water

Descrip_iQn: The "Water" mode solves saturated and unsaturated water flow problems
without a participating gas phase. This approach has been traditionally used to solve soil
physics problems. Soil characteristics are computed for a two-phase air-water system using
nonhysteretic relations. Physical properties may be specified invariant or dependent on
aqueous pressure. Species transport in the aqueous phase may be modeled by additionally
solving the species mass conservation equation.

Application: Appropriate applications for the "Water" mode include saturated and
unsaturated water flow problems with negligible thermal and gas pressure gradients.

Specification: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: off
Water Conservation Equation: on
Air Conservation Equation: off
Species Conservation Equation: off / on

Options
Binary Diffusion: off
Fixed Properties: off / on
Liquid Phase: on
Gas Phase: off
Vapor Pressure Lowering: off

Primary_Variable_: aqueous pressure

Fixed Primary_Variables: gas pressure, temperature

Secondary Variables: aqueous-phase density, aqueous-phase saturation, aqueous-phase
relative permeability, porosity, aqueous-phase tortuosity

Fixed Secondary_Variables: aqueous-phase viscosity

Fluxes: aqueous-phase velocity
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2.3.2 Air

Description: The "Air" mode solves unsaturated subsurface gas flow problems with static
saturation fields. Liquid saturations are temporally invariant, and are either specified or
computed from initial fields of aqueous pressure and gas pressure. Fixed physical
properties are temporally invariant, computed from the initial fields of aqueous pressure, gas
pressure, and temperature. Vapor-diffusive transport and convective mass transport may be
computed through the gas phase for spatially variant temperature fields. Conservation of
water mass and energy is not ensured for vapor transport problems. Gas-phase density, gas-
phase mass fraction and vapor diffusivities may be specified invariant or dependent on gas
pressure. Species transport in the gas phase can be modeled by additionally solving the
species mass conservation equation.

Application: Appropriate applications for the "Air" mode include unsaturated subsurface
gas flow problems with invariant liquid saturation and temperature fields. Density-driven
gas flows resulting from steady thermal gradients are an appropriate problem for this mode.
For these types of applications, the influence of both temperature and vapor mass fractions
on gas-phase properties could be investigated. An inappropriate application, however,
would result if either the liquid saturation or the thermal fields were significantly altered by
the transport of vapor or heat through the gas phase.

Soecification: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: off
Water Conservation Equation: off
Air Conservation Equation: on
Species Conservation Equation: off / on

Options
Binary Diffusion: off/on
Fixed Properties: off / on
Liquid Phase: off
Gas Phase: on
Vapor Pressure Lowering: off/on

Prim_'y V_iables: gas pressure

Fixed Primary_,Variables: aqueous pressure, temperature

Secondary_ Variables: water-vapor partial pressure, air partial pressure, water-vapor density,
air density, gas-phase density, water-vapor mass/mole fraction, air mass/mole fraction,
gas-phase viscosity, water-vapor diffusivity

Fixed Seconflary Variables: aqueous-phase saturation

Fluxes: gas-phase velocity, water-vapor diffusion mass flux
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2.3.3 Water-Air

Descriptign: The "Water-Air" mode solves saturated and unsaturated water flow problems
with a participating gas phase. Soft characteristics are computed for a two-phase air-water
system using nonhysteretic relations. Physical properties are temporally invariant,
computed from the initial fields of aqueous pressure, gas pressure, and temperature. Water-
vapor transport through the gas phase is computed for spatially variant temperature fields.
Phase densities, mass fractions, and vapor diffusivities may be specified invariant or
dependent on pressure. Species transport in the aqueous and gas phases can be modeled by
additionally solving the species mass conservatior_ equation.

Applicatiorl: Appropriate applications for the "Water-Air" mode include saturated and
unsaturated water flow problems with steady or negligible thermal gradients. This mode
differs from the "Water" mode because it is applicable to problems involving gas pressure
gradients. For steady thermal conditions, this mode is appropriate for predicting the
transport of water vapor by diffusion and advection through the gas phase. The mode

tl.,_liquid and mass transport influence the thermal field.becomes inappropriate when ""
Because heat transfer associated with vaporization and condensation may be significant,
thermal effects should be considered carefully before this mode is applied to a simulation
problem.

Specification: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: off
Water Conservation Equation: on
Air Conservation Equation: on
Species Conservation Equation: off/on

Options
Binary Diffusion: off/on
Fixed Properties: off / on
Liquid Phase: on
Gas Phase: on
Vapor Pressure Lowering: off / on

Primary_Vari_b!e_:aqueous pressure, gas pressure

Fixed Primary Variables: temperature

Secondary_Variables: water-vapor partial pressure, air partial pressure, water-vapor density,
air density, gas-phase density, aqueous-phase density, air mass/mole fraction, water-vapor
mass/mole fraction, aqueous-phase air mass/mole fraction, gas-phase viscosity, aqueous-
phase saturation, gas-phase saturation, aqueous-phase relative permeability, gas-phase
relative permeability, porosity, aqueous-phase tortuosity, gas-phase tortuosity, water-vapor
diffusivity

Fixed Secondary_ Variables: aqueous-phase viscosity

Fluxes: aqueous-phase velocity, gas-phase velocity, water-vapor diffusion mass flux
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2.3.4 Energy

Descriotion: The "Energy" mode solves heat transfer problems for saturated and
unsatui'ated subsurface flow problems. Constant aqueous- and gas-phase flow fields may
be prescribed. Diffusive heat transfer occurs through the solid and liquid phases.
Advective heat transfer occurs through the fluid phases. No heat transfer occurs by vapor
diffusion through the gas phase. System pressures, phase saturations, and relative
permeabilities are invariant. Mass continuity is not ensured for specified flow fields.
Physical properties may be specified as invarimator dependent on temperature.

Armlication: Appropriate applications for the "Energy" mode include subsurface heat
trfifisferthrough saturated and unsaturated porous media. Fixed saturation and fluid flow
fields are the principal assumptions associatedwiththismode. Saturation levels and Darcy
flow velocities may be specified for the aqueous and gas phases through the initial pressure
fields and soil characteristics. An appropriate application for this mode could involve heat
transfer through completely dry or completely saturated porous media, or heat transfer
through partially saturated porous media with relatively high liquid mass flux rates.
Without adjusting the porous media thermal conductance for heat transfer enhancement by
vapor diffusion, this mode would be inappropriate for predicting heat transfer for partially
saturated media with low liquid mass flux rates. The mode would also be inappropriate for
conditions where the thermal field affected the saturation fields (e.g., heat-pipe-type flow
phenomena).

Soecification: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: on
Water Conservation Equation: off
Air Conservation Equation: off
Species Conservation Equation: off

Options
Binary Diffusion: off
Fixed Properties: off/on
Liquid Phase: off/on
Gas Phase: off/on
Vapor Pressure Lowering: off

Primary_Variables: temperature

Fixed Pri.'maryVariables: aqueous pressure, gas pressure

Secondary_Variables: water-vapor partial pressure, air partial pressure, water-vapor density,
air density, gas-phase density, aqueous-phase density, water-vapor mass/mole fraction, air
mass/mole fraction, aqueous-phase air mass fraction, water-vapor enthalpy, air enthalpy, gas-.
phase enthalpy, aqueous-phase enthalpy, water-vapor internal energy, air internal energy,
gas-phase internal energy, aqueous-phase internalenergy, aqueous-phase thermal
conductivity, solid-phase thermal conductivity, equivalent thermalconductivity

Fixed Secondary_Variables: aqueous-phase saturation

_: thermal flux
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2.3.5 Water-Energy

DescriptiQn: The "Water-Energy" mode solves aqueous flow and heat transfer problems
for saturated and unsaturatedsubsurface flow systems. Aqueous-phase flow fields are
computed assuming, a nonparticipating gas phase. Soil characteristics are computed for an
air-water system using nonhysteretic relations. Diffusive heat transfer occurs through the
solid and aqueous phases. Advective heat transfer occurs through the aqueous phase. No
heat transfer occurs by vapor diffusion through the gas phase. Physical properties may be
specified invariant or dependent on aqueous pressure and temperature. Species transport in
the aqueous phase may be modeled by additionally solving the species mass conservation
equation.

Application: Appropriate applications for the "Water-Energy" mode include water flow and
heat transfer through saturated and unsaturated porous media. Typical applications would
involve concurrent solutions of the aqueous-pressure and temperature fields. Transport of
heat and water vapor through the gas phase is assumed negligible with this mode. An
appropriate application for this mode is the solution of a density-driven aqueous flow
through porous media. Inappropriate problems include those characterized with high latent
heat transfer rates through the gas phase.

Speci.fication: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: on
Water Conservation Equation: on
Air Conservation Equation: off
Species Conservation Equation: off / on

Options
Binary Diffusion: off
Fixed Properties: off/on
Liquid Phase: on
Gas Phase: off / on
Vapor Pressure Lowering: off

Primary Variable_: aqueous pressure, temperature

Fixed Primary Variables: gas pressure

Secondary_Variables: aqueous-phase density, aqueous-phase viscosity, aqueous-phase
enthalpy, aqueous-phase internal energy, aqueous-phase thermal conductivity, solid-phase
thermal conductivity, equivalent thermal conductivity, aqueous-phase saturation, trapped gas
saturation, aqueous-phase relative permeability, porosity, aqueous-phase tortuosity

Fluxes: aqueous-phase velocity, thermal flux
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2.3.6 Air-Energy

Description: The "Air-Energy" mode solves unsaturated subsurface gas flow and heat
transfer problems with static saturation fields. Liquid saturations are temporally invariant,
and are either specified or computed from initial fields of aqueous pressure and gas
pressure. Diffusive heat transfer occurs through the solid and liquid phases. Advective heat
transfer occurs through the gas phase. No heat transfer occurs by vapor diffusion through
the gas phase. Conservation of water mass is not ensured for vapor transport problems.
Physical properties may be specified invariant or dependent on gas pressure and
temperature. Species transport in the gas phase may be modeled by additionally solving the
species mass conservation equation.

Applicatiorl: Appropriate applications for the "Air-Energy" mode include gas flow and heat
transfer through unsaturated porous media. Density-driven gas flows resulting from
transient or steady thermal fields are an appropriate problem for this mode. Fixed liquid
saturation fields may be specified for the aqueous phase through the initial aqueous- and
gas-pressure fields and the sou characteristics. For these types of applications, the
influence of both temperature and vapor mass fractions on gas-phase properties may be
investigated. An inappropriate application, however, would result if the liquid saturation
fields were significantly altered by the transport of vapor or heat through the gas phase,

Specification: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: on
Water Conservation Equation: off
Air Conservation Equation: on
Species Conservation Equation: off / on

Options
Binary Diffusion: off / on
Fixed Properties: off / on
Liquid Phase: off
Gas Phase: on
Vapor Pressure Lowering: off / on

Primary_Variable_:gas pressure, temperature

Fixed PrimaryVajziable_:aqueous pressure

Secondary Variables: water-vapor partial pressure, air partial pressure, water-vapor density,
air density, gas-phase density, water-vapor mass/mole fraction, air mass/mole fraction,
gas-phase viscosity, water-vapor enthalpy, air enthalpy, gas-phase enthalpy, aqueous-phase
enthalpy, water-vapor internal energy, air internal energy, gas-phase internal energy,
aqueous-phase internal energy, aqueous-phase thermal conductivity, solid-phase thermal
conductivity, equivalent thermal conductivity,water-vapordiffusivity

Fixed SeconOaxyVariables: aqueous-phase saturation

Fluxes: gas-phase velocity, water-vapor.diffusion mass flux, thermal flux
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2.3.7 Water-Air-Energy

Descritxion: The "Water-Air-Energy" mode solves aqueous flow and heat transfer
problems for saturated and unsaturated subsurface flow systems. Aqueous-phase flow
fields are computed assuming a participating gas phase. Soil charactensucs are computed
for an air-water system using nonhysteretic relations. Diffusive heat transfer occurs
through the solid and aqueous phases. Advective heat transfer occurs through the aqueous
and gas phases. Diffusive heat transfer through the gas phase includes both sensible and
latent components for water vapor. No heat transfer occurs by vapor diffusion through the
gas phase. Physical properties may be specified invariant or dependent on aqueous
pressure, gas pressure, and temperature. Species transport in the aqueous and gas phases
can be modeled by additionally solving the species mass conservation equation.

Application' Appropriate applications for the "Water-Air-Energy" mode include aqueous
and gas flow and heat transfer through saturated and unsaturated porous media. Because of
the coupled solution of the water, air, and energy equations, this mode is applicable to
problems involving both sensible and latent heat transfer through the gas phase (e.g., heat-
pipe-type flows). This mode eliminates the isothermal assumptions associated with the
"Water-Air" mode and the assumptions of zero latent heat transfer associated with the
"Water-Energy" mode, at the expense of additional computational effort.

Specification: Solution Schemes and Options Card
Governing Equations

Thermal Energy Conservation Equation: on
Water Conservation Equation: on
Air Conservation Equation: on
Species Conservation Equation: off / on

Options
Binary Diffusion: off/on
Fixed Properties: off / on
Liquid Phase: on
Gas Phase: on
Vapor Pressure Lowering: off/on

Primary V_ables: aqueous pressure (water-vapor mass fraction), gas pressure, temperature

Secondary Variables: water-vapor partial pressure, air partial pressure, water-vapor density,
air density, gas-phase density, aqueous-phase density, air mass/mole traction, water-vapor
mass/mole fraction, aqueous-phase air mass/mole fraction, gas-phase viscosity, aqueous-
phase viscosity, water-vapor enthalpy, air enthalpy, gas-phase enthalpy, aqueous-phase
enthalpy, water-vapor internal energy, air internal energy, gas-phase intemal energy,
aqueous-phase internal energy, aqueous-phase thermal conductivity, solid-phase thermal
conductivity, equivalent thermal conductivity, aqueous-phase saturation, gas-phase
saturation, trapped gas saturation, aqueous-phase relative permeability, gas-phase relative
permeability, porosity, aqueous-phase tortuosity, gas-phase tortuosity, water-vapor
diffusivity

Fluxes: aqueous-phase velocity, gas-phase velocity, water-vapor diffusion mass flux,
thermal flux
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3.0 Constitutive Functions

Constitutive functions relate the coefficients of the governing equations (secondary
variables) to the principal unknowns of the governing equations (primary variables). For the
thermodynamic, physical, hydrologic, and geochemical systems to be completely specified, all of the
secondary variables must be computable from the selected set of primary variables. Secondary
variables include hydrologic parameters (e.g., saturation, relative permeability), soil properties (e.g.,
porosity, tortuosity), fluid properties (e.g., viscosity, density, enthalpy), thermodynamic properties
(e.g., saturation vapor pressures, vapor mass fractions), and transport properties (e.g., dispersion
coefficients, diffusion coefficients, partition coefficients). This section describes and references the
constitutive functions applied in MSTS to relate secondary with primary variables. Several of the
constitutive functions described in this section incorporate secondary variables in the functional
descriptions of other secondary variables. The calculation sequences for secondary variables in
MSTS are specifically structured to avoid using uncomputed secondary variables in expressions of
other secondary variables. Because of the modular structure of MSTS, constitutive functions for a
particular parameter can be supplanted with another theory or actualexperimental data, when
available. As part of the modular design, MSTS incorporates "stand alone" subroutines for the
constitutive functions, allowing advanced users to modify or supplant constitutive functions without
concern for the particulars of the numerical schemes.

3.1 Gas-Phase Partial Pressure

When liquid and gas phases exist under thermodynamic equilibrium, the partial pressure of
water vapor in the gas phase equals the saturated water-vapor pressure (van Wylen and Sonntag
1978). In the absence of the liquid phase, the water-vapor partial pressure may be computed from
the gas-phase mole fraction and gas-phase pressure. The partial pressure of air in the gas phase is
estimated with Dalton's partial pressure law for ideal gases, as shown in Section 3.1.2. Strong
capillary pressures lower the saturated water-vapor pressure, through an effect referred to as vapor
pressure lowering (Nitao 1988).

3.1.1 Water-Vapor Partial Pressure

For multiphase (i.e., both liquid and gas phases are present) and thermodynamic
equilibrium conditions, the water-vapor partial pre.ssureequals the saturated water-vapor pressure.
Saturated vapor pressures are computed as a function of temperature from the steam table equations
(ASME1 1967), according to Equation (3.1). The numerical values of the saturation line constants
are listed in Table A.3 of the Appendix. The saturated water-vapor pressure function is shown in
graphical form in Figure 3.1. In the absence of an aqueous phase, the water-vapor partial pressure
is computed from the water-vapor mass fraction, gas-phase component molecular weights, and total
gas pressure (van Wylen and Sonntag 1978) according to Equations (3.2) and (3.3). Refer to
Section 3.3 for gas-phase mass fraction constitutive functions. Under conditions of high capillary
pressures, water molecules are bound more tightly than for free surfaces, _radvapor pressure
lowering occurs. Vapor pressure lowering effectively lowers the vapor pressure above the pore
water (i.e., raises the pore-water boiling point), as shown in Equation (3.4) (Nitao 1988).

t American Society of Mechanical Engineers.
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Figure 3.1. Water Saturation Pressure

3.1.2 Air Partial Pressure

The air partial pressure is computed from Dalton's partial pressure law for ideal gas
mixtures (van Wylen and Sonntag 1978), according to Equation (3.5).

P_= P_-P7 (3.5)

3.2 Density

Gas-phase densities are computed using Dalton's ideal gas law for mixtures, where
component partial pressures sum to the total gas-phase pressure, and component densities sum to
the total gas-phase density. The assumption of low liquid-phase solubilities, taken with the
engineering simulator, allows the aqueous-phase densities to be computed for pure liquid water.
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3.2.1 Gas-Phase Density

Water-vapor component density is computed as a function of temperature and water-vapor
partial pressure from the steam table equations (ASME 1967), according to Equation (3.6). The
numerical values of the water-vapor constants are listed in Tables A.2 and A.4 of the Appendix.
The numerical indices for the water-vapor density function are listed in Table A.5 of the Appendix.
The water-vapor density function for saturated conditions is shown in graphical form in Figure 3.2.
Air component density is computed from the ideal gas law according to Equation (3.7). The gas-
phase density equals the sum of the individual gas-phase component densities (van Wylen and
Sonntag 1978), according to Equation (3.8).

- Pr I, n_) }--1" _1 _iJPr(i - 1) Bi j xz(i,j)-- j--1
nCi)

S (i- 2 )Pr {l" i) Z Bij X z(i,j)
j=l

jO_ -" _.L.. i=6vg pl2. _)_ bikX_(_'J)
k=l

+ ll B9i X i
_ i=o - (3.6)

where X = exp{ b (1- Tr)}

_L = LO+ LI rr+ L2 Tr2
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Figure 3.2. Water-Vapor Density (saturated conditions)
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= Pl + M (3.8)

3.2.2 Aqueous-Phase Density

Aqueous-phase density is computed as a function of temperature and pressure from the
steam table equations (ASME 1967), according to Equation (3.9). The numerical values of the
liquid water constants are listed in Table A. 1 of the Appendix. The aqueous-phase density function
for saturated conditions is shown in graphical form in Figure 3.3.

Z.5/17 + [ Al2 + Al3 Tr +Al4 Tr2 I -1Ali a5
+ Al5 (a6 - Tr)10 + Al6 (a7 + Tr 19)'1/

_.L -(a8+ Trll)'I(A17+2A18Pr+3A19Pr 2)
Pl= v_' -A2OTrl8(a9 + Tr2)(-3(alo+er)'4+all)

_ + 3 A21 (al2 - Tr) Pr 2 + 4 A22 Tr "20 Pr 3 (3.9)

where Z = Y + (a3 Y 2.2 a4 Tr + 2 a5 Pr) 112
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F_gure 3.3. Liquid Water Density (saturated conditions)

3.3 Mass and Mole Fractions

Gas-phase mass fraction is computed directly from the ratio of component gas density to
gas-phase density (van Wylen and Sonntag 1978). Aqueous-phase mass fraction is computed
assuming thermodynamic and geochemical equilibrium exists between the gas and aqueous phases.
Mol_ fraction is computed from the component mass fract'ons and component molecular weights
(van Wylen and Sonntag 1978), according to Equation (3.10), wh _re the summation occurs over the
water and air components. Superscripts i and k indicate components, whereas the subscript j
indicates phases. Mass fraction may be computed from the component mole fractions and

3.4

i
,' qr " '' _11 ml III'"



component molecular weights (van Wylen and Sonntag 1978), according to Equation (3.11), where
the summation occurs over the two components water and air."

i

Zj = Mm for i = w, a and j = L g

k=w, aM_t (3.10)

# = zjM', :or t,g
Z gM,

t=w,a (3.11)

3.3.1 Gas-Phase Mass Fraction

For multiphase (i.e., both liquid and gas phases are present) and thermodynamic
equilibrium conditions, the gas-phase mass fraction is computed from the ratio of component gas
density to total gas-phase density (van Wylen and Sonntag 1978), according to Equation (3.12) for
water. By definition, the component gas-phase mass fractions sum to one; therefore, the air mass
fraction is computed according to Equation (3.13). In the absence of a particular liquid phase, the
component vapor mass fraction becomes the primary variable for the governing mass conservation
equation.

Ps (3.12)

x_ = 1-x_' (3.13)

3.3.2Aqueous-PhaseMass Fraction

Aqueous-phasemassfractionsarecomputedbyassumingthermodynamicequilibrium
conditionsbetweengaseousairanddissolvedairintheaqueousphase.Underchemical
equilibriumconditions,theconcentrationofacomponentinthegasphaseisproportionaltothe
concentration/solubilityofthecomponentintheaqueousphase(Sandler1989).The
proportionalityconstant,Henry'sconstant,relatesthecomponentpartialpressureinthegasphase
withthecomponent'smolefractionintheaqueousphase(Sandier1989).UsingHenry'slaw,the
partialpressureofairinthegasphaseisrelatedtothemolefractionofairintheaqueousphase
accordingtoEquation(3.14).Henry'sconstantdependsonthesolute-solventpair,temperature,and
pressure.Athighersoluteconcentrations,thelinearrelationshipfails,becauseHenry'sconstant
becomesdependenton concentration.AssumingalinearformforHenry'slawisequivalentto
assuminglowaqueoussolubilitiesforair,whichisafundamentalassumptionforMSTS. Air
solubilitiesintheaqueousphasecanbecomplexfunctionsoftemperature.By definition,the
aqueous-phasemassfractionssum toone;therefore,thewatermassfractioniscomputedaccording
to Equation (3.15). Aqueous-phase mass fractions are computed from aqueous-pheze mole
fractions, according to Equation (3.11).

=e-L
H_t (3.14)
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Z_' = 1- Zfi (3.15)

3.4 Viscosity

Gas-phase viscosity is dependent on composition, temperature, and pressure. Gas-phase
viscosity is computed in MSTS with an extension of the Chapman-Enskog theory for
multicomponent gas mixtures at low densities (Reid et al. 1987). Aqueous-phase viscosity is
assumed independent of composition and is computed for pure water as a function of both
temperature and pressure.

3.4.1 Gas-Phase Viscosity

Gas phases modeled with MSTS can be composed of various compositions of air and water
vapor; therefore, the gas-phase viscosity function depends on the mixture composition and system
temperature. Gas-phase viscosity is computed using an extension, proposed by Wilke, of the
Chapman-Enskog theory for multicomponent gas mixtures at low densities (Bird et al. 1960). The
semiempirical expression developed by Wilke relates component vapor viscosities, composition
mole fractions, and component molecular weights to a mixture viscosity, according to Equations
(3.16) and (3.17), where the component vapor viscosities are computed as a function of temperature
and pressure. Water-vapor viscosity is computed from the International Formulation Committee
(IFC) steam table formulations (ASME 1967), according to Equations (3.18) and (3.19), with
viscosity in micropoise, density in g/cm3, and temperature in °C. Air component viscosity is
computed as a function of temperature from empirical correlations (ASHRAE2 1977), according to
Equation (3.20), with viscosity in Pa s and temperature in K. The functions for air viscosity and
water-vapor viscosity for saturated conditons are shown graphically in Figure 3.4. The gas-phase
viscosity function is shown graphically in Figure 3.5 for a temperature of 60°C.

k=w,a (3.16)

Oigk = -_ { l + Miw---'_t)'l/2 [ l + ( l't2 ) ll2 ( Mkw-'_t) l/412 7)Mkwt #sk M/t (3.1

Superheated steam at 1-bar pressure in the temperature range 100°C to 700°C:

/.t_ = 0.407 T + 80.4 (3.18)

Superheated steam from 1-bar pressure to saturation pressure in the
temperature range 100°C to 300°C:

#_' = 0.407 T+80.4-p}_(1858-5.9 T) (3.19)

2 American Society of Heating, Refrigerating, and Air Conditioning Engineers.
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Figure 3.5. Gas-Phase Viscosity

3.4.2 Aqueous-Phase Viscosity

Aqueous-phase viscosity is computed for pure liquid water as a function of temperature
only from the IFC steam table formulation (ASME 1967), according to Equation (3.21) for Liquid
water along the saturation line from 0°C to 300°C, with viscosity in micropoise and temperature
in K.
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/zt = 241.4 [247.8/ ( T- 140 )] (3.21)

3.5 Enthalpy and Internal Energy

Gas-phase enthalpy and internal energy are computed from component enthalpies and
internal energies using a mass fraction weighting scheme (Falta et al. 1990). Aqueous-phase
enthalpy and internal energy axe assumed independent of solute composition and are computed for
pure liquid water as functions of temperature and pressure.

3.5.1 Gas-Phase Enthalpy and Internal Energy

Gas-phase enthalpy and internal energy are computed from component enthalpies and
internal energies with a mass fraction weighting scheme (Falta et al.1990), according to Equations
(3.22) and (3.23), where the summation occurs over the water and air components. Water-vapor
enthalpy is computed using the IFC steam table formulations (ASME 1967), according to Equation
(3.24), where the reference state equals the internal energy of liquid water at 0.01°C. The numerical
values of the water-vapor constants are listed in Tables A.2 and A.4 of the Appendix. The water-
vapor enthalpy and internal energy functions for saturated conditions are shown graphically in
Figure 3.6. The water-vapor internal energy is computed from the water-vapor enthalpy using the
thermodynamic property relationship (van Wylen and Sonntag 1978) shown in Equation (3.25).

i=w, a (3.22)

us = 2 x_ u_
i--w. a (3.23)

5 s nO')
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+ flIIi-LI I---_] + j b Bv XJj=0 (3.24)
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Figure 3.6. Water-Vapor Enthalpy and Internal Energy (saturated conditions)

u_' = h7 - P---_-_
(3.25)

Air that is involved in subsurface flow and transport is considered a noncondensible gas.
The enthalpy of air, therefore, is computed as a function of temperature and pressure from the
thermodynamic property relationship for enthalpy (van Wylen and Sonntag 1978) shown in
Equation (3.26). By neglecting the variation with temperature hathe constant-volume specific heat,
and designating a reference point as the internal energy at 0°C, the air internal energy is computed
(van Wylen and Sonntag 1978) according to Equation (3.27).

p_ (3.26)

u_ = ca T (3.27)

3.5.2 Aqueous-Phase Enthalpy and Internal Energy

Aqueous-phase enthalpy and intemal energy arecomputed independent of compositional
effects (i.e., for pure water). The IFC steam table formulations (ASME 1967) are used to compute
the enthalpy of liquid water, where the reference state is defined as the internal energy of liquid
water at 0.01°C, as shown in Equation (3.28). The numerical values of the liquid water constants
are listed in Table A.1 of the Appendix. The aqueous-phase enthalpy function for saturated
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condiqons is shown in graphical form in Figure 3.7. Differences between liquid enthalpy and
intemat energy are neglected.

10
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Figure 3.7. Aqueous-Phase Enthalpy and Internal Energy (saturated conditions)
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3.6 Porosity and Tortuosity

Soil porosity in MSTS is described with three distinct porosities: effective, diffusive, and
total. The effective porosity refers to interconnected pores that contribute to convective fluid flow.
The diffusive porosity refers to all interconnected pores. Total porosity refers to both isolated and
connected pore volumes. Isolated pore spaces are assumed to be filled with liquid water. AU
saturations are defined with respect to the diffusive porosity of the porous medium. Changes in the
diffusive porosity occur through changes in pressure and temperature (Falta et al. 1990), according
to Equation (3.29). The porous media compressibility may be computed from the coefficient of
specific storage, as shown in Equation (3.30), where the liquid water compressibility, water
reference density, and coefficient of specific storage are referenced at the same temperature.

no = n_[1 + ore(P-P')+O_T(T-T')] (3.29)

Gas diffusion flux through soils is calculated by modifying the diffusion flux through air
by a gas tortuosity factor (Jury et al. 1991). Millington and Quirk (1959) established tortuosity
expressions based on theoretical pore-size distribution models for partially saturated and fully
saturated air-water systems. Tortuosity models in MSTS use the approach of Millington and Quirk
for two-phase systems, according to Equations (3.31) and (3.32) for the aqueous-phase and gas-
phase tortuosities, respectively.

"rg= (hD)10/3(sl)4/3 (3.3 i)

"rg = (no) t°/3 (sg)4t3 (3.32)
3.7 Liquid Saturation

Liquid saturation is computed using nonhysteretic empirical functions dependent on gas-
aqueous capillary pressures, where the gas-aqueous capillary pressure equals the difference
between the gas- and aqueous-phase pressures. Several empirical relationships between liquid
saturation and capillary pressure, described in this section, are predef'med in MSTS. These
empirical relationships consist of the van Genuchten, Brooks and Corey, [.,everett, and dual porosity
models. Saturation path histories and nonwetting fluid entrapment effects are neglected. Liquid
saturation in MSTS is defined as the ratio of aqueous-phase water content to diffusive porosity.
The liquid and gas saturations in MSTS sum to one.

3.7.1 van Genuchten Model

The van Genuchten (1980) function relates the gas-aqueous capillary pressure, in terms of
head, to an effective fiquid saturation with two correlation parameters o_and n, as shown in
Equations (3.33) and (3.34). The effective liquid saturation is defined in terms of the actual liquid
saturation and a minimum residual saturation, as shown in Equation (3.35). An example of the van
Genuchten function for fixed values of (x and n is shown graphically in Figure 3.8.

st = 1+ c( , for > 0
g PZ (3.33)
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s_ = 1 for [ Pg'Pt] < 0
g Pt (3.34)

* 1_" S_rst = - Str (3.35)
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Figure :3.8. van Genuchten Saturation Function (ct = 0.0305 cm-1, n = 2)

3.7.2 Brooks and Corey Model

The Brooks and Corey (1966) function relates the gas-aqueous capillary pressure, in terms
of head, to an effective liquid saturation with two correlation parameters, as shown in Equations
(3.36) and (3.37). The first correlation parameter (_,*) is referred to as the air-entry head and is
defined as the minimum drainage capillary pressure head for which a continuous nonwetting phase
exists. The second correlation parameter ([3)is related to the pore-size distribution of the porous
medium. The effective liquid saturation is defined in terms of the actual liquid saturation and a
minimum residual saturation, as shown in Equation (3.38). An example of the Brooks and Corey
function for fixed values of _1/*and [3is shown graphically in Figure 3.9.

s; = .:or,-__(,<v'PI
Pt I (3.36)

sl= l fo r l. > V
(3.37)
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sl = s¢ s O.
1 - Str (3.38)
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Figure 3.9. Brooks and Corey Saturation Function (13= 6.5, gr, = 0.11 cre)

3.7.3 Leverett Model

The Leverett function (Leverett 1941; UdeU and Fitch 1985) relates the gas-aqueous

capiUary pressure to an effective liquid saturation with one correlation parameter (Pcap) and an
expression for the surface tension of water as a function of temperature, as shown in Equations
(3.39) and (3.40). The correlation parameter is related to the capillary pressure head at the residual
saturation. The effective Liquidsaturation is def'med in terms of the actual liquid saturation and a
minimum residual saturation, as shown in Equation (3.41). An example of the Leverett function for
a temperature of 50°C is shown graphically in Figure 3.10.

Ps" Pz = Peat,oawf (3.39)

f = 1.417 ( 1-stf)- 2.120(1-s;) z + 1.263 ( 1- s;) 3 (3.40)

£- S/rs; = - s,,r (3.41)
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Figure 3.10. Leverett Saturation Function (P'cap = 632455 Pa)

3.7.4 Dual Porosity Model

The dual porosity (equivalent continuum) model (Klavetter and Peters 1986; Nitao 1988)
relates the bulk saturation of a fractured porous medium to an effective gas-aqueous capillary
pressure through two functions of capillary pressure and liquid saturation, one for the fractures and
one for the matrix, as shown in Equation (3.42). The primary assumption associated with dual
porosity models is that fracture and matrix pressures are in equilibrium, which ignores transient
fracture-matrix interactions. Fracture and matrix saturations are computed with van Genuchten
functions that relate equivalent saturations to capillary pressures as shown in Equations (3.43)
through (3.46). The effective liquid saturation is defined in terms of the actual liquid saturation and
a minimum residual saturation, as shown in Equations (3.47) and (3.48) for fracture and matrix
components, respectively. An example of the dual porosity saturation function is shown graphically
in Figure 3.11, where nDt = 0.43, nDm = 0.11, sl n, = 0.045, Slrm = 0.052,
C_r= 14.5 m-i, Ctm= 0.0033 m-t, nt = 2.68, and nm= 1.798.

slb = s_n_ + Slm ( 1- nDI)nD_nt_ +( 1-n_)no, (3.42)

. [ ni"L':;]sly.= 1+ al for " g > 0
Pe J p (3.43)

[ Pr]
sel 1 for -eg <_0g Pt (3.44)

* [= 1+ am [Pg-Ptt n" m'f°r[Pg -Ptq >0-o
Sl m

6Pr J Pt J (3.45)

sff_ = 1 for [ Pg" Pl] < 0g pt - (3.46)
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• stt-stq
so = 1 - st,,. (3.47)

• Stm" SZ.,.
St" = 1 - SZ.. (3.48)
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Figure3.11.DualPorositySamrafi0nFunction

3.8 Liquid and Gas Relative Permeability

Liquid relative permeability and gas relative permeability are computed using nonhysteretic
empirical functions dependent on liquid saturation. Several empirical relationships between liquid
relative permeability and liquid saturation, described Jn this section, are predefined in MSTS.
Saturation path histories and nonwetting fluid entrapment effects are neglected.

3.8.1 Mualem Model

An expression for the liquid relative permeability as a function of liquid saturation can be
derived from Mualem's pore distribution model from knowledge of the soil-water retention
functions (Mualem 1976)o The Mualem model for predicting liquid relative permeabilit?,' has been
applied to the van Genuchten and Brooks andCorey models of soil-water retention. The
integrations yield closed-form expressions that relate liquid relative permeability to liquid saturation
as shown in Equations (3.49) and (3.50) for the van Genuchten and Brooks and Corey soil-water
retention functions, i'espectively. Examples of the Mualem liquid relative permeability function for
both soil-water retention functions are shown graphically in Figure 3.12, where m = 2 and fl = 6..5.

kr,- (s;) 1/2 [1 (1-(s,_)ml-- )m ]z- (3.49)
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Figure 3.12. Mualem Liquid Relative Permeability Function

3.8.2 Burdlne Model

An expression for the liquid relative permeability as a function of liquid saturation can be
derived from Burdine's pore distribution model from knowledge of the soil-water retention
functions (Burdine 1953). The Burdine model for predicting liquid relative permeability has been
applied to the van Genuchten and Brooks and Corey models of soil-water retention. The
integrations yield closed-form expressions that relate liquid relative permeability to liquid saturation,
as shown in Equations (3.51) and (3.52) for the van Genuchten and Brooks and Corey soil-water
retention functions, respectively. Examples of the Burdine liquid relative permeability function for
both soil-water retention models are shown graphically in Figure 3.13, where m = 2 and fl = 6.5.
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Figure 3.13. Burdine Liquid Relative Permeability Function
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(,;)211(1 (3.51)
- (,;)( (352)

3.8.3 Corey Model

Liquid and gas relative permeabilities can be expressed as functions of a modified effective
liquid saturation according to the empirical model developed by Corey (Pruess 1987) as shown in
Equations (3.53) and (3.54) for liquid and gas, respectively. The effective liquid saturation is
defined for the Corey relative permeability model as shown in Equation (3.55), where both the
residual and the entrapped air saturations are included. Examples of Corey functions for liquid
relative permeability and gas relative permeability are shown graphically in Figure 3.14.

ku=(_:,)4 (3.53)

krg = (1-s_, )2( 1 - (,,_)2) (3.54)

* Sl , Sgr

sz = 1 - sgr- Ssr (3.55)
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Figure 3.14. Corey Relative Permeability Functions

3,8.4 Fatt and Klikoff Model

Liquid and gas relative permeabilities can be expressed as functions of the effective liquid
saturation according to the empirical model developed by Fatt and Klikoff (1959), as shown in
Equations (3.56) and (3.57) for liquid and gas, respectively. The effective liquid saturation is
def'med for the Fatt and Klikoff model as shown in Equation (3.58). Examples of Fatt and Klikoff
functions for liquid relative permeability and gas relative permeability are shown graphically in
Figure 3.15.

{s*) 3krz = _ t (3.56)
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- )3 (3.57)

- Str (3.58)
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Figure 3.15. Fatt and Klikoff Relative Permeability Functions

3.8.5 Dual Porosity Model

The dual porosity (equivalent continuum ) model (Klavetter and Peters 1986; Nitao 1988)
relates the bulk liquid relative permeability to the liquid relative _rmeabilkies for the fracture and
matrix, as shown in Equation (3.59). The primary assumption associated with dual porosity models
is that fracture and matrix pressures are in equilibrium, which ignores transient fracture-matrix
interactions. For the dual porosity model, the van Genuchten water retention model is integrated
with the Muaiem pore distribution model to obtain expressions for the fracture and matrix relative
permeabilities as functions of the fracture and matrix effective saturations, as shown in Equations
(3.60) and (3.61), respectively. The effective liquid saturation is defined in terms of the actual
liquid saturation and a minimum residual saturation, as shown in Equations (3.47) and (3.48) for
fracture and matrix components, respectively. An example of the dual porosity liquid relative
permeability function is shown graphically in Figure 3.16, where nDt = 0.43, nDm - 0.11, Slrt=
0.045, Slrm= 0.052, at = 14.5 m-l, am = 0.0933 m-X,nt = 2.68, nm= 1.798,
kt = 8.25 x 10-5 m/s, and km = 3.01 x 10-12m/s.

krtb = kf kr# (_not ) + km k_t,, (,..,1 - nor)
kt(n_) + km ( 1- nor) (3.59)

krO (s_r)I/z [1 (1 (s_r)#)ml]2= - - (3.60)

_1, --1-- /?lm

krg,. (sl,,,)l/2[i (1 (sz,)m,) ]2= - - (3.61)
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Figure 3.16. Dual Porosity Liquid Relative Permeability Function

3.9 Thermal Conductivity

The thermal conductivity of a two-phase system in a solid porous medium will depend on
the volumetric proportions of the fluid and solid components, the arrangement of the solid particles,
the interfacial contact between the solid and fluid phases, and the thermal conductivities of the phase
components (Jury et al. 1991). For geologic media, the thermal conductivity of the solid phase is
generally an order of magnitude greater than that of the aqueous phase and approximately two
orders of magnitude greater than that of the gas phase. Data for two-phase systems (Jury et al.
1991) reveal important features of the dependence of porous media thermal conductivity on the
above variables. Thermal conductivity increases with increasing surface contact between soil
particles and increasing bulk density. The presence of liquid water between soil particles greatly
improves the thermal contact between particles and displaces the gas phase, which has relatively
poor thermal conductivity. The greatest ram of increase in thermal conductivity with increasing
saturation occurs at the lower saturations; for higi_er-saturation conditions, the approach to the
saturated conductivity is asymptotic.

For two-phase systems, liquid-to-solid surface contacts depend on liquid saturations. The
combined thermal conductivity for a two-phase system in a solid porous medium would, in general,
be a complex function of porosity, liquid satm'ations, phase thermal conductivities, and saturation
histories. Without an experimentally verified model to account for these dependencies, the overall
conductivity can be approximated with a parallel model. The parallel model combines the thermal
conductivities of the individual phases through volumetric weighted averages, as shown in Equation
(3.62). With this model, the combined thermal conductivity is computed by assuming parallel
conduction paths through each phase. Because the gas-phase conduction pathway contributes
negligibly to the combined thermal conductivity, the gas-phase term was excluded from Equation
(3.62).

The thermal conductivity of the solid phase can be an anisotropic property, which is a
thermal characteristic of the porous mediz. Because the solid-phase thermal conductivity is an
amsotropic property, combfi'aedthe,_al conductivi_ is neces,safdy anisotropic. The thermal
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conductivity of water is computed from the steam table formulations (ASME 1967) as a function of
temperature, according to Equation (3.63), with thermal conductivity in mW/m K, temperature in K,
and pressure in bar. The liquid thermal conductivity function is shown graphically in Figure 3.17.

The effective thermal conductivity may also be expressed as a function of the unsaturated
and saturated thermal conductivities and liquid saturation. One model scales the effective thermal
conductivity linearly between the unsaturated and saturated values as a function of the liquid
saturation, as shown in Equation (3.64). Another model (Somerton et al. 1973, 1974) scales the
effective thermal conductivity as the square root of the liquid saturation between the unsaturated and
saturated values, as shown in Equation (3.65).

N

ke = ks( 1- nr ) +kt[ nr- no( 1- st)] (3.62)

kl= ao+ al(_o-o)+ a2(_o-o}2+ a3{T-T_o)3+ a4(_oo)4

_Tol J

,w [co+ + ]
k'e = k'su + st( _s- k'su) (3.64)

ke = k-su + ",rg-;t(k'ss- V) (3.65)
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Figure 3.17. Liquid Thermal Conductivity

3.10 Gas-Phase Diffusivity

Gas-phase components diffuse according to gradients in gas-phase concentrations, gas-
phase saturations, porous-media-dependent hydrogeological properties, and component
diffusivities. Two-phase systems require binary diffusivities, because each component diffuses
through a two-component mixture (e.g., air/water vapor). Because of the requirement for mass
conservation, the net mass di_ffusivetildes across _e surfac_ of a control volume necessa._y sum
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to zero, as shown in Equation (3.66). Therefore, the diffusive flux of the air component may be
computed from known diffusive fluxes of the water component. Binary diffusivities for air/water-
vapor mixtures may be computed as a function of temperature and pressure from a reference binary
diffusivity according to a method by Vargaftik (Falta et al. 1990), as shown in Equation (3.67).

"_gnD pg Sg D_gw V x_ + "_gnD pa Sg D_w V x_ = 0 (3.66)

kPg] (3,67)

3.11 Species Transport Properties

The total concentration of species may be split into volumetric phase concentrations
according to Equation (3.68). Volumetric phase concentrations are interrelated through partition
coefficients. The aqueous-gas partitioning coefficient describes the ratio of concentration of a
species in the aqueous phase to that in the gas phase (Weeks et al. 1982) according to Equation
(3.69). The solid-aqueous distribution coefficient describes the ratio of species concentration
adsorbed on the solid phase to species concentration in the aqueous phase according to Equation
(3,70). Combining Equations (3.68) through (3.70) yields expressions for volumetric phase
concentrations in terms of total species concentrations, as shown in Equations (3.71) through (3.73)
for the aqueous, gas, and solid phases, respectively.

C = nDSLCI+nDSg Cg +(1-nT)Cs (3.68)

Ct

Ktg = Cg PL (3.69)

Cs Pl
KD =

Ctps (3.70)

C

_+(1-nr)
nt) st + KLg Pt (3.71)

- (2
Cs Inr) st Ktg pl+ nD Sg + (1- nr) Kt) Klg Ps] (3.72)

C

Cs =[ nt) st Kt) ps nt) sg +(1-nr!]PL + KD Ktg Ps (3.73)

Molecular diffusion coefficients are dependent on the solvent-solute pair. Generally,
molecular diffusion of species through liquid phases is negligible compared with the convection
transport mechanisms. An expression for gas-phase diffusivities for nonpolar gas pairs has been
developed by Slattery and Bird (!958), as shown in Equation (3.74), with temperature in K and
pressure in atm.

3.21

III"_''



I 11_i i27.jr.=D_t/t = 2.745 x 10"4 p L(rAr<")" j (3.74)

Under the assumption of relatively fast mixing times along a direction normal to the
direction of mean convection, a special case of convective-dispersive transport occurs. Under these
conditions, the variations in pore velocities produce a hydrodynamic dispersion of solutes, which
may be described mathematically with a form identical to the diffusion flux (Bear 1972). The
hydrodynamic dispersion coefficient that relates the dispersion flux to the gradient in species
concentration is a second-order symmetric tensor, which is a function of both the media and the
fluid. The components of the dispersion coefficients along the principal orthogonal axis of the
computational domain are computed from the principal velocity components and two experimentally
determined parameters referred to as the longitudinal and transverse dispersivities as shown in
Equations (3.75) through (3.81).

19_t = at, u'+ Otr(v'+ w') (3.75)

/9_# = _Xt`v'+ aT( W'+ u') (3.76)

/9#_#= at, w' + _r( u' + v') (3.77)

/l'=/,/ 2

(3.78)

• 1,2

(3.79)

W' ... 14,'2

(3.80)

= ( u 2 +v 2 +w 2)1/2 (3.81)
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4.0 Numerical Solution Method

The governing conservation equations of MSTS (see Section 2.2) are discretized to
algebraic form with an integrated f'mite-difference method (Patankar 1980). Transformation of the
partial differential conservation equations into algebraic form requires that the physical domain be
spatially discretized into a computational domain composed of a number of nonoverlapping control
volumes. Each control volume surrounds a single grid point, which defines the position of intrinsic
property variables (e.g., temperature, species concentration, pressure, saturation, density, and
viscosity). The conservation equations are integrated over the control volume by assuming a
piecewise profile that expresses the variation in the primary variable between grid points. The
resulting expressions from integrating the conservation equations are nonlinear algebraic equations
containing the primary variables for a group of grid points. The integral finite-difference method
conserves quantities such as mass, energy, and species over each control volume and the entire
computational domain.

Discretization of the partial differential conservation equations has been implemented in
MSTS for two orthogonal computational grid systems. For the Cartesian grid system, coordinate
directions follow the "right-hand" rule and are labeled x, y, and z. Positive and negative directions
along the x-axis are referred to as east and west, respectively. Similarly, positive and negative
directions along the y-axis are referred to as north and south, respectively. The z-axis is assumed
aligned with the negative gravitational vector, where positive and negative directions are referred to
as top and bottom, respectively. For cylindrical grid systems, the coordinate directions are labeled r,
0, and z, where r represents the radial distance, 0 the azimuthal angle, and z the vertical distance.
Direction nomenclature remains the same between the two coordinate systems by substituting the x-
axis direction labels for those of the r-axis, and the y-axis direction labels for those of the 0-axis.
Computational grids may be constructed for either grid system using one, two, or three dimensions.
Geometric variables for the Cartesian coordinate system are shown in Figures 4.1 and 4.2;
geometric variables for the cylindrical coordinate system are shown in Figures 4.3 and 4.4.

The algebraic expressions that result from discretizing the conservation equations are
nonlinear. Liquid saturation, relative permeability, and physical properties during phase transitions
are the parameters most responsible for these nonlinearities. The nonlinear algebraic forms of the
conservation equations are converted to a linear form using a multivariable, residual-based, Newton-
Raphson iteration technique (Kreyszig 1979). The technique will generally yield quadratic
convergence of the residuals with iteration, given initial estimates of the primary variables that are
sufficiently close to the solution. Each iteration requires the solution of the linearized algebraic
form of the conservation equations. Depending on the order of the computational domain, the
linearized form of the conservation equations are either tridiagonal or block-banded.

4.1 Discretization of the Mass Conservation Equations

The water mass and air mass conservation equations are discretized by integrating the
respective partial differential equations, Equations (2.1) and (2.2), over the control volume. The
accumulation terms for these integrals are shown generically in Equation (4.1), where the
accumulation mass for the water and air conservation equations are shown in Equations (4.2) and
(4.3), respectively. Similarly, the source is spatially discrefized as shown in Equation (4.4).

4.1



i / i
I I, _T¢,

- -- '-._, T_

" W /%'_N_p" ,_N,_ 0 E

_v!/I ,I,, '_
A_-"r v0 " I

I |B I
t.,,______
I , I

Figure 4.1. X-Z Cartesian Coordinate System

I I
I I

I N I

AN_ 8y I

.'I' .,_-_,__x_-----_
__ !_'_'____ o

;iii D,,
A_'P" 0 " I
Sl Ts I

I , !

Figure 4.2. X-Y Cartesian Coordinate System

4.2



Figure 4.3. R-Z Cylindrical Coordinate System
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--_f M i dV = --_ V M i for i = w, 0

_t Jv _t (4.1)

M w = nDx*[ PZ sz+ nDX_' pg Sg (4.2)

M a = nDx_, Pt st + noxf pg Sg (4.3)

f thi dV = V th i fori w a
O

Ot Jv (4.4)

The surface flux terms are composed of a Darcy flux and a diffusive flux. Discretization of
the surface flux terms is shown generically in Equation (4.5), where the volumetric integrals are first
converted to surface integrals, then approximated as summations over the surface areas between
adjoining nodes. Darcy flux terms for the aqueous and gas phases are shown in Equations (4.6)
and (4.7), respectively. Diffusive flux terms for water and air components are shown in Equations
(4.8) and (4.9), respectively.

V[V F_+ V F/g+ V J/g] dV

= fr[Fit + F/g + J_]. n dF

= 2 [Fi _,+ Fi ig, 7+ Jg,y]A7
Y

for i = w, a; for 7' = W, E, S, N, B, 7 (4.5)

F_,- x'_kkr'P'(VP,+p,gi):or i- w,_
/.zt (4.6)

rl = -x_k_,p,(VP,+,o,g_z):ori =w,,_
/.rg (4.7)

J_ = " ":gno Ps Sg D_wV x_' (4.8)

J_ = 1- J_g (4.9)

The discretized forms of the Darcy flux terms have the same general form for the various
combinations of air and water components, and aqueous and gas phases. For example, the
discretized forms (Cartesian coordinate system) of the Darcy flux term of the water component in
the aqueous phase are shown in Equations (4.10) through (4.12) for the west, south, and bottom
surfaces, respectively. The discretized forms (cylindrical coordinate system) of the Darcy flux term
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of the water component in the aqueous phase are shown in Equations (4.13) through (4.15) for the
west, south, and bottom surfaces, respectively. The terms delimited with brackets and topped with
bars indicate interface averages, where the double bar indicates a user-specified choice between
arithmetic, harmonic, geometric, upwind, or "linear k" weighting; the arrowed bar indicates upwind
or donor-cell weighting; and the single bar indicates arithmetic averaging.

F_ w = " [Pzxy] (Pl, P" Pl, w)
&w (4.10)

w _ .[kY " P".s)
Fz,s - ,L/azJ oerys (4.11)

V;,s = - [P,xT](P*'e-PZ,s)
rp -30s (4.14)

B &B (4.15)

As with the Darcy flux terms, the discretized forms of the diffusive flux terms have the same
general form among the various combinations of air and water components, and aqueous and gas
phases. For example, the discretized forms (Cartesian coordinate system) of the diffusive flux term
of the water component in the gas phase are shown in Equations (4.16) through (4.18) for the west,
south, and bottom surfaces, respectively. The discretized forms (cylindrical coordinate system) of
the diffusive flux term of the water component in the gas phase are shown in Equations (4.19)
through (4.21) for the west, south, and bottom surfaces, respectively.

w .X w
jw r he,,,'1 g,

W

&w (4.16)

.X w

JgW,s = -[Vg nDpg sg D_W]xgwP g, s
8ys (4.17)

w 'xW "
Jg,B = -[vg nDpg sg D_w] g'P x_, n

&B (4.18)
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w

J;w=.......G .op_,_Dfw]x_,_-V,
8tW (4.19)

w .X w

J_',s =-[r_ no Ps s# D_g"]xg, e s, s
rpSOs (4.20)

= g,BJgWB -['rg nD pg sg D_gW]xgw'p"xw
&B (4.21)

Temporal discretization is fully implicit first-order f'mite difference, as shown generically for
mass conservation by Equation (4.22), where time levels are indicated with superscripts. The
implicit temporal discretization ensures numerical stability. The unknowns for the mass
conservation equations are the primary variables at the grid node points for the new time step. For
three-dimensional domains, the number of unknowns associated with a mass conservation equation
for an interior node equals seven; for two-dimensional domains, the number of unknowns equals
five; and for one-dimensional domains, the number of unknowns equals three. The discretized
mass conservation equation, Equation (4.22), may be expressed in residual form as shown in
Equation (4.23).

-
at

[(,,, + ,),, +(j;.,),, ]A,
7

for i = w, a; for 7 = W, E, S, N, B, T (4.22)

&

+ '_ [(Fil, _t+& q. (F_. ,y)t+S, "Jr(J_,)'+ at]A,

for i = w, a; for )'= W, E, S, N, B, T

where (Ri_ + & = 0 (4.23)

4.2 Discretization of the Energy Conservation Equation

Discretization of the energy conservation equation follows that of the mass conservation
equations except for the advection terms. Integration of the heat content or accumulation term for
the energy conservation equation over the control volume yields the expressions shown in
Equations (4.24) and (4.25). Integration of the thermal source terms over the control volume yields
the expression shown in Equation (4.26).
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_t E dV = --V EOt (4.24)

E = (1 - nT) Ps us + tlDPt ut + no Ss pg Ug (4.25)

fv[it +hW thW+hatha]dV = IvQdV = v Q (4.26)

The thermal energy conservation equation contains both diffusive and advective surface flux
terms. Spatial discretization of the surface flux terms begins by converting the volumetric integrals
into surface integrals, then approximating the surface integrals as summations over the surface areas
between adjacent nodes, as shown in Equations (4.27) and (4.28) for the diffusive and advective
flux terms, respectively. For the thermal energy equation, the diffusive flux terms are central
differenced, whereas the advective flux terms are upwind or donor-cell differenced. The discretized
forms of the diffusive flux terms (Cartesian coordinate system) are shown in Equations (4.29)
through (4.31), for the west, south, and bottom surface, respectively. The discretized forms of the
diffusive flux terms (cylindrical coordinate system) are shown in Equations (4.32) through (4.34),
for the west, south, and bottom surfaces, respectively. The bracket with double bars indicates a user-
specified interface average. The discretized forms of the advective flux terms (Cartesian coordinate
system) are given in Equations (4.35) through (4.37), for the west, south, and bottom surfaces,
respectively. The discretized forms of the advective flux terms (cylindrical coordinate system) are
given in Equations (4.38) through (4.40), for the west, south, and bottom surfaces, respectively.

fv = ['_,VT].ndFvr]ev j(
= Z['ke VT]Arfor- 7= W, E, S,N,B, T

r (4.27)

fv V [pt ht V , + pg hg Vs ] dV = fr[Pz ht Vt + pg hg Vg ]" n dl-

= _,[pthtVt+pghgVg]Arfor 7= W,E,S,N,B, T
r (4.28)

De, w = "_e (Tp"
Tw )

&_:w (4.29)

De,s = -_e (TP"Ts)
grys (4.30)

De,B - _ _--'J(Tp- TB )
8zB (4.31)
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De.w = .[kXej_Tp-_--,-,t
Tw )

8rw (4.32)

De,s = r,)
rpSOs (4.33)

De., =-_(Tt,-
Ts)

8z8 (4.34)

Fe,w = E [(Pj,whj, w)max[uj, w, O]-(pj, phj, p)max[-uj, w, 0]]
j -- t, g (4.35)

Fe,s = Z [(Pj,S hj,s ) max [Vj,s, 0 ]- (pj, phj, p ) max [- vi, s, 0 ]]
j = t, g (4.36)

Fe, B = E [(Pj, B hj, B ) max[wj, B, 0 ]-(pj, phj, p)max[- Wj, B, 0 ]]
j = l, g (4.37)

Fe, w = E [(Pj,whj, w)max[uj, w, O]-(pj, phj, p)max[-uj, w, 0]]
j =¢,g (4.38)

Fe.S = E [(Pj, S hj, s ) max [rp vi.s, 0 ]- (pj, phj, p ) max [- rp vj, s, 0 ]]
j =t,g (4.39)

Fe,B = __, [(Pj, Bhj, B )max[wj, B, O]-(pj, phj, p)max[-wj, B, O_
j = t, g (4.40)

Substituting the expressions for diffusive and advective surface flux, Equations (4.29)
through (4.40), into the discretized surface integrals allows the thermal energy conservation
equation to be expressed in spatially discretized form according to Equation (4.41). Temporal
discretization is fully implicit first-order finite difference, according to Equation (4.42), where time
levels are indicated with superscripts. The unknowns for the energy conservation equation are new
time-step temperatures at each grid point. Expressed in residual form, the fully discretized energy
conservation equation is shown in Equation (4.43).

_---VE -VQ+E[De, r+Fe, r]Ar= O for r= W,E,S,N,B, 7
Ot r (4.41)

V[A't+at-E' l .VOt+at+ rr, t+atLe,r+,._,t+St]e,rAr =O for y= W,E,S,N,B,T3t r (4.42)

(Re_+ _, - V [Et+ _; Etl- V Q r+ 'St+ E [Dt,_'&+ Fte,_'zt]At= 0Y

for y= W,E,S,N,B,T

where (Re_ . _t __.0 (4.43)
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4.3 Discretization of the Species Mass Conservation Equation

Discretization of the species mass conservation equation, Equation (2.6), follows an
approach similar to that of the energy conservation equation, except that the advection and diffusion
terms are combined with the power-law scheme proposed by Patankar (1980). Integration of the
mass accumulation term, species source term, and reaction/decay term over the control volume
yields the expression shown in Equation (4.44).

_t C dV - kc dV + t_c C dV = -_ C V - _ V + l_c C V
(4.44)

The species mass conservation equation contains both advection and diffusion transport
terms. The advection terms have an inseparable link with the diffusion terms; therefore, the two are
considered a single transport term. Spatial discretization of the surface flux terms, both advective
and diffusive, begins by converting the volumetric integrals into surface integrals, then
approximating the control volume surface integrals as summations over the surface areas between
adjacent nodes. These expressions are shown in Equations (4.45) and (4.46) for the diffusive
terms and in Equation (4.47) for the advective terms. Defining the diffusive conductance for the
aqueous and gas phases allows a compact expression of the power-law scheme, as shown in
Equations (4.48) through (4.50) for a Cartesian coordinate system and Equations (4.51) through
(4.53) tbr a cylindrical coordinate system.

fV V [ _j sj nD Ddj V Cj] dV = fr[ rj sjnDD4.V Cj]. n dI-

),

for _' = W, E, S, N, B, T; for j = l, g (4.45)

fV VI sj nO Dht V Cj] dV = fr[sj noSht v Cj].n dI

= Z [sj no DhIV Cj]A_,
y

.for ), = W, E, S, N, B, T; for j = t, g (4.46)

IvV CjVdV = fr[CJ V]'ndP = CjVA'r

.for y= W,E,S,N,B,T; for j = l,g (4.47)

Dj,w = [vj sj no Ddi + sl no D_, ] for j = L g_xw (4.48)
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_Ys for j = t, g (4.49)

[_"si no Odj + sl no Dfit ]
Dj.B = Szs " for j = l, g (4.50)

Dj,w = [_j sj no Ddj + sl nD O_t ] for j = l, gSrw (4.51)

Dj,, = [_'sjnDDdj+SlnDO_t] for j = l,gre SOs (4.52)

Dj,_ = [_ sj no Ddj + sz no D_, ] for j = t, g&s (4.53)

The exact solution to the steady-state, no-source, no-species-decay, species conservation
equation yields a solution that is dependent on the local grid Peclet number. The Pe,.let number tbr
a particular phase is defined as the ratio of Darcy velocity to diffusion conductance for that phase,
and represents the ratio of strengths of convection and diffusion. The nature of the exact solution
may be understood by considering the variation of the species concentration between two grid
points for various Peclet numbers. If the Peclet number equals zero, then diffusion transport
dominates and the species concentration varies linearly with distance between two nodes, ff the
Peclet number equals 1 or -1, then both diffusion and advection transport influence the species
concentration profile, where the diffusion prot-fleis skewed toward the upstream valtJe of species
concentration. For large absolute vah,c _ of the Peclet number, advection transport dominates, and
the upstream value of the species concer,.'trationd_minates the species concentration profile between
nodes. The power-law scheme provides an excellent approximation to the exact solution without
excessive computational expense. Discretization of the convection-diffusion terms of the species
.massconservation equation requires an equation of the form shown in Equation (4.54), for an
interior node. Compact expressions of the "a" and "b" coefficients of Equation (4.54) are given for
the power-law scheme in Equations (4.55) through (4.60) for a Cartesian coordinate system and in
Equations (4.61) through (4.66) for a cylindrical coordinate system. As indicated by Equation
(4.67) for a Cartesian coordinate system, by Equation (4.68) for a cylindrical coordinate system,
and by Equation (4.69), temporal discretization is fully implicit fh'st-order f'mite difference.

ap Cp- aw Cw- aE CE- as Cs - aNCN - aB CB - aT CT = bp (4.54)

aw = at, w +ag, w

aj, w = Dj,w max O, 1 Z)j,w ) +max[O, uj,w]

for j = l, g (4.55)
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aE = at,E + as,E

(1 1bj,_ j +.,_x[o,-,,j,_]
for j = l, g (4.56)

as = at,s + ag,s

ai,s= Dj,smax[O, (1 0.1 [vi,sl) 5]Dj,S + max[O, vi, s]

for j = l, g (4.57)

au = at,N + ag,N

(1O-oj,-_j maxiO,-vj,d
for j = l, g (4.58)

aB = at,B + ag,B

(10l,w  l ]bj,_ ) +m_[a wj,_]
for j = l, g (4.59)

aT = at,r +ag,r

(1oDj,T ] + max[0, -Wj,T]

for j = l, g (4.60)

aw = at, w +ag, w

_,w : Dj, w max 0, 1 L)j_w" "] + max[0, uj,w]

for j = Z, g (4.61)

aE = aZ,E + ag,E

aj, E = Dj, Emax[0, (1 0.1 [uj,_) 5]Dj,e +max[0,-uj,_]
for j = l, g (4.62)

as = ats +ag,s

max[O(1o" L)_,'s ] +max[O, rpvj, s]

for j = t, g (4.63)
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aN = at,N + as,N

for j - l, g (4.64)

aB = at,n + ag,B

aj,B = /_,Bmax[O,(10"IIWj'B[) 5]Dj,B + max[O, Wj,B]

for j = l, g (4.65)

aT = at,r+as, r

aj,T 1)j,Tmax[O, (X 0"11W1'7_5]
= +max[O,-wi,r]

Dj, r

for j = l, g (4.66)

ap = al, p + ag,p + -V-+ t_ tc+&
&

aLP = aLE + ai,w + als + aj,N + aj,B + aj,T + Uj,E- Uj,W + Vi,s- Vj,N + Wj,B - Wj,T

for j = l, g (4.67)

at, = at,t,+ag,t,+-V-+/U +'_t
&

alp = aj,E + aj,w + aj,s + ay,N + aj,B + aj,v + Uj,E- uy,W + rpvj,S - re Vj,N + Wj,B " Wj,T

for j = l, g (4.68)

be=
& (4.69)

4.4 Boundary Conditions

The discretization approaches described above for the mass, energy, and species
conservation equations were for nodes positioned within the interior of the computational domain.
For nodes located adjacent to the domain boundary, the discretization of the governing equations
differs to account for conditions at the boundary. Boundary conditions are specified either with
field variables (e.g., aqueous pressure, gas pressure, temperature, vapor mass fraction, or species
concentration) or with surface fluxes (e.g., aqueous-phase mass fluxes, gas-phase mass fluxes, heat
fluxes, or species fluxes) on the boundary surfaces. Boundary conditions of the former type are
referred to as Dirichlet, whereas the latter type are referred to as Neumann. Special boundary
conditions such as the unit-gradient, saturated, zero-flux, andseepage-face boundaries typically can
be reduced to either a Dirichlet- or a Neumann-type boundary. For example, the saturated
boundary is equivalent to specifying phase pressures at the boundary surface to create saturated
conditions. Default boundary conditions for MSTS are zero-flux Neumann-type boundaries.
Geometric def'mitions differ between interior and boundary nodes. Definitions of geometric
parameters for boundary nodes with west boundary surfaces arc shown in Figurcs 4.5 flarough 4.8
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for both Cartesian and cylindrical coordinate systems. Definitions of geometric parameters for
boundary nodes with other boundary surfaces can be inferred from those shown for west boundary
surfaces.
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Figure 4.5. X-Z Cartesian Coordinate System for West Boundary
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Figure 4.6. X-Y Cartesian Coordinate System for West Boundary,

4.13



/

iI
I

e

s

:::.:::.

Figure 4.7. R-0 Cylindrical Coordinate System for West Boundary
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Figure 4.8. R-Z Cylindrical Coordinate System for West Boundary
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4.4.1 Dirichlet Boundary Conditions

Implementation of Dirichlet boundary conditions requires relatively few modifications to the
discretized governing conservation equations. Dirichlet boundary conditions are equivalent to
specifying a field variable on a particular boundary surface. Depending on the solution option, one
or more of the following primary field variables can be specified on boundary surfaces: aqueous
pressure, gas pressure, water-vapor mass fraction, temperature, and species concentration. In
addition to specifying primary field variables, a number of secondary variables must be specified to
completely establish the boundary conditions. The number of required secondary variables will
depend on the solution option and primary field variables specified on the boundary surfaces. If,
for example, the solution option involved only the solution of the water conservation equation, then
the required secondary variables with a specified aqueous pressure would include the aqueous-
phase density and mass fraction of air dissolved in the aqueous phase.

Aqueous-pressure boundary conditions directly affect the aqueous-phase surface flux. As
an example, the discretized forms of water or air mass flux, associated with the aqueous phase, on a
west boundary surface are shown in Equations (4.70) and (4.71) for Cartesian and cylindrical
coordinate systems. Because the interfacial terms for aqueous-phase density and mass fraction
parameters are upwind weighted, specification of aqueous pressure on a boundary surface requires
the additional specification of these two secondary variables on the boundary surface. The intrinsic
permeability, relative permeability, and aqueous-phase viscosity terms are evaluated from the
boundary node primary variables.

_ i,xil ' . i- w,o
w- [ /.tr J _cwn (4.70)

I I---Fig, . k x kr¢ [ptx}] (P,S,wB- P,s, p) for i = w, a
w = [ /.tr ] _rwB (4.71)

Gas-pressure boundary conditions directly affect the gas-phase surface flux. As an
example, the discretized forms of water or air mass flux, associated with the gas phase, on a west
boundary surface are shown in Equations (4.72) and (4.73) for Cartesian and cylindrical coordinate
systems. Because the interfacial terms for gas-phase density and mass fraction parameters are
upwind weighted, specification of gas pressure on a boundary surface requires the additional
specification of these two secondary variables on the boundary surface. The intrinsic permeability,
relative permeability, and gas-phase viscosity terms are evaluated from the boundary node primary
variables.

r ]---Fi _ . k x k rg [tOg x_] (Pg' WB " Pg, P) for i - w, a
g, w- [ //g ] 8xw_ (4.72)

F i - - [kXkrg][p-_g] (Pg'WB-Pg'P) for i = w a
g, w- L /.rg ] 8rwB (4.73)

Water-vapor boundary conditions directly affect the diffusive gas-phase surface flux. As an
example, the discretized form of the water mass flux, associated with binary diffusion through the
gas phase, on a west boundary surface is shown in Equations (4.74) and (4.75) for Cartesian and
cylindrical coordinate systems. The tortuosity, gas-phase density, gas-phase saturation, and binary
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diffusion coefficient are all evaluated from the boundary node primary variables. No additional
secondary variables are required for vapor mass fraction boundary conditions.

X w -X w

- - [ no w] wB Pg,W -
8xwn (4.74)

X w .X w
jw nD Pgg,W - - [Vg Sg _,gj

&wB (4.75)

Temperature boundary conditions directly affect both the diffusive and the advective surface
heat flux. As an example, the discretized forms of the diffusive and advective heat fluxes on a west
boundary surface are shown in Equations (4.76) and (4.77) for a Cartesian coordinate system and
in Equations (4.78) and (4.79) for a cylindrical coordinate system. For the diffusive heat flux, the
effective thermal conductivity is evaluated from the boundary node primary variables. Because of
the donor-cell averaging scheme used with the advective heat flux terms, phase density and phase
enthalpy must additionally be specified at the surface boundary. Phase enthalpies that are specified
for boundary surfaces must be defined according to the same reference states used internally by
MSTS to compute the air, liquid water, and vapor water enthalpies. The reference state for
computing air enthalpies and internal energies is the internal energy of air at 1 atm, 0°C, and the
reference state for computing water enthalpies is the internal energy of liquid water at 1 atm, 0.01 °C.

De,w = -[k x] (Tp- TWB)
&WB (4.76)

Fe, W = Z [(Pj, wB hj, wB )max[uj, WB, O]-(jOj, phj, p)max[- uj, WB, 0]]
j =t,g (4.77)

w - -[kx](rp- Tw.)
8rwB (4.78)

Fe, w = Z [(pj, wB hj, wB )mzl, X[Uj, WB, O ] -(pj, phj, p )max[- uj, WB, 0]]
j = l, g (4.79)

Species concentration boundary conditions directly affect the diffusive, dispersive, and
advective species surface flux. As an example, the discretized form of the species combined
diffusion-dispersion coefficient for a west boundary surface is shown in Equations (4.80) and
(4.81) for Cartesian and cylindrical coordinate systems. The tortuosity, saturation, porosity, and
diffusion coefficient are evaluated from the boundary node primary variables. The hydraulic
dispersion coefficient is computed from boundary surface velocities and boundary node velocities.
A species concentration boundary condition also modifies the form of the discretized governing
equation, as shown in Equation (4.82) for both Cartesian and cylindrical coordinate systems, where
the term associated with the species concentration on the west boundary surface becomes a known
quantity and appears on the right-hand side of the equation.

Dj,w [_j sj no Ddj + stno D_t ] for j : Lg (4.80)= &wB
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Dj,w = Iri sj no Dd1 + sl nD D_t] for j = l, g6'rws (4.81)

ap Cp- aE CE- as Cs - aN CN - aB CB - aT CT = bp + aw Cw (4.82)

4.4.2 Neumann Boundary Conditions

Neumann-type boundary conditions are accommodated by substituting the specified surface
fluxes directly into the discretized form of the conservation equation. Neumann-type boundary
conditions may be specified for aqueous-phase surface flux, gas-phase surface flux, diffusive
thermal energy surface flux, advective thermal energy surface flux per phase, combined advective
and diffusive thermal energy surface flux, and combined advective and diffusive species surface
flux in each phase.

Aqueous surface flux boundary conditions are defined by specifying the following
parameters on the boundary surface: aqueous-phase mass flux and air mass fraction in the aqueous
phase. As an example, the air and water component mass fluxes on a west boundary surface are
computed from these parameters, as shown in Equation (4.83) for both Cartesian and cylindrical
coordinate systems. The aqueous-phase air mass fraction remains an interfacial average computed
with upwind logic.

, [Ft, w = ptx ut, wB for i = w,a (4.83)

Gas surface flux boundary conditions are def'med by specifying the following parameters
on the boundary surface: gas-phase mass flux and water-vapor mass fraction in the gas phase. As
an example, the air and water component mass fluxes on a west boundary surface are computed
from these parameters, as shown in Equation (4.84) for both Cartesian and cylindrical coordinate
systems. The gas-phase vapor mass fraction remains an interfacial average computed with upwind
logic.

F, iig,w = [pg x ug,wB for i = w, a (4.84)

Neumann-type thermal boundary conditions may be specified for various components of
the total surface heat flux. If a diffusive thermal surface flux is specified, then the diffusive
component of the thermal flux term is reformulated. As an example, for a Neumann-type diffusive
thermal boundary condition specified on a west boundary surface, the discretized form of the
diffusive heat flux term would appear as shown in Equation (4.85). The advective components of
the thermal surface flux may be specified individually per phase or collectively. Neumann-type
advective thermal boundary conditions require the specification of phase densities, phase enthalpies,
and phase Darcy velocities. For a Neumann-type advective thermal boundary condition specified
on a west boundary surface, the discretized form of the advective heat flux term would appear as
shown in Equation (4.86). In practice, the phase densities and phase Darcy velocities are specified
as Neumann-type surface mass flux boundary conditions. Combined diffusive and advective
thermal surface fluxes are specified as boundary conditions through separate specifications for the
diffusive and advective terms.

_e, WB-., w = (4.85_

4.17



Fe,w = 2 [(Pj,wBhj,wB )max[uj, wB, O]-(,Oj,phj, p)max[- uy,wB, OH
j - t, g (4.86)

The discretized form of the species mass conservation equation uses a power-law scheme to
combine the diffusive-dispersive terms with the advective terms. This approach increases the
complexity of applying species flux boundary conditions. As an example, species flux across a
west boundary surface can be expressed as shown in Equations (4.87) and (4.88) for both
Cartesian and cylindrical coordinate systems. Substituting Equations (4.87) and (4.88) into the
discretized form of the species mass conservation equation, Equation (4.54), yields the modified
form of the discretized species mass conservation equation for a species flux boundary on a west
boundary surface, as shown in Equation (4.89) for both Cartesian and cylindrical coordinate
systems.

Fc, w = awCw-awCp = Qc,WB (4.87)

ave = az,w + as, w

aj,w = = Dj,w max O, 1 -D_,w ] + max[O, -uj,w]

for j = L g (4.88)

(ap+a_v)Cp-aECE-asCs-aNCN-aBCB-arCr = (bp+Q¢,wB) (4.89)

4.5 Newton-Raphson Linearization Scheme

The discretized forms of the governing equations for conservation of water mass, air mass,
and energy, Equations (4.23) and (4.43), are highly nonlinear and coupled. The discretized form of
the governing equation for species conservation, Equation (4.54), may be treated as linear and
decoupled from the thermal-hydrologic governing equations. Nonlioearities in the governing
conservation equations for thermal-hydrologic fields arise because of the strong dependence of soil
characteristics on phase pressures and thermal properties on temperature. Coupling between the
governing equations for mass and energy conservation occurs because of the interdependence of
the thermal and hydrologic fields (i.e., the subsurface temperatures depend on the subsurface
saturations and Darcy velocities, and vice versa). Because of the coupled character of the thermal-
hydrologic conservation equations, a simultaneous solution approach is applied. Conversely,
because of the decoupled character of the species conservation equation with respect to the thermal-
hydrologic equations, a sequential solution approach is applied. Nonlinearities in the thermal-
hydrologic equations are accommodated with a Newton-Raphson linearization scheme, which
involves iterating to converged solutions. The solution approach applied to the governing
conservation equations, therefore, entails a simultaneous solution of the conservation equations for
mass and energy through an iterative scheme, followed by a direct solution of the species transport
equation.

The Newton-Raphson linearization scheme is an iterative method for solving equations of
the form shown in Equation (4.90), wheref is differentiable. The concept involves approximating
the graph off by suitable tangents. Each iteration generates a new estimate of x as the intersection
of the tangent to the curvef at the previous estimate of x and the x-axis. The general formula for
the Newton-Raphson technique is shown in Equation (4.91). The function f( x ) may be thought
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of as the iteration residual. For a convergent system, the residual decreases with iteration count.
For multivadable systems, the scalar functionf ( x ) may be replaced with the vector function R(x);
and the general formula is shown in Equation (4.92). The vector function R(x) represents the
system of nonlinear thermal-hydrologic conservation equations in discretized form, and the vector
of unknowns x represents the primary variables. Because of the solution option and variable
switching logic incorporated into MSTS, the vector function and vector of unknowns will vary
between applications. Upon rewriting Equation (4.92) in terms of a vector of changes in unknowns,
the Newton-Raphson general formula may be expressed as a system of linear equations, as shown
in Equation (4.93). When expanded, the partial derivative terms in Equation (4.94) form the
Jacobian matrix.

f (x) = 0 (4.90)

f (x)xn+l --_ X n

f' (x) (4.91)

xn+l = xn R(xn)
_R(x n)
_xx (4.92)

_R(X) Ax = -R(x)_x (4.93)

Consider a one-dimensional system, where the conservation equations for water mass, air
mass, and energy are solved, and the set of primary variables equals the aqueous pressure, gas
pressure, and temperature. The system of linear equations for this system is shown in Equation
(4.94) for an "n"-node computational domain. For this system with three conservation equations
per node, each Jacobian matrix element represents a third-order square submatrix as shown in
Equation (4.95). Each unknown vector element and solution vector element is a subvector that
contains three elements as shown in Equations (4.96) and (4.97), respectively. The unknown vector
elements represent changes in a particular primary variable or the amount a particular primary
variable will be incremented between iterations. The solution vector elements are the conservation
equation residuals, written in discretized form, corrected for boundary conditions, and evaluated at
the most recent iterate values of the primary variables.

For a two-dimensional system, the Jacobian matrix would contain the elements shown in
Equation (4.94) for the one-dimensional system, plus two diagonal bands of elements (one below
and one above the main diagonal) located one half-band width from the main diagonal band. The
half-band width for a two-dimensional system equals the lesser of the two domain ranges. For a
three-dimensional system, the Jacobian matrix would contain the elements shown in Equation
(4.94) for the one-dimensional system, plus four diagonal bands of elements, two below and two
above the main diagonal. The off-diagonal bands are located at the minimum half-band widths of
the Jacobian matrix for a particular computational domain geometry. Minimum half-band widths
for a three-dimensional system equal the product of two least domain ranges. For example, a
computational domain that contained 30 nodes along the x-axis, 20 nodes along the y-axis, and 40
nodes along the z-axis would have a minimum half-band width of 20 x 30, or 600.
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OPl,t OPg,t 3Tr

= L
OXl OPal 3Pg,t OTI

OPg,t OPg,t OTl (4.95)

APt, t

xi = APg,t

ATI (4.96)

- Rk = Rff

R_ (4.97)

The partial derivatives of the residuals of the discretized governing equations in the Jacobian
matrix represent a majority of the computational effort. The Newton-Raphson scheme requires that
these partial derivatives be computed during each iteration. Because of the complex dependencies
of the governing equation residuals on the primary variables, the partial derivatives in the Jacobian
matrix are not computed from analytical expressions, but rather computed numerically, as
exemplified in Equation (4.98) for the water conservation equation and aqueous-pressure primary
variable. The expression in Equation (4.98) is computed by evaluating the residual of the governing
equation, first at the value of the primary variable, then at the value of the primary variable slightly
incremented.
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=Rf(pt.t+apt.t)-Rf
_gPg,t - APt, t (4.98)

The Newton-Raphson linearization procedure begins at the start of a new time step or after a
failed convergence. The first step of the procedure is to numerically evaluate all of the partial
derivatives that make up the Jacobian matrix. The numerical evaluation begins by computing values
of the governing equation residuals, corrected for boundary conditions and evaluated at the most
recent iterate values of the primary variables. For a new time step or after a failed convergence, the
most recent iterate of the primary variable equals its value from the previous time step. The
governing equation residuals, corrected for boundary conditions, are reevaluated at incremented
values of the primary variables. The governing equation residuals evaluated at incremented and
nonincremented values of the primary variables are then used to compute the partial derivative
functions that make up the Jacobian matrix and the elements of the solution vector.

The resulting system of linear equations is then solved with either a direct or an iterative
solver. Solution of the system of equations yields changes to the primary variables. An iteration
ends by updating the primary variables with the changes computed from the system of linear
equations, ff the ratio of residuals to accumulation terms falls below the convergence criterion for
every equation and every node, then the procedure is determined to have converged and a new time
step begins. Otherwise, another iteration commences. If the ratio of residuals to accumulation
terms fails to decrease below the convergence criterion within a specified number of iterations, the
system is considered nonconvergent. Nonconvergent systems are handled by reducing the
simulation time step, resetting the primary variables to their previous time-step values, and
reinitiating the time-step procedures.

4.6 Linear Equation Solution

The system of linear equations that results from the discretization of the governing partial
differential equations over a particular computational domain always has a banded structure, where
the number of off-diagonal bands equals the dimensionality of the computational domain.
Elements within the Jacobian coefficient are actually submatrices, where the submatrix order equals
the number of solved coupled governing equations. For example, the solution of only the water
conservation equation produces single-element submatrices, whereas the solution of the three mass
conservation equations simultaneously with the energy equation yields four-by-four submatrices.
These structured Jacobian coefficient matrices arkse from the element sequencing scheme
incorporated into MSTS and limitations on the computational domain structures. The matrix
sequencing or numbering algorithms are designed to minimize the largest half-band width for a
given computational domain and solution option combination. The sequencing algorithms are
designed for orthogonal grid systems that have cix surfaces in three dimensions or have four
surfaces in two dimensions.

Two linear equation solvers are available within MSTS: a direct banded matrix algorithm
and an iterative conjugate gradient algorithm. The banded matrix algorithm is generally more
appropriate for small to moderately sized Jacobian matrices (order less than 15,000), whereas the
conjugate gradient algorithm appears more appropriate for larger-order Jacobian matrices. In
general, the banded matrix algorithm requires more memory than does the conjugate gradient
algorithm, which utilizes an efficient sparse-matrix storage scheme. The banded matrix algorithm is
computationaUy more efficient on small to moderately sized problems; for larger problems,
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however, the conjugate gradient algorithm becomes the better performer. Both linear equation
solution algorithms were obtained from publicly available software packages.

The banded matrix solution algorithm was extracted from the LINPACK subroutines
(Dongarra et al. 1980) for general nonsymmetric band matrices. The algorithm operates on band
matrices by decomposing the matrix into an upper triangular and a lower triangular matrix. The
matrix product of the lower triangular matrix with the upper triangular matrix equals the original
band matrix A = LU, where A is the band matrix, L is the lower triangular matrix, and U is the
upper triangular matrix. The system of linear equations A x = b is solved with the above
decomposition or factorization by solving successively L ( U x ) = b. This factorization procedure
produces nonzero elements outside the bands of the original band matrix. If mt equals the half-
band width of the Jacobian coefficient matrix (MSTS produces band matrices with equal lower- and
upper-band widths), then the two triangular factors have band widths mt and 2mt. Storage must be
provided for the extra mt diagonals. This is illustrated for a one-dimensional problem of seven
nodes and two solved mass conservation equations. The Jacobian coefficient matrix for this
problem would appear as shown in Equation (4.99). The band storage requires 3mt + 1 = 10 rows
of storage arranged as shown in Equation (4.100). The * indicates elements that are never
referenced but for which storage space must be provided. The + indicates elements that may be
occupied during the factorization process. The original Jacobian coefficient matrix is referred to as
A and its storage counterpart as a; then the columns of A are stored in the columns of a, and the
diagonals of A are stored in the rows of a, such that the principal diagonal is stored in row 2mt + 1
ofa.

xl,l Xl,2 xl,3 x 1.4 0 0 0 0 0 0

x2,1 x2,2 x2,3 x2.,, 0 0 0 0 0 0

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 0 0 0 0

x4,1 x ,_,2 x 4,3 x4,4 x 4,5 x 4,6 0 0 0 0

0 0 x5,3 x5,4 x5,5 x5,6 x5,7 xs,s 0 0A =

0 0 X 6,3 X 6,4 X 6,5 X 6,6 X 6,7 X 6,8 0 0

0 0 0 0 X 7,5 X 7,6 X 7,7 X 7,8 X 7,9 X 7,10

0 0 0 0 x s,5 x 8,6 x 8,7 x s,8 x 8,9 x 8,10

0 0 0 0 0 0 X 9,7 X 9,8 X 9,9 X 9,10

0 0 0 0 0 0 xlo.7 xlo,8 xlo,9 XlO,lO (4.99)
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* * * * * * + 4- 4- +

, • • , , 4- + 4- + +

, , , , + + + + + +

* * * X 1.4 0 X 3.6 0 X 5.8 0 X 7.10

* * X 1.3 X 2.4 X 3.5 X 4.6 X 5.7 X 6.8 X 7.9 X 8.10a --

* x 1,2 x 5,3 x 3,4 x 4,5 x s,6 x 6,7 x 7,8 x s,9 x 9,10

"X 1.1 X 2.2 X 3.3 X 4.4 X 5.5 X 6.6 X 7.7 X 8.8 X 9.9 X 10.10

X 2.1 X 3.2 X 4.3 X 5.4 X 6.5 X 7.6 X 8.7 X 9.8 X 10.9 *

X 3,1 X 4,2 X 5,3 X 6,4 X 7,5 X 8,6 X 9,7 X 10,8 * *

X4.1 0 X6.3 0 X8.5 0 XI0.7 * * * (4.100)

The conjugate gradient solution algorithm was extracted from a package of subroutines
intended for solving large sparse linear systems by iterative methods (Oppe et al. 1988). This
package of subroutines is referred as NSPCG (for Nonsymmetric Preconditioned Conjugate
Gradient) and has available various acceleration techniques and preconditioners for solving large
sparse linear systems. The algorithms available from the NSPCG package are the "Incomplete
Cholesky" (IC) preconditioner and the "Generalized Minimal Residual Method" (GMRES)
accelerator. Preconditioners compute a splitting matrix Q such that the preconditioned system of
linear equations, Q-1 A x = Q-1 b, is better conditioned than the original system, A x = b. The
splitting matrix for the IC preconditioner is an incomplete LU decomposition of the Jacobian matrix
A. The form of the splitting matrix Q is Q = ( D. S ) D-X( D - T ), where D is a diagonal matrix
containing the factorization pivots, S is a lower triangular mau'ix, and T is an upper triangular
matrix. It is necessary to store both S and T because the Jacobian coefficient matrix A is
no" symmetric.

The NSPCG package allows several modes of storage for the Jacobian coefficient matrix.
The storage mode selected for MSTS represents the Jacobian coefficient matrix with two
rectangular arrays, one real and one integer. Both arrays are dimensioned n by m, where n equals
the number of unknowns and m equals 7 times the number of solved coupled governing equations.
Each row in the real coefficient matrix C contains the nonzero values of the corresponding row in
the Jacobian coefficient matrix A; the corresponding row in the integer coefficient matrix J contains
the column indices. The Jacobian matrix shown in Equation (4.99) would be expressed as the real
and integer matrices shown in Equations (4.101) and (4.102), respectively. Although this storage
format requires two coefficient matrices, the storage requirements for large sparse systems (such as
those for large multidimensional problems) are greatly reduced from those for the banded matrix
solution scheme.
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x 1,1 x 1,2 x 1,3 x 1,4 0 0

x2,1 x2,2 x2,3 x2,4 0 0

x 3,1 x 3,2 x 3,3 x 3,4 x 3,5 x 3,6

X4,1 X4,2 X4,3 X4,4 X4,5 X4,6

x 5,3 x .5,4 x 5,5 x 5,6 x 5,7 x 5,s
C=

X 6,3 X 6,4 X 6,5 X 6,6 X 6,7 X 6,8

X7,5 X7,6 X7,7 XT,S X7,9 X7,10

X 8,5 X 8,6 X 8,7 X S,8 X 8,9 X 8,10

X9,7 X9,8 X9,9 X.9,10 0 0

xlo,7 x10,s xlo,9 xlo,lo 0 0 (4.101)

123400

123400

123456

123456

345678
J=

345678

56789113

5678910

7891000

78 91000 (4.102)
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5.0 Code Architecture

The source code for MSTS is written in the FORTRAN 77 following the American
National Standards Institute (ANSI) standards. To obtain execution time and date information, the
code requires machine- and operating-system-dependent calls to nonstandard ANSI FORTRAN 77
library functions. Algorithms that call for time and date information have been provided in the
MSTS source code for several different computing platforms, from workstations to
supercomputers, for a number of manufacturers. The source code is written with minimal memory
sharing (i.e., overwriting of variables). Memory requirements for the executable version of MSTS
are controlled through a limited number of "PARAMETER" statements. The executable must be
properly dimensioned through parameterization of the source code. The required dimensions for
each parameter in the source code are dependent on the input file specifications (see Nichols and
White 1992 for parameterization rules). The executable version of MSTS will execute properly
with an overly dimensioned source code; however, failure to properly dimension a single parameter
to the required minimum dimension may result in erroneous results or an execution failure.

The code was designed as a scientific tool for investigating multiphase subsurface transport
phenomena. A minimal number of error-checking routines exist in MSTS. Within the limits of the
input structure, few restrictions exist on the types of problems that can be created, including ill-
posed problems, problems with conflicting boundary conditions, simulation steps that violate the
Courant limit, and/or problems with missing or erroneous data. Moreover, execution of a problem
to completion does not guarantee the user of correct or even sensible results.

As with most FORTRAN computer codes, MSTS is composed of a single main program
and numerous subroutines and functions. The main program in MSTS serves as primary logic
controller, which directs the execution through the various subroutines. The program was designed
with very few computations occurring within the main program, but rather restricts the function of
the main program to a control capacity. The main program contains three principal components:
initialization, iteration, and termination. The initialization and termination components are executed
once per simulation. The primary purpose of the initialization component of the code is to initialize
variables, and includes those initializations that occur from user inputs, external file reads, data
statements, and equivalence statements. The iteration component of the main program contains the
time advance logic and directs the iterative solution of the governing conservation equations and
constitutive theory. The termination component concludes the iteration component ,andserves
primarily to complete post-simulation calculations and close files. Output from the executable is
generated during all three components of an execution. Output generated during the initialization
component generally reflects inputdata, whereas output generated during the iteration and
termination components is related to specific results from the simulation. Output files are generated
with several formats, including those intended for restart purposes, records, graphics, error analysis,
and debugging. A logic flow chart that depicts the main program, subroutine groups, and iteration
loops appears in Figure 5.1.

The main program begins with variable initializations. Variables are initialized from external
file data (e.g., input files, restart files, property data files) and internal data with data statements and
simple equivalences° All code variables are initialized explicitly, eliminating the problems of
FORTRAN compiler-dependent implicit variable initializations° Variables initiatized from input
files include simulation reference information, simulation and numerical control parameters,
computational domain data, soil zonation data, primary and secondary variable data, boundary
condition specifications, and output control parameters. Initial values for primary variables may
also be read from restart files. Restm_ files contain "snapshots" of the prima.,',./variables at a
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Figure 5.1. MSTS-Logic Flow Chart
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particular point in simulation time. Restart fries are designed to work in conjunction withinput
files, not as complete specifications.

The iteration component of the main program contains two principal loops, one nested
within the other. The outer loop tracks advances in time step, whereas the inner loop tracks Newton-
Raphson iterations. Each time-step advance involves the iterative solution of the coupled governing
equations for conservation of component mass and energy, followed by an optional solution of the
species mass conservation equation. A time-step loop begins with variable initializations, which
primarily involve updating previous time-step variables to the values of their respective variables at
the current time step and incrementing the simulation time by current time-step length. The variable
initialization stage is followed by the iterative solution stage, where the discretized forms of the
governing equations for water mass, air mass, and energy are solved simultaneously with a Newton-
Raphson scheme. The next stage of the time-step loop involves computing Darcy velocities, mass
fluxes, and heat fluxes from the converged fields of pressure and temperature. If the simulation
includes species transport, then the next stage of the time-step loop is the direct solution of the
species mass conservation equation. No time-step partitioning occurs with the species transport
solution (i.e., the species transport solution uses the same time-step advance as the thermal-
hydrologic solution). Auxiliary calculations (such as those for computing travel times, quantity
balances, and surface flux integrations) follow the solution of the thermal-hydrologic and species
transport equations. The final stage of the time-step loop involves writing results to output files,
including restart fries, and checking simulation and execution time limits, ff none of the simulation
limits are exceeded, then the simulation proceeds to the beginning of the next time-step loop.
Otherwise, the simulation exits the time-step loop and proceeds to the termination component of the
main program.

The inner loop of the iteration component will be referred to as the Newton-Raphson loop
and involves a variable number of iterations depending on the nonlinearities associated with the
thermal-hydrologic governing equations. Each Newton-Raphson loop begins with variable
initializations, which include initializing the Jacobian coefficient matrix and solution vector.
Variable initializations are followed by secondary variable calculations. Secondary variables are
computed from the most current values of the primary variables, whether from the previous iteration
or from the time-step loop. Secondary variable calculations begin with the hydrologic parameters
(phase saturations, phase relative permeabilities, and phase tortuosities). Hydrologic parameters arc
computed first because phase saturations define the phase conditions for the evaluation of the
thermodynamic properties. After the hydrologic parameters are computed, a short subroutine is
executed that determines the phase condition for every active computational node. The phase-
condition logic subroutine is followed by a series of subroutines that compute the remaining
secondary variables necessary for the solution of the coupled thermal-hydrolog.ic conservation
equations. These secondary variables include physical parameters (e.g., viscosity and density ),
thermodynamic parameters (e.g., vapor mass fraction and component partial pressure), and thermal
properties (e.g., effective thermal conductivity and phase enthalpy). Execution performance is
enhanced by computing only those physical, thermodynamic, and thermal secondary variables
necessary for the specified solution option.

The numerical derivative approach used by MSTS to compute the Jacobian matrix
coefficients requires that values of the thermal and hydrologic parameters be computed for both
primary variables and incremented primary variables. Each secondary variable is parameterized as a
two-dimensional array; one dimension marks the node, and the other marks the incremented
primary variable. Five secondary variable values are defined for each node: 1) previous time-step
value, 2) current value, 3) current value with the temperature incremented, 4) current value with _e
aqueous pressure or water-vapor mass fraction incremented, and 5) current value with the gas

5.3



pressure incremented. "Current value" refers to the most recent iterate values of the primary
variables.

After the thermal and hydrologic parameters have been computed, the next portion of the
Newton-Raphson loop entails computing the Jacobian matrix and solution vector coefficients. The
Jacobian matrix and solution vector coefficients are computed in two steps. First, the computations
are completed by assuming zero-flux boundary conditions for ali external boundaries and internal
boundaries adjacent to inactive nodes. Second, the Jacobian matrix and solution vector coefficients
are modified according to the user-imposed boundary conditions. The zero-flux boundary and
imposed boundary condition steps are each divided into three sections, which correspond with the
three governing thermal-hydrologic equations: water mass, air mass, and energy. Only those
sections required for the particular solution option are executed. The order of the Jacobian matrix
depends on the number of active nodes times the number of coupled governing equations solved,
exclusive of the species concentration conservation equation.

The Jacobian matrix and solution vector element computations are followed by the solution
of the governing thermal and hydrologic equations in linearized form. In terms of computational
effort, this portion of the execution frequently dominates. Simulations that are characterized as two-
phase nonisothermal require the solution of the water mass, air mass, and energy conservation
equations, which yield Jacobian matrices of order 3N, where N equals the number of active
computational nodes. Solution times for linear systems of equations are dependent on the matrix
order, where dependencies vary between (3N) and (3N)3. First-order dependencies between
solution times and matrix order are typical of multigrid techniques (FogweU and Brakhagen 1989).
Second-order dependencies are typical of banded matrix solvers and conjugate gradient iterative
solvers. Third-order dependencies are typical of direct LU decomposition or Gaussian-type
solvers. Because of the large linear systems that evolve from nonisothermal, three-phase
simulations, an efficient linear equation solver is critical to the applicability of the engineering
simulator. The spatial discretization scheme used on the governing partial differential equations, of
a seven-point finite-difference stencil applied to a three-dimensional physical domain, yields block-
banded Jacobian matrices, where the block order equals the number of solved mass and energy
conservation equations. The Newton-Raphson method yields matrices that are positive-definite but
nonsymmetric.

The Newton-Raphson linearization method results in a solution scheme for increments to
the primary variables. Following a solution iteration, if every residual function falls below a
specified fraction of the accumulation term, then the solution is considered converged and the
simulation advances to the species transport equation solution. Otherwise, another solution iteration
is attempted. Occasionally, the increments to the primary variables either diverge or converge too
slowly with each solution iteration. In these situations, the time step is restarted with the original
primary variables, but with a reduced time-step advance. Solution failures are also possible, where
convergence failures occur even after numerous time-step reductions. Solution failures result in an
aborted simulation.

The species transport solution is a direct solution procedure. The species transport solution
begins with an initialization of the Jacobian coefficient matrix and solution vector. Because the
species transport solution and thermal-hydrologic solution are sequential, the Jacobian matrix and
solution vector memory space is shared between solution schemes. The species transport solution
proceeds by computing the species transport parameters (e.g., diffusivities, partition coefficients,
and dispersivities) and species source terms. The Jacobian coefficient matrix and solution vector
are computed next for zero-flux boundary conditions, and subsequently modified for the specified
species boundary conditions. Ali of the thermal-hydrologic parameters used in conjunction with
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the species transport solution are those values computed from the most recent converged thermal-
hydrologic solution. The f'mal step of the species solution procedure involves the solution of the
system of linear equations with one of the linear system solvers.
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Appendix

Numerical Values of Liquid Water, Water-Vapor, and Saturation Line Constants

The following tables contain the numerical values of the constants for the liquid water, water vapor,
and the saturation line. The values shown in Table A.1 are used to compute the density, enthalpy,
and intemal energy of liquid water. The values shown in Tables A.2, A.4, and A.5 are used to
compute the density, enthalpy, and internal energy of water vapor. The values shown in Table A.3
are used to compute the saturation pressure function. The values shown in Table A.6 are used to
compute the thermal conductivity of liquid water.

Table A.1. Liquid Water Primary Constants

Symbol Numerical Value

Ao 6.824 687 741 x 103
A1 -5.422 063 673 x 102
A2 -2.096 666 205 x 104
A3 3.941 286 787 x 104
A4 -6.733 277 739 x 104
A5 9.902 381 028 x 104
A6 -1.093 911 774 x 105
A7 8.590 841 667 x 104
A8 -4.511 168 742 x 104
A9 1.418 138 926 x 104
Alo -2.017 271 113 x 103
Ali 7.982 692 717 x 10o
A12 -2.616 571 843 x 10-2
A13 1.522 411 790 x 10.3
A14 2.284 279 054 x 10-2
A15 2.421 647 003 x 102
Al6 1.269 716 088 x 10-1o
At7 2.074 838 328 x 10-7
A18 2.174 020 350 x 10-8
AI9 1.105 710 498 x 10"9
A2o 1.293 441 934 x 101
A21 1.308 119 072 x 10-5
A22 6.047 626 338 x 10-14
at 8.438 375 405 x 10-1
a2 5.362 162 162 x 10-4
a3 1.720 000 000 x 10e
an 7.342 278 489 x 10-2
a5 4.975 858 870 x 10-2
a6 6.537 154 300 x 10-1
a7 1.150 000 000 x 10-6
a8 1.510 _00 000 x 10._
a9 1.4!8 800 000 x 10-1
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Table A.1. (contd)

Symbol Numerical Value

alo 7.002 753 165 x 10o
al 1 2.995 284 926 x 10-4
a12 2.040 000 000 x 10-1

Table A.2. Water-Vapor Primary Constants

Symbol Numerical Value

Bo 1.683 599 274 x 101
Bor 2.856 067 796 x 101
Bo2 -5.438 923 329 x 101
Bo3 4.330 662 834 x 10-1
Bo4 -6.547 711 697 x 10-x
Bo5 8.565 182 058 x 10-2
Bl1 6.670 375 918 x 10-2
B 12 1.388 983 801 x 10o
B21 8.390 104 328 x 10-2
B22 2.614 670 893 x 10-2
BE3 -3.373 439 453 x 10-2
B31 4.520 918 904 x 10-1
B32 1.069 036 614 x 10-I
B41 -5.975 336 707 x 10-1
B42 -8.847 535 804 x 10-2
B51 5.958 051 609 x 10-1
B52 -5.159 303 373 x 10-1
B53 2.075 021 122 x 10-1
B61 1.190 610 271 x 10-1
B62 -9.867 174 132 x 10-2
B71 1.683 998 803 x 10-1
B72 -5.809 438 001 x 10-2
B81 6.552 390 126 x 10-3
B82 5.710 218 649 x l0 -4
Bgo 1.936 587 558 x 102
B91 -1.388 522 425 x 103
B92 4.126 607 219 x 103
B93 -6.508 211 677 x 103
B94 5.745 984 054 x 103
B95 -2.693 088 365 x 103
B96 5._'35 718 623 x 102
b 7.633 333 333 x 10-1
b61 4.006 073 948 x 10-1
b71 8.636 081 627 x 10-2
b81 -8.532 322 921 x 10-1
b82 3.460 208 86! × !0-1

q
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Table A.3. Saturation Line Constants

Svmbol NumeriCal Value

k l -7.691 234 564 x 10o
k2 -2.608 023 696 x 101
k3 - 1.681 706 546 x 10z
k4 6.423 285 504 x 101
k5 -1.189 646 225 x 102
k6 4.167 117 320 x 10o
k7 2.097 506 760 x 101
k8 1.0 x 109
k9 6.0

Table h.4. Derived Constants

Symbol Numerical Value

Lo 1.574 373 327 x 101
Lt -3.417 061 978 x 101
L2 1.931 380 707 x 101

Table A.5. Numerical Indices

j_ n(j) z(j, 1) z(j, 2)z(j, 3) l(j..___)x(j, 1)x(j, 2) j_"

1 2 13 3 ..... 1

2 3 18 2 1 - - 2

3 2 18 10 .... 3

4 2 25 14 .... 4

5 3 32 28 24 o - - 5

6 2 12 11 - 1 14 - 6

7 2 24 18 - 1 19 - 7

8 2 24 14 o 2 54 27 8
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Table A.6. Liquid Thermal Conductivity Constants

_Symbol Numerical Value

ao -922.47
at 2839.5
a2 -1800.7
a3 525.77
a4 73.44
bo 0.94730
bl 2.5186
b2 -2.0012
b3 0.51536
co 1.6563 x 10-3
ct -3.8929 x 10-3
c2 2.9323 x 10-3
c3 -7.1693 x 10-4
To 273.15
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