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ABSTRACT

Semiconductor fabrication lines have become extremely-costly, and achieving
a good return from such a high capital investment requires efficient utilization of
these expensive facilities. It is highly desirable to shorten processing development
time, increase fabrication yield, enhance flexibility, improve quality, and minimize
downtime. We propose that these ends can be achieved by applying recent advances
in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic
algorithms. We use the term neural manufacturing to describe such applications.
This paper describes our use of artificial neural networks to improve the
monitoring and control of semiconductor process.

Keyword List: Neural network, neural manufacturing, processing monitoring,
fabrication control, adaptive process control, industrial productivity.

2. INTRODUCTION

We have identified a number of problems associated with traditional
semiconductor manufacturing concepts. 1) Process and equipment modeling is still
confined to the research laboratory, and is generally not available to front-line
process engineers. 2) Existing forms of process control are not a closed-loop control
of the entire fabrication step. They are instead a collection of disconnected, closed-
loop control systems, concerned with peripheral parameters such as pressure and
gas flow. 3) The process engineer has very few options available to rescue a "bad
run,” that is, a process that has deviated from specifications. 4) Some processing
errors can be corrected by "reworking" or "processing feed-forward," but scheduling
these reprocessing runs in the midst of fresh runs is a difficult logistical problem. 5)
Extending the increasingly popular “cluster tool" concept to include metrology
causes complications in tool design and integration. 6) It is customary to diagnose
and treat equipment problems only after a failure has occurred. Prediction of failures
in advance and undertake timely, pre-emptive repairs that would prevent costly
impacts on manufacturing schedules have not been vigorously pursued. 7) Moving
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processes to different equipment often requires substantial parameter adjustments
and downtime.

We believe that neural manufacturing concepts can solve many, perhaps all,

of these problems. This will result in increased yield, greater flexibility, improved .

quality, and minimal downtime.

3. THE NEURAL MANUFACTURING APPROACH TO SEMICONDUCTOR
T PROCESSING

The semiconductor manufacturing process is extraordinarily complex,
involving hundreds and thousands of individual steps. This complexity often
prevents a complete scientific understanding of the mechanisms involved. As a
result, we often use our human ability to recognize patterns and make inferences!, 2.
Our intuition and experience complement the precise number crunching
calculations and the logical scientific deductions. It would therefore seem
appropriate to call upon tools that mimic our human capabilities, tools such as
artificial neural networks, fuzzy logic, genetic algorithms, and machine learning.
Many of these tools are still in their infancy and are therefore limited in their
capabilities, but even so they have significant advantages over their human
counterparts. They will not, for example, make mistakes because of fatigue, and the
"personal equation” is generally absent. We use the term neural manufacturing to
describe the application of these human-imitating tools to the semiconductor
manufacturing process. Research work by us 3 and others? strongly suggests that the
effective use of these tools can greatly improve the return from semiconductor
manufacturing lines. We believe that the continued development of neural
manufacturing will have a fundamental and profound impact on the
semiconductor industry.

4. EQUIPMENT CONTROL AND PROCESS MONITORING

In semiconductor processing of the usual kind, the actual fabrication process
(etching, deposition, etc.) is not directly monitored or controlled. In plasma
processing, for example, "process control” is done indirectly through an empirical
ensemble of sensor outputs, conceptually very much like the methods of 20 or even
30 years ago. We monitor and control certain traditional parameters such as gas
flow, RF power, and chamber pressure, but not the actual etching or deposition
process. This indirect control methodology may fail to sense important aspects of the
process. For example, certain types of deposition may be extremely sensitive to the
presence of oxygen. The traditional methodology can sense only the oxygen flowing
through the mass flow controller. However, oxygen resulting from water
breakdown or outgassing from the chamber walls will not be detected. Thus we
have only the illusion of process control. More importantly, the critical events at the
wafer surface are not monitored and thus not readily under control.




It is obvious that traditional methods of process control ignore the vital
reaction zone, i.e., the critical plasma region next to the wafers where fabrication
actually takes place. Our neural manufacturing concept improves on the traditional
methodology in two crucial respects:

1) The monitoring and control is done by an artificial neural network that can
"learn” its complex task in somewhat similar manner as a human learns, and

2) We establish a continuous monitoring and control of the actual reaction
zone through optical emission spectra and other appropriate data inputs.

5. IMPLEMENTATION OF NEURAL NETWORK PLASMA PROCESS CONTROL »

In order to continuously monitor the reaction zone, which is right above the
wafers, we choose a diode-array optical spectrometer’ to provide the input signals to
describe the reaction dynamics and kinetics. We have chosen an optical
spectrometer for a number of reasons. First, the sensing is done externally and thus
will not perturb the process itself. It is highly desirable to decouple the sensing from
the processing equipment itself, if possible, because otherwise, if we move the
process into different pieces of equipment, then the new processing equipment will
have to be modified to accommodate the sensors internally. Also, the internal
inclusion of the sensors into the processing equipment itself will generally lessen
the degree of freedom for process development, especially when one chooses to do a
totally different process in the same equipment. Second, the sensing itself is very fast
and thus lends itself well to real-time monitoring and control. Third, optical
spectrometers are generally readily available in the semiconductor industry. Fourth,
unlike the residual gas analyzer which usually needs to have its head permanently
connected to the equipment, the optical spectrometer is relatively portable, and thus
minimizes the cost if sharing is possible. And finally, current end-point detection
usually relies on optical sensing, and thus one does not have to have another set of
instrumentation for end-point detection. In addition, more accurate end point
detection can be achieved using a neural network based algorithm and thus can
then be readily integrated with the our setup for monitoring and control. Optical
spectrometer is not the only choice. Other instrumentation can also be used if it
satisfies the key advantages mentioned above.

So, for a plasma-based processing system, plasma information is then
obtained in the form of spectra from a diode-array optical spectrometer, which
becomes the inputs for our neural-network system; the outputs of the network will
represent information corresponding to the processing inputs for the system, such
as gas flow, RF power, and pressure. With this in-situ real-time information
pertaining to the plasma above the wafers, adaptive process control is then achieved
by using this information to have the slave controllers make corresponding
corrections (Figure 1). Correction signals will also then be tracked in the
maintenance database to predict failures of the components other than the
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catastrophical ones and report to the maintenance engineers for preventive repairs
at a time that will minimize interrupting the flow of the processes and the wafers.

We have chosen an oxide reactive-ion-etching (RIE) process to demonstrate
the capabilities and performance of our neural network plasma control

methodology. Experiments were performed in a batch-type, parallel-plate, processing

reactor. The four processing input parameters were operational pressure, RF power,
CHFj3 gas flow, and Hj gas flow. Very high flow of Hj gas were used, leading to very
heavy polymerization, to push the processing into a highly unrealistic regime to
check out our unorthodox approach in settings of extreme conditions. The
spectrometer produced a 743-channel optical spectrum. Our center-cubic
experimental design 6 minimized the number of experiments required to cover a
very large, 4-dimensional operating space. A total of 30 experiments were
performed; data from these experiments was used to train the neural networks.
Additional experiments tested the performance of the system.

Raw data collected from the plasma emission are shown in Figure 2. The
differences between the spectra are largely due to the attenuation of the optical
emission by the polymer deposited onto the view port. After appropriate
preprocessing, the resulting plasma spectra appear almost identical (Figure 3), even
though the processing conditions are clearly different. The very heavily overlapping
spectra coupled with the inherently noisy plasma environment present an extreme
challenge for most signal processing. But artificial neural networks are known to
perform well under these settings 1.2. A neural network was successfully designed to
distinguish the subtle differences between the inherently noisy plasma spectra and
to identify the corresponding variations in processing conditions. The four outputs
of the network represent the various gas flows, the pressure, and the power for the
system corresponding to the plasma spectrum. The resulting network can accurately
quantify the processing conditions for which it is trained with a maximum of 0.33%
root mean square error (Table 1).

Parameter RMS Deviation
Hj gas flow 0.29%
CHFj3 gas flow 0.19%
RF power 0.33%
Chamber pressure 0.25%

Table 1. Summary of the neural-network results. The RMS deviation is between the
neural-network results and the training data.




6. NEURAL NETWORKS ON A CHIP

To develop the full potential of the neural manufacturing concept, we believe
that semiconductor fabrication processes must be sampled at many points over a
large wafer area. This will require monitoring multiple sets of inputs from many
different types of sensors located at strategic spots. The potentially enormous
number of inputs gives us a formidable data-fusion problem. The neural systems
will have to learn and "get smarter" as their training proceeds, feeding back more
-and more information to the process engineer. Such intelligent systems will be
extremely complex, and may overwhelm the real-time capabilities of pure-software
simulations. In other words, there are distinct limitations involved in simulating
the function of neural networks, which are parallel-processing devices, through the
use of software in serial-type computers. We believe that it is highly desirable to
proceed to actual neural network hardware systems to ensure that we can handle
the required data processing in real time in the future. ThlS will require the
availability of neural network hardware.

To this end, we have worked with the Naval Air Warfare Center at China
Lake to design and fabricate our first neural-network, integrated-circuit chip. Such a
chip is our first step in realizing the hardware systems that will be required for
controlling complex and dynamic semiconductor processing systems. Our chip
(Figure 4) contains 64 input-buffer amplifiers, 32 output neurons with individually-
set gain and bias, and a fully-connected synaptic-array structure containing 16,384
synaptic resistors, which can function in either an excitatory or inhibitory mode.
The present die size is 0.841 cm X 0.744 cm. Figure 5 shows a close-up view of the
chip. The upper region is populated by the input buffer amplifiers. The bottom
right-hand region is occupied by the neurons and the synapses are located in the
bottom left-hand region. Given the layout of the chip is not dense and the
technology is based on 2-micron geometry, we expect the size, and thus the cost, of
this chip to shrink substantially as development proceeds. Such chips are designed
to be cascaded to build more complicated systems. This chip is our first step toward
realizing hardware systems for monitoring and controlling the complex and
dynamic real-world semiconductor processing systems.

7. CONCLUSIONS

Within the limitations of this paper, we hope to convey the potential of the
neural-manufacturing concept - a concept that integrates intelligence that mimics
the human involvement in semiconductor processing through artificial neural
networks, fuzzy logic and etc. to the area of manufacturing. This concept can be
applied to any type of manufacturing that can provide appropriate inputs to
appropriately-designed system such as artificial neural networks. For example,
fluorescence or absorption spectra can provide input data for non-plasma-based
processes. This neural manufacturing approach can improve yield by improving
real-time process control; provide flexibility in the form of easily-reconfigurable
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manufacturing; and minimize downtime by predicting component failure and
triggering pre-emptive repairs. The potential result is an increase in industrial
productivity and reduction in cost.

There are still many problems to be overcome. For example, even though
results obtained by ourselves and other researchers are very encouraging, we need
further breakthroughs in the intelligent-system area. One major problem is that our
neural network systems in their present form cannot receive and process higher-
order abstract information from the human specialist. To solve this problem, we at
LLNL has worked on a new type of intelligent system that is capable of including
hypotheses and other such abstract knowledge provided by human experts. We call
such a system a hypothesis-assisted intelligent system (FIAIS). Such a system is
fundamentally different from an artificial neural network or a fuzzy-logic system,
and would act as a partner to a human researcher. The resulting partnership could
explore and learn on a team basis. One form of this HAIS has already demonstrated
very interesting results, along with a potentially much- higher degree of
generalization than the neural network systems we describe here.
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Figure 1  Schematic diagram of plasma monitoring and control using artificial
neural networks. Information from the optical spectra is used to monitor
and correct the process.
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Figure 2 Optical spectra from some of the runs used to characterize the plasma.
Heavy polymerization causes attenuation of the signals.
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Figure 3 Comparison of preprocessed plasma spectra for various amounts of CHF3
after preprocessing. Neural networks can distinguish the subtle differences
among these spectra.

Figure 4 The LLNL/NAWC artificial-neural-network cascadable IC chip with 64
buffered input amplifiers and 32 output neurons (0.84 cm x 0.74 cm)
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Figure 5 A close-up view of the LLNL/NAWC artificial-neural-network chip.
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