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Connection between NMR and electrical conductivity in glassy
chalcogenide fast ionic conductors

Kyung-Han Kim

Major Professor: Dr. F. Borsa
Towa State University

Pulsed Nuclear Magnetic Resonance measurements and electric conductivity
measurements have been performed in glassy fast ionic conductors, lithium
thiogermanates ( xLi»S + (1-x)GeS7 ) and lithium thioborates (xLipS + (1-x)B3S3
) in order to investigate the microscopic mechanism of ion dynamics. Both 7Lj -
nuclear spin lattice relaxation rate (NSLR) versus temperature at several resonance
frequencies (4 MHz to 135 MHz) and conductivity, 6(®) versus temperature, in the
frequency range from 1 Hz to 4 MHz have been measured. the 7Li NSLR show
BPP - type behavior with strong asymmetry of the bell shaped curve on the two
sides of the maximum. A sizable dependence of the NSLR on the type and
composition of the glass is found. The results have been analyzed in terms of both
a phenomenological model using a stretched exponential correlation function and a
model based on a distribution of activation energies. The model based on a simple
hopping of the free ions over the barriers of a given distribution gave a good fits of
the NSLR data. By using the distribution obtained from NMR we could also
account for the value and tﬁe temperature dependence of the dc. conductivity. In

the framework of this model we can explain the different correlation times obtained
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from NMR and conductivity as a consequence of percolation effects in the
conductivity. It is shown that the distribution of barriers should lead to small but
detectable deviations from Arrhenius behavior of dc conductivity. This deviation
has been indeed observed in lithium thiobrate glasses which have lower activation
energy. The phenomenological model based on the stretched exponential was
compared with the experiments in the light of the interpretation of the "coupling

model” and found in partial disagreement with our data. In thioborate glasses it

was found that the 7Li NSLR has two maxima as a function of temperature. The
11B NSLR on the other hand displays two relaxation rates associated with trigonal
and tetragonal structural groups respectively. It is shown that the NSLR of the
mobile (7Li ) ion and immobile (1 1B) ion are indirectly related to each other and
from this one can deduce information about energy barriers associated to each

structure for the mobile ion and immobile ion.



Connection between NMR and electrical conductivity in glassy
chalcogenide fast ionic conductors

by
Kyung-Han Kim

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Department: Physics and Astronomy
Major: Condensed Matter Physics

Approved:

&n Charge of Major Work

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1994



CHAPTER 1.

1.1
1.2

1.3

1.4

CHAPTER IL

2.1

2.2

il

TABLE OF CONTENTS

INTRODUCTION

Preview

Fast Ionic Conduction in Glasses

1.2.1 Literature Review

1.2.2  General Features of Fast Ionic Conduction in Glass

1.2.3  General Features of ac Conductivity

NMR and Impedance Spectroscopy Measurements of Ionic Conductivity
in Glass

1.3.1  Probes for the Study of Fast Ionic Conductors (FIC)

1.3.2° NMR and Impedance Spectroscopy

Summary of Measurements to Date and the Objectives of the Thesis
1.4.1 Summary of Measurements to Date

1.4.2  The Objectives of the Thesis

BACKGROUND

Structural Properties of Chalcogenide Fast Ionic Conducting Glass
2.1.1  Glass Formation in Chalcogenide Systems
2.1.2  Fast Ionic Conducting Chalcogenide Glasses
2.1.2.1  Structure of Boron Based Glasses
2.1.2.2  Structure of Silicon and Germanium Based Glasses
2.1.2.3  Structural Trends and Ionic Conductivity
2.1.2.4  Structural Trends of Boron and Silicon Based Glasses
Studied by NMR
2.1.2.5  Structural Trends Studied by the other Techniques
2.1.2.6  Structure of Thiogermanate Glasses
Nuclear Magnetic Resonance Theory
22.1 Hamiltonian and Nuclear Spin Lattice Interactions
2.2.1.1 Nuclear Zeeman Interaction
2.2.1.2 Dipolar Interaction
2.2.1.3  Quadrupolar Interaction
2.2.1.4 Hyperfine Interaction
2.2.1.5 Indirect Interaction

2.2.2 NMR Spectrum and Nuclear Spin Lattice Relaxation
2.2.2.1 Classical Description
2.2.2.2 NMR Spectrum
2.2.2.3 Nuclear Spin Lattice Relaxation

00 I\ bt bt 4

12

14
17
17
24

27

27
27
28
30
31
33

34
36
37
39
41
41
43
44
46
47
48
48
50
59



iii

2.2.3 BPP and Beyond 69

2.23.1 Beyond BPP 70

2.2.3.2 NSLR in Glass 71

2.3 Model for Ionic Conduction 77
2.3.1 Free Ion Type Model 77

2.3.2 Hopping Model 79
23.2.1 Hopping Models in Disordered System 79

2.3.2.2  Simple Hopping Model 81

2.3.23 Hopping Model with Distribution of Hopping Frequencies

and Percolation Scheme 83

2.3.2.4  Other Hopping Models; The Coupling Model 85

CHAPTER III. EXPERIMENTAL DETAIL 87
3.1 Sample Preparation 87
3.1.1 Lithium Thiogermanate Glasses 87

3.1.2  Lithium Thioborate Glasses 88

3.2 Conductivity Measurement by Impedance Spectroscopy 89
3.3 Measurement of Nuclear Spin Lattice Relaxation time 94
3.3.1 Inversion Recovery Method of Measuring T 94

3.3.2 NMR Pulse Spectrometer 95
3.3.2.1 Pulse Generation and Transmission 95

3.3.2.2 Pulse NMR Probe 98

3.3.2.3 Receiver 100

3.3.2.4 Magnet 100

3.3.3  Experimental Procedure and Data Processing 101

3.4  Methods for Data Analysis and Computer Program 103
3.4.1 KWW Stretched Exponential Model 103

3.42  Limiting Behavior of Stretched Exponential Correlation Function 106

3.43 Distribution of Activation Energies and Percolation Scheme 108
CHAPTER 1IV. RESULTS AND DISCUSSIONS 111
4.1 xLipS + (1-x)GeSy 112
4.1.1 7LiNuclear Spin Lattice Relaxation Measurements 112

4.1.2  Conductivity Measurements
4.1.3  Direct Comparison of Correlation Times from NMR and

Conductivity - 116
4.1.4  Analysis of Data with the Phenomenological KWW Correlation
Function and the Coupling Model 119

4.1.5  Analysis of the Data with a Distribution of Activation Energies
and the Percolation Model 131



iv

4.2  xLipS+(1-x)ByS3

CHAPTER V.
REFERENCES

ACKNOWLEDGMENTS

APPENDIX

4.2.1

4.2.2
423
424

425

Li Nuclear Spin Lattice Relaxation Measurements

Conductivity Measurements

Interpretation of the Anomalous /Li NSLR Curves

Analysis of the Data with a Distribution of Activation Energies
and the Percolation Model

Measurements of 11B NSLR

CONCLUSIONS

142
144

144
144

150
157
165
167

179

180



CHAPTER I. INTRODUCTION
1.1 Preview

The work documented in this thesis follows the traditional order. In this

chapter a general discussion of ionic conduction and of glassy materials are followed
by a brief outline of the experimental techniques for the investigation of fast ionic
conduction in glassy materials, including NMR and impedance spectroscopy
techniques. A summary of the previous and present studies is presented in the last
section of this introductory chapter.

The details of the background theory and models are found in the Chapter II,
followed by the description of the experimental details in Chapter III. Chapter IV of
the thesis describes the experimental results and the analysis of the experimental

observations followed by the conclusions in chapter V.
1.2 Fast Ionic Conduction in Glasses
1.2.1 Literature Review

Fast ionic conduction in solids, especially in glassy materials, has stimulated
interest both in the scientific and technical communities [1]. The scientific community
is interested in the microscopic mechanism of mass and ionic charge transport through
glassy or crystalline hosts [2]. Due to the high concentration of mobile ions, the
hopping motion of ionic charges is strongly affected by mutual interactions whereby

collective effects become very relevant [3-6]. From the technical point of view, solid



state ionic conductors are good candidates for high energy density solid state batteries
[7-9], as well as numerous electrochemical applications [10].

The study of electrical proper’ties of glasses began as early as 1748 with the
observation of high dielectric absorption in Ben Franklin;s study of residual charges on
Leyden jars [11]. The ionic conduction in glass was found by Warburg in 1884 [12].
In 1966, Otto [13] discovered fast ionic conducting oxide glasses. With the discovery
of RbAg4l5 and B-Alumina in 1967, the field began to grow with the possibility of

~ applications of fast ionic conductors (FIC). The introduction of glassy FIC offers a

wide variety of materials which are both easy and cheap to prepare and can be
modified to yield improved performance [14].

A variety of chemical compounds have been studied to optimize ionic
conduction for use as a solid electrolytes in solid state batteries and high capacitance
capacitors. Thermally activated hopping is always assumed to be the mechanism of
ionic transport and is analogous to electronic hopping in disordered system with the
important exception of impurity conduction and Mott's [15,16] variable range hopping
model. The attempt to optimize conduction properties was done on the basis of simple
free ion type models and using the techniques of synthesis developed in glass-
chemistry. The effort was concentrated on investigating the dc ionic conductivity for
various fast ionic conductors, both in crystalline [7,9] and glass [18-21] phases.
Referring to the dc conductivity, ionic conductors may be defined as SIC (super ionic
conductor) when the dc conductivity at room temperature exceeds 10-3(Q em)-1, and
as FIC (fast ionic conductor) when dc conductivity at room temperature less than 10-3
(Qcm)-1 [21]. Hunter and Ingram[19] classify glassy FIC materials which show dc

conductivity at the glass transition temperature, Tg, exceeding 10-2(Qcm)-1.



The study of the frequency dependent ionic conductivity began around 1930
[23]. Historically, one can distinguish two schools of thought depending on the method
chosen for presenting data. The "dielectric school" uses the complex dielectric

function,

e(0) = &'(0) - is"(0) , (1.1)

while the "semi conductor school" prefers the complex conductivity,

6(0) = o'(@) + ic"(0) (1.2)

The interest in the dielectric losses of materials was strong in the 50's and it was
stimulated by the use of these materials as insulating components in electronic devices.
The interest in both crystalline and amorphous semiconductor boomed in the 60's and
thereafter.

Experimental work within the semi-conductor school started in 1961 when
Pollak and Geballe [25] measured the ac properties of n-type doped crystalline silicon
at very low temperature. They observed an approximate power law for the ac electric

conductivity,

o(w) ~oS, wheres=0.8 (1.3)

The same kind of behavior was observed in the ionic conductivity of glassy-FIC and in -

a wide variety of non-metallic disordered solids[24]. This frequency dependence

suggests an origin which could be found in the disorder of the structure.



The interest in solid state electrolytes remains strong both for the technical
aspects where applications have been demonstrated and for the scientific aspects.
Nevertheless, it is not yet economically viable and the understanding of the basic

physics of the microscopic mechanism for the ionic conductivity is far from complete.

1.2.2 General Features of Fast Ionic Conduction in Glass

Solid ionic conductors may be classified into three different groups; crystalline
ionic materials or defect types such as NaCl, CaFy, Agl, etc.; traditional super ionic
conductors or so called molten sub lattice types [9] such as RbAgls, B-Al,03, etc.;
and materials with low structural organization e.g. inorganic glasses and polymers.
The last group is further classified into sub-Tg materials (glasses) and super-Tg
materials (polymer) [18].

In this work, the main focus is on glassy-FIC, especially lithium sulfide glasses
which belong to the class of chalcogenide glasses. The choice is motivated by their
superior conductivity and by the access to the microscopic study of ion-dynamics by
means of 7Li NMR.

Glass characteristics, such as isotropic and flexible structure [26], absence of
grain boundaries, wide composition ranges, and easy fabrication, are attractive
features for the development and applications of glassy-FIC. A glass is generally
regarded as a frozen liquid of high viscosity obtained from the melt by quenching. A
fluid becomes a rigid glass when the time required for structural change is much longer
than the time of observation. The material then appears solid, when in fact it may flow

on a long time scale. Glass properties are known to be closely related to the glass



composition. In the case of ionic conductivity, the glass composition and its glass
forming range are of paramount importance.

Glass forming elements in the periodic table are in groups V and VI; for
example, phosphorus, sulfur, and selenium. Binary glasses are mostly artificial ones,
of practical value; oxide, halide, and chalcogenide glass [27]. According to the
Zachariasen rule[27], one can predict the formation of glassy materials by combining
two of the above glass forming elements. The binary glasses so obtained will have
some ionic character in the bonding and are known as network formers (NWF). Other
compounds such as alkaline oxide, alkaline earth oxide, and some transition metal
oxide (and their sulfide) dissolve in NWF and react due to the high charge density of
glass former cations. Thus those compounds which alter the glass properties of the
NWF, are called as network modifiers (NWM). The structure of covalent glasses
(group V and VI) is described by the continuos random network model [28]. However,
in the covalent glass one finds short range order, which indicates that the glass
structure is not completely random.

The oxygen atoms in the NWM of oxide glasses (or sulfur atoms in sulfide
glasses) enter NWF by depolymerizing or by.bonding to glass forming cations.
Bonding occurs when a glass forming cation has the ability to increase its coordination
number, and actually increase the dimension of the network. These two mechanisms are
shown in Fig. 1.1 (A) and (B) respectively. The important consequence of the NWM
reaction with NWF is the creation of modifier cations weakly bound to the NWF, and
the creation of non bridging oxygen (NBO). From the figure we notice that silicate are
more apt to have NBO . Since the modifier cation is being weakly bound, it attempts to

escape from its shallow potential energy wells and hop to the nearest vacancy site. The

defect formation mechanism was illustrated by M. D. Ingram [19].
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Fig. 1.1 Schematic diagram of the reaction of NWM to NWF by (A) depolymerizing,

(B) Bonding of oxygen (or sulfur) to the cation of NWF. Actual increase of dimension

takes place which can be monitored by 11B.NMR [119-122] and (C) The illustration

of the possible ion jump mechanism for conducting ions, especially in the low alkali

limit.
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Under the influence of an electric field, the hopping of ions become biased in the
direction of the field leading to the observation of ionic conduction. Although the
ionic conduction described above is neither a conduction process in an extended state
of charge carrier nor their motion is not free, free ion-type model (or Drude-type
analogy) approach has been used extensively with appropriate interpretation of the
activation energy [184] for thermally activated hopping of ionic charge carriers.

A simple expression for the dc conductivity can be obtained by using viscous

flow of ions and Nernst - Einstein relation;

_ n(Ze)?

C4c. T a M vyexp(-Ea/k,T) (1.4)

where, n is a number density of the charge carriers,
a is a geometrical factor for random hopping,
A is the jump distance of the charge carriers,
Vo is a primitive attempt frequency, and
Ea is the activation energy of the hopping ion.

kg is a Boltzman factor

Whereby the detailed discussion of equation (1.4) will be presented in the section 2.3.1

of Chapter II. The simple expression (1.4) has been able to account for the main

conduction properties of the sulfide glasses, which are investigated in the present work

with more extended models.



1.2.3. General Features of ac Conductivity

One of the most characteristic features of ionic conductivity of glass material is
the frequency dependence of the conductivity which appea;s to have a universal
behaviori.e. o~ 5, with 0<s<1 (see section 1.2.1). A frequency dependence of
the conductivity is an indication of non - Debye relaxation behavior for the mobile
ions. This feature has been observed in many complex systems by various methods of
observation [29-31]. Good fits to the experimental data have been obtained with a
functional form for the polarization correlation function termed as the Kohlaush -
William - Watts (KWW) function [29], after R. Kohlaush [32] and G. Williams and

DC Watts [33].
Pp(t) = exp [-(1+)B],  0<p<1 (1.5)

where, t* is a characteristic decay time which is related to the hopping time of the
mobile ions in the lattice and P is an exponent which measures the deviation from the
simple Debye like single exponential relaxation function.

In glass-systems, the dielectric function which is related to the conductivity
shows KWW-behavior. In order to show the connection between the frequency
dependence of the conductivity (equation 1.3) and the non Debye-like relaxation

(equation 1.5), we might start from Maxwell equation of electromagnetic field,

Jtotal - Ifree = dD/dt (1.6)



where J refers to the electric current density and D refers to the electric displacement.

The conductivity and dielectric property of the system can be related as,

o(0) - o(0) = ingze(w) (1.7

where, g, = 8.854x10-12 farad/meter, is a permitivity of free space. Since we are
dealing with a conducting dielectric, we expect that the ac conductivity is driven in
part by the same microscopic mechanisms which drive the dc conductivity namely the
hopping ions. Therefore the low frequency limit of the ac conductivity should yield the

dc conductivity. We will write in general:
c'(@) ~ o(0) = wg,e" (1.8)
However it should be pointed out that at high frequencies other dissipation

mechanisms may be present besides the motion of mobile ions. In the frequency

domain, the complex dielectric function *(®) can be written as [35],

1/e*(@) = /e[ 1- j dt exp(-iot) [-de(t)/dt] . (1.9)
0

where, €4 is the relative permitivity of glass at high enough frequency, i.e. in the

optical region. Integrating by parts one has,

1/e*(0) = 1/, {1-[exp(-iot)p(t) " +io j dr exp(-iot) o(t)} (1.10)
0

’
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Using the equation (1.5) for the correlation function one has; ¢(0) =1 and ¢(z) =0

as t — oo, then equation (1.10) reduces to,

lVex(a) = I/Sm]sdl exp(—iot) ¢(t) (1.11)
0

Therefore, we have a relation between conductivity o(e) (or dielectric function,

g(@) ) and the correlation function for the decay of the macroscopic electric field E.
The reciprocal of the complex dielectric constant in equation (1.11) is referred as the

electric modulus :
l/e*(0) = M*(0) (1.12)

and was formulated by C. T. Moynihan [36], V. Provenzano [37], and P. B. Macedo
[38] in analogy to the mechanical relaxation (shear stress relaxation [39,40]). In this
way the dielectric relaxation function is expressed in terms of the decay of the electric

field (or electric stress),

E(t) = Eqo(t) (1.13)

The stretched exponential form for the correlation function (see equation 1.5)

is equivalent to a distribution of correlation times. Indicating g(t) as the normalized

distribution of correlation times, one can write
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o(t) = exp[-(t/1%)B] = I dt g(v) exp(-t/7) (1.14)
0

From equation (1.11-14) one has

1/6%(0) = (1/ey) io J‘ dt exp(-iot) J' dr g(z) exp(-t/t) (1.15)
0 0

= (1/e) io J‘ drg(t) t/(1+ie1)

Here, we should keep in mind that equation (1.13) and (1.14) are purely
phenomenological and convey little information about the microscopic origin of the
non-exponential decay of the correlation function. In fact equation (1.14) has been
used without reference to the physical basis of how it originated, although it describes
the observed data quite well.

It has been quite popular to express the results of dielectric measurements in
terms of the electric modulus although some doubts have been raised about the correct
interpretation of the data in terms of dielectric relaxation [44-46]. The electric
modulus formalism is based on the analogy to the mechanical relaxation. Provenzano
et al. [37] termed the relaxation in FICs as 'Conductivity Relaxation' rather than
'Electrical Relaxation'. He also recognized the usefulness of the Stevels [41] and
Taylor [42] model. In this model, the low frequency dispersion in o(®) and e(w), and
the non exponential decay of electric field (or frequency dependent conductivity) were
attributed to the lack of translational invariance of the potential energy barrier. The
potential barrier impedes ion-diffusion in the vitreous quasi-lattice.

It also has been argued [3, 51, 52, 62, 63, 75,104] that the frequency

dependence of the conductivity (see equation 1.3) is a direct consequence of the non-
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exponential decay of the electric field (equation 1.13), whereby the two coefficients B

and s are simply related :

B=(1-s) (1.16)

The main scope of this work is to characterize more fully the ionic conduction
process in glassy-FIC on a microscopic level by employing NMR techniques in an
effort to relate the above described macroscopic ionic conductivity to the microscopic
ion-dynamics. Although we still have a poor picture of how the conductivity is related
to the thermally activated hopping rates of individual ions, the importance of
developing the physics of relaxation in complex systems was recently pointed out in a
workshop on "Relaxation in Disordered Systems" [43], whereby the multiple role of

relaxation in many branches of science, technology and engineering is also recognized.
1.3 NMR and Impedance Spectroscopy Measurements of Ionic Conductivity in Glass

1.3.1 Probes for the Study of Fast Ionic Conductors (FIC)

A glassy-FIC provides two challenging problems in the field of the study of
the relaxation in complex systems. One is the structure relaxation [59] of glassy-
matrix and the other is the conductivity relaxation of the diffusing ions in the glassy or"
liquid state. The phenomenology of conductivity relaxation seen in many ionic glasses
is similar to the one seen in molten salts [60], in electrolyte solutions [61] and Na B-
Alp03 [58, 62, 63]. These similarities require that a theory or model may be structure

independent, as was pointed out by C. T. Moynihan [58]. Furthermore, as was
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mentioned above, some analogy of conducting ionic glasses [3,4, 30, 71-80] such as
the power law dependence of ac conductivity is also observed in amorphous
semiconductors pointing toward a rather general origin for the observations.[64- 70].

Experimental techniques which have been used to investigate glassy-FIC are
conductivity, X - ray, EPR, NMR, IR and Raman spectroscopy, neutron and electron
scattering and electrochemical techniques [12]. When the long range structure is of
concern, elastic scattering of X-rays, neutrons and electrons are employed.
Electrochemical study has some advantage, since the ionic conductor acts as a probe
for chemical potentials, partial pressures, energies of formation, atomic disorder,
stoichiometric deviations, phase equilibria, partial conductivity, diffusion coefficients,
mobility and reaction rate constants with high precision [81]. In particular diffusion
coefficient measurement are important in connection with our work on ionic
conductivity. In principle one could use noble gas diffusion techniques or radioactive
tracer [82] but in many cases such as lithium glasses the NMR method remains the
most widely applicable.[83].

For the study of ionic motion in FIC, mechanical and electrical methods are
widely used at frequencies below the far infrared (FIR) range. Above the FIR range
and below optical range (typically 1012-1014 Hz) Raman scattering, Brillouin
scattering, and Infrared absorption techniques are widely used. Overall, energies below
the range of an electron volt are of interests, where we observe the low frequency
fluctuation and dissipation phenomena [62,63]. IR absorption measurements are used

in the range from 1.5x1012 Hz to 6x1013 Hz typically, where vibrational spectra of

local structure and the spectra of vibrational motion of cations are observed [87-89]. A

similar range is covered by Raman scattering and Brillouin scattering [90,91].
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Mechanical methods measure the mechanical stress relaxation of glass, where
Rheovibron [84] and ultrasonic techniques [85,86] covers frequency range between 102
Hz and 108 Hz, respectively. Electrical methods measure the impedance as a function
of frequency (so called Impedance Spectroscopy, 1IS), where low frequency bridge
methods are used up to 106 Hz typically, and high frequency bridge method are used
up to 1x109 Hz at the present time at Iowa State University [46]. There is an
experimental gap in measurement frequency between 109 Hz and 1012 Hg, although a
decades above 107 Hz might be covered by time domain reflectometry [91]. The
coverage of each technique in the frequency domain is depicted in Fig. 2.2. The
importance of crystallographic studies using Brag scattering of X-rays and neutrons is
obvious and another broad open area for the study of disordered systems. The
techniques employ tunable X-ray source (synchrotron) and pulsed neutron sources
(Spallation) [1]. These techniques are not considered in this work, where we are mainly
interested in the dynamic aspects of glassy systems.

The experimental measurements performed in the present work are NMR
measurements in the range 4 to 135 MHz and Impedance spectroscopy (IS)
measurements in the frequency range 0 to 4 MHz. A comparison of the two techniques

is presented in the next section.

1.3.2 NMR and Impedance Spectroscopy

As was seen in the previous section, many spectroscopic techniques can be
employed for the study of glasses, which rely both on scattering and resonance
phenomena. The two techniques most widely used are NMR and conductivity

measurements. The NMR spin lattice relaxation rate (NSLR) is related to the
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spectral density of the position-position correlation function and thus probes the local
charge - density fluctuations. The frequency dependent conductivity, on the other
hand, measures the macroscopic relaxation properties of the electric field and thus
probes the dissipation due to the long range diffusion of the charges [51,52].

The correct comparison of the results obtained by the two techniques is of
paramount importance for the understanding of the ionic transport dynamics from a
microscopic point of view. The comparison of measured parameters, such as the
activation energies, obtained from limited ranges of temperature and/or frequency has
often led to discrepancies and ambiguous conclusions [97].

The frequency dependence of the conductivity [92,97], and the deviation from
0=2 frequency dependence of the NSLR [97] are both a consequence of the non
exponential behavior of the relevant correlation functions. Non exponential behavior in
the correlation function has been the observation for nearly all fast ion conducting
glasses and is most often interpreted as a result of correlation between the ions during
diffusive motion. Only in the limit of nearly zero (ppm) ion concentration does
exponential relaxation result. Non exponential behavior is often described by a time
dependence of the form of equation (1.5), which often called as KWW function. The
physical significance of the KWW function is an important, but debated, question: It
could be simply the indication of inhomogeneous relaxation, i.e., a distribution of
correlation times [97,106] or it could represent the more fundamental effect of the
slowing down of the relaxation at long times due to cooperative effects [104].

The combined study of ac conductivity and NSLR for the same FIC system over
a wide range of frequency and temperature are rare [54,55], as well as the tests of
theories or model with all known experimental data. Previous work of lithium thio-

silicate is well described both by KWW correlation function [54] and by distribution of
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activation energies [56,57], indicating that the two approaches are equivalent although
they may describe different physical mechanisms.

The issue here is what are the microscopic physical phenomena which lead to
the phenomenology described above. To do this, one has to relate the phenomenological
parameters to microscopic quantities and test the validity of the theoretical
predictions. This was done for both the description in terms of a KWW correlation
function [104] and for the distribution of activation energies [56,57], but in either
case the test was limited to only a few systems. In this work, the test will be extended
to several glassy-FIC where the concentration of cations is changed systematically

within the same NWF .

1.4 Summary of Measurements to Date and the Objectives of the Thesis

1.4.1 Summary of Measurements to Date

Previous studies of conductivity in glasses are numerous, but until recently the
research was mainly directed towards the optimization of the dc-conductivity and very
few studies were concerned with the understanding of the conduction process. The
procedure for enhancing the dc conductivity has been done by varying the network
former (NWF) and/or the network modifier (NWM) and/or the concentration of dopants
systematically, as shown graphically in Fig. 1.3 as is the result of intensive study in
glass chemists. The interests in the conduction mechanism was largely originated by
the observation of the strong composition dependence and the frequency dependence of
the conductivity. As mentioned in section 1.2.3., Macedo et al. [38] were the first ones

to show that the dispersion of conductivity is a consequence of the
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log(c) at room temperate

sulfide
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Xmodifier X modifier
Modifiers Dopant
I
Br
X modifier XM.Y (Y = I,Br,Cl)

Fig. 1.3 The relative value of the room temperature de conductivity in log scale due to

the variation of the glass system, NWF, NWM, and salt dopant variations vs. the

amount X of modifier or-dopant. For real data see [196] and references in there.
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non-exponential nature of relaxation in the time domain. Two main approaches were
used to study this behavior. The first and most widely used approach refers to the
electric modulus M*(@) defined in equation (1.12). The electric modulus was fitted
using the relationship (1.11) and by modeling the correlation function with the KWW
function (equation 1.5). A typical fit obtained by using the KWW-function is shown
in Fig. 1.4, In general, the KWW-function does not reproduce the experimental data at
high frequency. Recently, several authors have suggested that artifacts may be present
in the electric modulus spectra [44 - 46] . These criticisms should be considered
carefully, if one wants to use the electric modulus formalism to describe the

conductivity. The other type of correlation functions such as Cole - Cole and Cole -

Davidson functions have also been tried [105 - 107]. The 2nd. approach to the ac
conductivity data analysis concentrates on the power-law dependence of conductivity
[46 and references therein], and attempts were made to explain the physical meaning of

n,

exponent "s" in equation (1.3). This approach, however, is not considered in this work
because it is purely macroscopic and phenomenological.

Regarding NMR, Bishop and Bray [96] appear to have been the first to have
examined the effect of fast ion dynamics on the NMR response of an ionic conducting
glass. They observed the narrowing of the mobile ion spectrum due to motional average
[94] of interactions among nuclei. GObel et al.[83] observed the asymmetry in the
semi-log plot of the NSLR vs. 1000/T, which is a salient feature of all NMR
measurements in glassy FIC-systems. Typical results obtained from the NSLR as a
function of temperature and resonance frequency are shown in Fig. 1.5.

S. W. Martin and C. A. Angell [97] related the observations in NMR to the

observations in the conductivity data which shows the characteristic frequency

dependence at high frequency and at low temperature as shown in Fig. 1.6.
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exponential behavior different from conventional BPP [94] behavior.
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Martin and Angel predicted also that FIC chalcogenide glass to be an ideal candidates
for the combined study of NMR and conductivity. This is because one wants to exclude
any effects due to glass transition, in other words the observation with NMR and
conductivity should be done much below the glass transition temperature, Tg for the
following reasons: (i) The deviation from dc plateau occurs around Tg, which might be
an effect of structural relaxation of the glass host. If the ratio of structural relaxation
time with respect to the conductivity relaxation time is large, then the above mentioned

cffect will be small. The ratio was defined as the 'de coupling index' by C.A. Angell

[98]. (ii) The microscopic observation by NMR techniques demands enough data points
on the high temperature side of NSLR which should not be affected by the glass
transition. Therefore the choice of chalcogenide glass for the combined study of NMR
and conductivit_y is important not only because the combined study is possible by the
better conductive glasses, but also it has been found [54 - 57]that the two techniques
seem to probe different aspects of jonic conduction and the accompanying relaxation
phenomena which should be revisited and confirmed.

A brief summary of the observations and results in the study of FIC are as
following: (i)Ionic conductivity, (o), has a frequency dependence described
appréximately by a power law behavior, below infra-red range. Unlike electronic
conductors, the power law behavior in glasses is believed to be only an approximation
since the exponent seems to have a slight temperature dependence [93]. (ii) The
corresponding relaxation behavior is observed to be non - Debye type and describable
by a stretched exponential correlation function (or KWW - function). (iii) The
frequency independent plateau observed for @ — 0 is interpreted as dc conductivity
due to the thermally activated diffusion of individual ions(see the region II in Fig.

1.2). What is peculiar here is that one observes non-vanishing dc conductivity
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coexisting with a broad dielectric loss peak [49]. (iv) Another general observation is
the frequency-temperature superposition, where the experimental data for conductivity
can be made to overlap in a master plot when proper scaling in the frequency is done.
This superposition is known to hold true when the hypothetical distribution of
activation energy is broad enough [45]. (v) Regarding the NMR the recurrent feature
in glassy FIC is the asymmetry of the semi log plot of Tl”l vs. 1000/T which is
indicative of non exponential behavior of the position - position correlation function of
the mobile ion or, equivalently, of a distribution of correlation times.

Since both conductivity and NSLR are controlled largely by the dynamics of the
mobile ions it is believed that the comparison of parameters such as activation
energies, correlation times etc., between the two techniques can shed light on the
microscopic mechanism of ionic motion. In a number of recent publications [54-57,
100,188] it was pointed out that, contrary to previous beliefs, the correlation time
deduced from NMR and the one deduced from conductivity are different. This point is
illustrated in Fig. 1.7, where the correlation times obtained directly from three
techniques are compared. This point is addressed in the present work in the attempt to

learn more about the microscopic mechanisms of the mobile ion dynamics.
1.4.2 The Objectives of the Thesis

As was discussed in the previous section, the correct comparison of the results .
obtained by the two techniques (conductivity and NMR) is of paramount importance
for the understanding of the jonic transport dynamics from a microscopic point of

view. This is because the NMR spin lattice relaxation rate is related to the spectral
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density of the position - position correlation function and thus probes the local charge

- density fluctuations. The frequency dependent conductivity, on the other hand,

measures the macroscopic relaxation properties of the electric field and thus probes the
dissipation due to the long range diffusion of the charges.

In a previous work [56,57] the differences in the correlation times observed in
lithium thio silicate glass were explained by a model based on a distribution of
activation energies and percolation effects dominating the dc conduction. This assigns
the dominant role to "disorder effects". A totally different approach based on the
assumption of the dominant role of "correlation effect" on ionic motions was also
applied to the observed differences in correlation times in lithium thio silicate glasses
[56, 108). The main objectives of the present work is a critical assessment of the two
above models and their comparison with the experimental data. In order to achieve
this goal it is important to perform measurements of both NMR and conductivity on
the same samples in wide composition, frequency and temperature ranges. The systems
investigated here were chosen carefully for the present purpose and for comparing with
previous studies. Once the objectives of establishing which of the two models is more
suitable to describe NMR and conductivity, we aimed extracting microscopic

information about the hopping ion dynamics from the data.
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CHAPTER II. BACKGROUND
2.1 Structural Properties of Chalcogenide Fast Ionic Conducing Glass

2.1.1 Glass Formation in Chalcogenide Systems

The chalcogenide glasses are based on elements from group VI, or combined
with elements from group IV and group V, such as photo conductive a - Se and a -
As)Se3 which is used in photocopiers [108] and a - Ge33As]7Ses55 which is used in
IR optical windows [27]. The attention to the chalcogenide glasses during the last two
decades has been motivated originally by their relatively high infrared transparency
[110 ],whereby the superior ionic conductivity of chalcogenide ionic conductive
glasses were predicted by the weak electrolyte theory [103] and the Anderson - Stuart
model[184] for dc ionic conductivity (see section 2.3.1).

The chalcogenide conductive glasses which were studied in this thesis are
described in the frame work of continuous random network (CRN), although
short range order (SRO) are present in the glass net work. The oxide glass analogy
was used for the description of short range order (SRO), as well as the concepts of the
network former (NWF) and the network modifier (NWM). The glass properties related
to the structure (SRO) will be discussed in the section following for the chalcogenide
conductive glasses of general formula, xM5S + (1-x)FS, (sulfide glasses), where x is
mole percents and F = Si, Ge, By/3, Py4/5, and Asyj3 and M = Li, Na, K .., Rbetc., as
in the é)xide glasses of formula, xM70 + (1-x)FO5. The comparison of ionic

conductivity of the sulfide glasses to the one of oxide glasses are also discussed.
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2.1.2 Fast Ion Conducting Chalcogenide Glasses

The first vitreous electrolyte studied were oxide glasses. They were the results
of a reaction between NWF, and NWM which bring cations responsible for ionic
conductivity. In general these glasses present low conductivity at room temperature (<
10-8 (©cm) ’1). It was essential to improve their conductivity before considering their

use in any electrochemical devices.
n(Ze)?

T aXv,) of dc conductivity in equation (1.4) was in
B

The prefactor o (=

the ranges from 102 (Qcm) -1 t0 103 (Qcm)'1 for all oxides and sulfides. These more

or less constant prefactor support the weak electrolyte model rather than the strong
electrolyte model. In other words, the dc conductivity is mainly controlled by the
variation of activation energies. Regarding the mobility of mobile ions, the Hall effect
measurement on silver thio phosphate glass shows that the mobility of the Ag* ions
remains constant in the whole composition range (mobility of Ag™ = 6x10-4 cm2y-1l5-1
was reported at room temperature [113]).

The overall trend of dc conductivity of the sulfide glasses are similar to the
oxide system as summarized in the Fig. 1.3. The only exception is that the glass
former effect is such that cch > cchi > o’che > cch, therefore thio borate is
superior to thio silicate in sulfide glasses. This inverted sequence in the NWF effect in
dc conductivity in sulfide glasses makes exception to the first approximation of
relating oy.to the bond strength between mobile ion (Li*) and the anion of NWF (S‘2
or 0'2). This bond strength will be weaker as S(or O) is tightly bound to the cation of
NWF, and then the smaller the conductivity (e.g. cchi > cch > cche > cch) as

seen in oxide glass. To go further in that course would imply an exact knowledge of

4
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the glass structure. The detailed comparison of dc conductivity between oxide glasses
and sulfide glasses can be seen in the review article of A. Pradel and M. Ribes {111]
and J. H. Kennedy et al. [112], respectively.

The structure of disordered materials is generally modeled in a two
distinct ways :(i) the one is 'disordered model' such as continuous random network
model (CRN) of covalent glasses, random close packing model (RCP) of metallic
glasses and random coil model of low dimensional glasses [108] and (ii) the other is
the 'ordered model ' which postulates the existence of crystalline micro-domains
as in the quasi crystal model [27, 111]. One finds few complete models which can
describe the observed SRO and IRO (intermediate range order) in a collection of
disordered materials. Though liquid is a good example of disorder, it does not support
shear thus one can not call a liquid a glass, therefore liquid can not be used for
modeling glasses.

In the chalcogenide glasses, the coordination is given by 8-n rule [108] in

which one has the basic relation for the coordination :

Number of Valence Electron + Number of Covalent Coordination = 8

This relation is exemplified in Table 2.1.

If a glass forms a structure following 8-n rule in a completely random manner,
there should be a continuous distribution of the bond angles and distances in the
structure as is assumed in the continuous random network model for the covalent
glasses. In reality, the short range orders observed in the glasses which does not fully

support the complete disordered model.
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Table 2.1 A part of the periodic table with elements exemplifying

covalent bonding behavior

Number of Valence Electrons

n=4 n=>5 n==6
St P S
Ge As Se

Number of covalent coordination

Z=4 Z=3 Z=2

2.1.2.1 Structure of Boron Based Glasses

Regarding boron based glasses, the observed SRO's (structural groups in short
range order) in thio borate glass (i.c., a-B9S3) are; ortho thio borate, trimer (six
membered ring or boroxol or meta thio borate) and dimer (four-membered ring). Each
structural units form covalent random network in the glass [115]. The borate glass
(i.e., a-B203) does not have dimer (four-membered ring) which is found in thio borate.
The study of SRO in a-B7 03 was reviewed by J. Krogh - Moe [116], and according to
the extensive literature search by D. R. Bloyer, Jr. [118], the study of the sulfide
glasses (e.g. thio borates) are far from complete till very recent time. The SRO of the
thio borate glasses seems to be qualitatively similar to the borate glasses, although
quite different quantitatively.

Intermediate range order (IRO) may be found both in the borate and thio borate
systems in the form of chain-meta (thio) borate, cyclic-meta (thio) borate, pyro (thio)

borate, and penta (thio) borate, as one adds up the amount of NWM to the NWF As
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was shown in Fig. 1.1, there occurs a change in the coordination of boron (from three
coordinate to four coordinate as one adds up the amount of the NWM to NWF) which

complicates the SRO in the boron based glasses. The short range order and possible

intermediate range order are illustrated in Fig. 2.1.
2.1.2.2 Structure of Silicon and Germanium Based Glasses

The structure of silicon based glasses is the simplest of all the glass structure,
yet many of the details are not yet fully understood like the other glasses. The
building block of silicate glasses is tetrahedral (SiOy4) similar to the low alkali borate
or thio borate, and these SiO4 units are linked by corner to form a glass network. The
information about the connectivity of silica tetrahedra (SiO4) obtained through 29g;j -
MAS (magic angle spinning) NMR gives the information about corner sharing (or
number of bridging oxygen's which give the magnitude of the chemical shift of 298i -
NMR resonance line) of the tetrahedra, which is expressed as Qn (n = 0 to 4): Qo
represents all NBO's (or isolated SiO4 tetrahedron) and Q4 represents all bridging
oxygen's (BO's). One may have impression of having more available sites for mobile
ion hopping as one have more fraction of low Q's in the glass structure.

In the thio silicate glasses, differing from silicon oxide glasses, it appears that
the NMR reveals not only sulfur connectivity (Qp's) but also differences between edge
shared and corner shared silicon tetrahedra (Em's, where m is the number of the shared
edges of tetrahedra ) [131]. The structure of the germanium and phosphorus based
glasses are quite similar to the silicon based glasses in the sense that the basic
structural units (SRO) are the germanium tetrahedra (GeS4) or phosphorus tetrahedra,

though their connectivity might be different from composition to composition.
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Fig. 2.1 The short range orders found in the sulfide glass of general formula
xMyS+(1-x)F2S3. For F = 8i,Ge or P corner sharing (Qn) and edge sharing (Em) of
tetrahedron are seen in SRO which depend on composition x. For F = B, various 3 -

and 4 - coordinated Borons are seen in SRO which depend on composition x.



33

The composition dependence of structure of alkali germanate glasses are as
following: (i) x = 0 ~ 0.18, only Q4 groups are present (ii) x = 0.18 ~ 0.33 one NBO
per octahedra are gradually formed (iii) x = 0.33 ~ 0.5 iso structure to silicate ( only

Q3 groups at 33% alkali and only Q2 groups at 50% alkali are present)

2.1.2.3 Structural Trends and Jonic Conductivity

A glass generally has more wide composition range than its crystalline partner,
thus the glass shows wide variation of the structure and related glass properties
including ionic conductivity. Sodium glasses {xNayO(or S) + (1-x)FO5 (or S3)}
exhibit the most wide composition range and thus studied the most extensively
including the study of the ionic conductivity, where 'F' is the anion of the glass former
(F = Si, Ge, By/3, Pyys).

The ionic conductivity, which is structure related glass property, described in
the free ion-type model does not have much connection to the microscopic structure
and related glass properties such as the observed trends in the dc activation energy
determined from the temperature dependent dc plateau, which decreases as one adds
the amount of the NWM to the NWF. Therefore detailed study of structure does not
give much help to the understanding of the mechanism of the ionic conductivity in the
glass. On the other hand a microscopic model for ionic conductivity do requires

detailed information of the structure of the glass fast ionic conductor.

Regarding the structural trends, SRO found in a pure NWF (e.g., FOj or FSy )

shows continuous structural variations upon adding the NWM to the NWF. The boron

based glasses shows di (thio) borate, meta (thio) borate and ortho(thio) borate at about

33,50 and 75 mole percent of NWM is added to NWF respectively. The Si or Ge
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based glasses on the other hand shows change in the number of shared corner (Qn's)

and/or number of shared edges (Em's) of the tetrahedra as one adds up the NWM to the
NWF. The conversion ratio of the above structural units varies from one glass system
to the other glass system.

The main interest of structural trends for the study of ionic conductivity is the
amount of the non bridging oxygen (or sulfur) (NBO or NBS), which provides the sites
for ionic hopping motion. Regarding glass system, silicon based glasses are more
capable of having NBO ( or NBS) than the boron based glasses as was seen in Fig.
1.1. This idea can be applied to the oxide glasses, although it can not be applied to
the sulfide glasses where thio borate shows superior ionic conductivity than thio
silicate glasses. Thio borate glasses shows rich and variable structural trends with the

variation of compositions and of the anion of NWM.

2.1.2.4 Structural Trends of Boron and Silicon Based Glasses

Studied by NMR

The 1B NMR is an excellent tools for probing the coordination of the boron in
the borate and thio borate via quadrupole interaction between nuclei and the electric
field gradient specific to the symmetry of the certain SRO. The 29Si -MAS (magic
angle spinning ) NMR is an excellent tools for the structure study of silicate or thio
silicate via chemical shielding effect (chemical shift of the resonance line) of the
surrounding electron clouds specific to the nature of the chemical bonding.

The recent study of ! IB-NMR performed by J. A. Sills, S. W. Martin and D. R.
Torgeson on alkali thio-borate revealed the ratio between 3-coordinated boron (N3)

and 4-coordinated boron (N4) of the sodium sulfide glasses [119] and potassium
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sulfide glasses [120]. J. A. Sills et al. found more rapid conversion rate of four
coordinated boron's from the three coordinated boron's than the borate glasses at lower
alkali region, which was attributed to the presence of the di thio borate structures
which might have four coordinated sulfurs instead of two coordination. Though the
structural hypothesis is still questionable, thio borate seems to have more rich SRO
than the borate.

Regarding the silicon based glasses, thio silicate has more rich structures than

silicate glasses. The simpler structural trends in silicate is as following. A statistical
arguments for a random model would predict the presence of all Q the relative
numbers of which are determined by x, the amount of NWF in the glasses. The
ordered model on the other hand, predicts for certain stoichiometric compositions to
specific Qp units, for instance, Q3 at 33% of alkali and Qy at 50% alkali. The
experimentally determined Qp, distribution using MAS-NMR in lithium, sodium, and
potassium silicate glasses as a function of mole % alkali oxide [130],shows the trends
such that the almost Q3's at about 33% and Q7'2 at about 50%. It may be said that
the occurrence of NBO's in the network are not entirely random.

Differing from oxide glasses, thio silicate glass, it appears that the NMR

reveals not only sulfur connectivity (Qy's as in oxide glasses which structural units are

all corner shared) but also differences between edge shared and corner shared silicon
tetrahedra [131]. This idea was proposed by Terhover et al. [132] for pure SiSy glass
which consists of only Q4 species but showed three NMR peaks which are assigned to :
(i) two edge shared tetrahedra E5, (ii) one edge shared tetrahedra E] and (3) all corner
shared tetrahedra E(. Therefore edge sharing is expressed as E;, where m represents
the number of shared edges of tetrahedron. The possibility of edge sharing in lithium

thio silicate glasses was first suggested by Angell [133] from MD (molecular
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dynamics) simulations and H. Eckert et al [131,136] provided the experimental support
for this hypothesis.

The addition of I)_,iZS to SiS, decreases the amount of edge sharing
dramatically, such that no Ej units remain at > 40% Li»S. In this region the E1/E
ration remains approximately constant, while Q values may be continuously changing.
Thus, bonding concepts used to describe the local structures of oxide glasses can not

be applied directly to the structural description of chalcogenide glasses, even when

they are stoichiometric analogies.

2.1.2.5 Structural Trends Studied by the other Techniques

The IR absorption is sensitive to the corresponding normal mode of molecular
vibration of particular SRO. Density measurement may reveal the free volume and
possible packing structure. Glass transition temperature, Tg, may be sensitive to both
SRO (e.g., coordination and bond type) and IRO (e.g., possible chains and/or cyclic
structures).

The observed structural trends by 11B-NMR are supported by IR-absorption,
density measurement and glass transition temperature measurement. The appearance
of BS4 units and reappearance of BS3 unit were observed, which corresponds to the
absorption line at 800-600 cm-1 (at about 33% of NWM addition) and the line at 900-
800 cm~1 (at about 75% of NWM addition) respectively. Therefore the increase of
density at about 33% of NWM is thought to be due to the increase of BS, units . The

smaller density of the sulfide comparing to the oxide is due to the larger volume of

structural unit of thio borate glasses [126]. The supposed trends of increasing Tg with

BO4 conversion, is observed in borate. The opposite trends are observed in thio
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borate. Unlike the borate's, the decreasing Tg is observed as NWM is added to the
sulfide network former even in the presence of rapidly increasing BS4, which was
attributed to the "over cross linking" effect of the sulfide ions. This is due to the high
conversion rate of 4-coordinate boron's, which is suggested to result in the formation
of local tightly-bounded molecular like structures that exhibit less long range network
bonding than the borate élasses. As a result, Tg decreases with added alkali in thio
borates rather than increase as in the borate glasses [119,120].

It is interesting to note that observed IR absorption line at around 200 cm-1,
which is though to be the vibrational mode due to the mobile ion motion [87,124,125].
This may be important information for the estimation of attempt frequency of mobile

ion hopping motion.
2.1.2.6 Structure of Thiogermanate Glasses

Glasses with, NWF based on Si, Ge, and P are known to have basic
structure unit of tetrahedra FS4 or FO4, where , F = Si, Ge, and P. Sulfide glass
'have similar structural trends to oxide glasses which are based on Si, Ge, and P
when one adds up the alkali content, although the trends are qualitatively the
sequence cchi > cche > cch, holds for oxides and sulfides.

Germanates (even thio germanates) seemed to be considered as less
interesting for FIC due to its low conductivity and less interesting due to very
similar structure as silicate. Therefore it was studied less than silicate or borate
glasses. Sodium glass usually has wide glass forming range, thus structure of
sodium thio germanate glasses were studied and referred in this work for structural

information of thio germanate glasses.
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Seemingly the first work on the thio germanate glasses was done by
M. Ribes et al.. In the structure study of sodium thio germanate glasses by B.
Barrau et al. [138] the presence of the GeS4 tetrahedra and different types of
chains are suggested by Raman spectroscopy. A

Unambiguous assignment of vibrations to the Raman spectrum was possible for

crystalline di thio germanate (NagGe4S1() and compared to a-di thio germanate. The
assignment could be expanded to the whole glass forming range and gave similar trends
as thio silicate glasses. By joining these units so that the tetrahedra are connected at
the corners, and each germanium atom has two terminal sulfurs, space being left for
the network-modifying ions, a particular model of meta-thio germanate glass can be
constructed. It was also suggested that the glass may have a repetitive pattern in the
chain of 2,3,4,...etc., tetrahedra, instead of two as in the chain of the crystallized
compound, and the same reasoning was suggested for di thio germanate and pyro thio
germanate glasses.

The information of structure of germanate, silicate, thio silicate and sodium
thio germanate would be suffice to give a picture of the structure of lithium thio
germanate glasses studied in this work such as: (i) for connectivity Qn (corner sharing)
, we may use the qualitative trends of alkali germanate glasses (ii) for connectivity
Em (edge sharing), we may use the qualitative trends of alkali silicate glasses (iii) and

we may notice the suggested chain structure in sodium thio germanate glasses
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2.2 Nuclear Magnetic Resonance Theory

Nuclear Magnetic Resonance (NMR) uses the phenomena of nuclei absorbing
resonant radio frequency energy in a static magnetic field. This phenomena is always
accompanied by nuclear relaxation [137]. The first observations of NMR were
published in 1946 by Purcell, Pound, and Torrey at Havard and Bloch, Hansen, and
Packard at Princeton following the successful Electron Paramagnetic Resonance (EPR)
experiment reported by Zavoisky and by Cummerow and Halliday [138]. The
Magnetic resonance absorption and induction were used at Havard and Princeton
respectively.

Here are NMR - physicist list [139],

- static or rate process
- perfect or imperfect solids
- insulators, conductors, semiconductors, superconductors
- dia magnets, para magnets, ferro magnets, ferri magnets, anti ferro magnets
- single crystals, powders, amorphous solids
- simple solids, multi component solids, alloys, molecular solids, polymers,
biological molecules
- phase transitions
In the study of FIC (fast ionic cc;nductors), one might be interested in the rate process
of non-magnetic, ionic conducting and amorphous powders.

In NMR experiments, the nuclei are to be used as probes for the matter under

study, one must consider whether the properties are indeed intrinsic, when nuclei

experience the interactions of an atomic environment. The intrinsic properties of

isolated nuclei, such as the total angular moment (spin), parity, and electric or
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magnetic multipole moment must be considered first. Intra nuclear interactions are
exceedingly strong (of order of 106 eV) compared to electron-proton electrostatic
interactions (of order of an eV), so that the latter interactions have entirely negligible
effect on the nuclear states. Accordingly, only nuclear ground states will be of interest
in NMR experiment.

The nuclear spin I is a constant of motion, because of the negligible mixing of
nuclear states by atomic interactions. The nuclear magnetic moment is proportional to

the spin and is conventionally written as,

p=yhl =gyu,I (2.1)

where, gy is nuclear g-factor, p, = eh/Zmp = 0.050 7806(17)x10-27 (Joule/Tesla), is
the nuclear magneton, and ¥y is the nuclear gyro magnetic ratio. Due to the smallness of
mp, observation of ordering in nuclear magnetic moments should be below ~ 10-7K,
below which nuclear spin coupling is order of kgT. Diamagnetic is also negligible.

One left with nuclear para magnetism [140],

M = Ny2 #* I(I+1) Ho/3kgT (2.2)

when a static field H, is applied to N nuclei in a solid at constant uniform temperature
T. Conventional magneto static method is not capable of observing this small (10-6 ~
10-8 of electronic paramagnetic susceptibility ) nuclear magnetization. In NMR
experiment , which is a branch of radio frequency spectroscopy, a negligible
spontaneous emission and a usage of coherent radiation suffices to describe the usage

of electromagnetic radiation as a classical quantity [140]. Much of the theory in this
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section is drawn from the classic work of Abragam [140] with some help from the book
by Slichter [142], Wolf [143], C. P. Poole [141], T. C. Farar and E. D. Becker [144]

and Fukushima [145].

2.2.1 Hamiltonian and Nuclear Spin Lattice Interactions

The Hamiltonian of the system under study might be written in order of

energetic of each terms as,

H = (Helectronic * Hcrystal field + HL-§ coupling * H electron spin
coupling ¥ HZeeman electronic * Hhyperfine * Hnuclear spin coupling + Hnuclear

quadrupole * HZeeman nuclear) + (Ho + Hj) (2.3)

where Hy is static external magnetic field and Hj is radio frequency perturbing field to
excite the nuclear system in NMR experiment. In NMR the terms after the Hhyperfine
might be interested. Higher energy terms might be probed by electron spin resonance

and optical spectroscopy, which techniques may be complimentary to NMR.

2.2.1.1 Nuclear Zeeman Interaction

Zeeman Hamiltonian of nucleus placed in a magnetic field H is given by,

Hz, = —u-H (2.4)

For a static field Hy in the Z-direction, the energy eigen values
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Em=-yhHypm m=1, I-1, ---, -I (2.5)

are separated by

AE = ha, (2.6)
where @) is a Lamer frequency, o = yH(, which is typically on the order of 10 MHz.
Here one introduces rotating coordinate rotating at rf frequency, a smaller radio

frequency field,

Hj = 2Hjcos(at)i = HR + Hy, (2.7)

is applied perpendicular to the Z-axis, where HR = Hj(cos(ot)i + sin(et)j), and Hy, =
HR(-0). The time dependence of the expectation value of the total magnetic moment of
the nuclear spin system, <M(t)>, is easily found by transforming to a rotating frame of

angular velocity © with respect to the laboratory frame. In the rotating frame,

d<M>/dt = <M>xyHggr (2.8)

where the effective field (in the rotating frame) is given by

Herr= k'(Hp + o/y) + iH;
If the perturbing field has frequency ¢, then Hegr has only x' - component in the
rotating frame. The spins will precess about x-axis with a frequency of YH; NMR

experiments can thus manipulate the spin system by varying the strength and time
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duration of Hy. Here H] = Hp is used to emphasize the effect of the resonance, where
® = @(, without losing generality. That is because one may neglect the counter rotating

component, Hy , near the resonance [142].
2.2.1.2 Dipolar Interaction

Zeeman Hamiltonian alone, the spin system would absorb energy at the Lamor
frequency, and the NMR spectrum would be a delta function with minimum broadening
due to the uncertainty principle. The most important interaction which alter Zeeman
split energy level, is the dipolar interactions among nuclei, thus alter the shape of
NMR spectra as well as transitions between Zeeman levels (therefore affect the

relaxation times). The dipolar Hamiltonian is given by,

/-lj '/—lk + 3(/—11' F;k)(ﬁk ’—':,k)

(2.10)

Hd=2[

j<k

where the sum is over all nuclear moments with Ijk, the vector from m; to my. The

interaction between two spins I and S is more transparent in the form
Hq = (fyvs/r3)h2 (A+ B+ C+ D + E + F) (2.11)

with A =1,S,(1 -3cos26)
B =-1/4(14S_ + I.S4+)(1 - 3c0s26)
C = -3/2(1+S, + I,S4)(sinBcosBexp(-ip))

D = C* = -3/4(1.S, + I1,S_)(sin6cosBexp(ip))
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E = -3/41,S.sin208exp(-2ip)

F = E* = 3/41_S_sin20exp(2i@)

Where, I and S are spin’operators, and polar coordinate with Hg along z-axis is used.
The secular terms A, B commute with Hz. Term A corresponds to the energy of

one dipole in the static field produced by the second dipole.

The term B represents simultaneous flips of interacting dipoles. The terms A and B

correspond to the transitions Am =0, the terms C and D c-orrespond to Am=4=1, and

the term E and F correspond to Am=+2 .
2.2.1.3 Quadrupole Interaction

The electric field gradients, EFG existing in non-cubic sites interact with
nuclear quadrupole moment of nuclei with non-spherical charge distributions. This
interaction is electrical in nature in contrast to the magnetic dipole-dipole interaction.

The quadrupole Hamiltonian is given by,

2
Ho,= 3 QWg;m (2.12)
Q me o 2°=2

where the E™ are combinations of EFG terms,

_ & p(r")dr’ Z,
;o oxox, U +Zi:|f‘FiIJ @-13)

[F -7

and are given by
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Eg:—l—sz
2
EY = (2.14)
J’ V)
E"2 V. V +2iV.
2J— ( »)

The Qq describes the charge distribution of the nucleus in terms of the nuclear

quadrupole moment,

Q=(Lm= I‘%(-”Zf; —rg‘)l,m =1I) (2.15)

where the sum is over all protons in the nucleus. They are

0 eQ 2 2
=—=—Q@3I'-]
& 21(21-1)( =)
% = 21(;?—1)5[] ety )+ (L 211, )1 (2.16)
;‘2:_8..QL(]_11)2
41(21 -1)

In a principle axis frame of reference where V-

2Pl

Then,

hv 1
H, =TQ[3IZZ—I(I+1)+517(IE_+1_2)} 2.17)
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with, eq = V,, and the asymmetry parameter and vQ.

— Vx" —V»’
=
“ (2.18)
3egeQ
Vp =
2121 1)

The EFG terms Vij are calculated at the nucleus. The electric field gradients may
originate from charges external to the atoms, except there is an additional contribution
to the quadrupole coupling that is due to the distortion of the spherical electronic shell

of the atoms by external charges. The induced field gradient is given by,

Vij = 'YV:; (2.19)

and the total field gradient

vi=[1-v(r)]v; (2.20)

y(r) is called the “sternheimer anti shielding factor” and r is the distance from the

external charge to the nucleus.
2.2.1.4 Hyperfine Interactions

The Hamiltonian for the magnetic interaction of an electron to the nucleus

might be written as
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877 ~ S_R . -F .
Hy = -gg, 1145 _;5(")(‘5"1)'*‘( e 3

(2.21)

h
J , g is a g-factor of

where y5 is a Bohr magneton, 4, is a nuclear magneton (Zm

P

electron, gy is a g-factor of nucleus, and I and S are the spins of the nucleus and
electron respectively. Each term represents Fermi contact, orbital, and dipolar
interaction in order. Each term can be deduced from calculating interactions between

magnetic field due to nuclei and electronic moment in a reference frame of electron ,

ey

Ene ~ ~4,-H, (2.22)

The Fermi contact term is from the expectation value of nuclear magnetic field in a
sphere which enclosing nucleus. Regarding the electronic moment or spin, one

distinguish conduction electrons and core electrons.

2.2.1.5 Indirect Interactions

This type of interaction is smaller in nature and couples nuclei via electron. In
a simple picture, as nucleus induced current in the electron cloud, which then coupled
to the other nucleus. This coupling might be spin dependent . The example of the
former case is RKKY [146] interactions, and the Fridel interaction [147] , which is
due to the scattering of the conduction electron by point defects leading to local

variations of the hyperfine interaction for the latter case.
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2.2.2 NMR Spectrum and Nuclear Spin Lattice Relaxation

NMR spectrum of resonant NMR frequencies, is a finger print of the local
electronic environment of the nucleus, but depends upon the external magnetic field,
which is at the control of the experimenter. The nuclear spin lattice relaxation gives
dynamic information of the interactions to the environments. The intensity or the shape
of the spectrum depend on the nuclear spin lattice relaxation.

The NMR spectrum with only Zeeman splitting due to external field Hy would
be quite narrow. A further interactions alter and/or shift the nuclear energy level, then
gives the characteristic spectrum of the system. The relaxation process could be
described either quantum mechanically or semi classically, depending on the
mechanism of the de-excitation of the nuclear spins by lattice. An appropriate
approximation of the rate process might always be utilized.

For FIC systems, the inherent disorder makes the situation rather complex and
even to be lack of theoretical formulation except some fortunate cases where we still
may use the formalism based on the regular structural. One may study either mobile or

immobile ions in FIC, thus one may apply different formulations for each cases.

2.2.2.1 Classical Description

The most visible description might be solving the classical equation of motion
for nuclear magnetization vector in a static magnetic field ( equivalently solving the
Bloch equation [148], which give the macroscopic definition of the spin-spin and

spin-lattice relaxation time.). The equation (2.8) is not complete to describe the
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motion of the nuclear magnetization, since it does not account for the relaxation. Bloch
et al. assumed that the spin-spin relaxation and spin-lattice relaxation would be treated

as first order process with characteristic time Ty and Tj respectively, such that,
dM,/dt = Mg - M,)/Ty
In the rotating frame, by employing HR as rotating radio frequency,
dMz/dt = -yMyH|+(M, - M,)/T)
dMy/dt = yMyHq - My/T,
dMy/dt = y(M,H] - Myhg) - M,/Ty (2.24)
where hy = Hy + a/y.
Since My and My, must vanish as H; — 0, one sees that Mz differs from Mg to the
order H12 in a steady state. Therefore one replaces M, by My and by introducing M.
= My + iMy,. One finally has,

My(t) = (x' cos(ot) + x" sin(ot)) Hyg (2.25)

where
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w, —a)l,
Z’=%00Tz ( ‘ )22 "
1+(0-,) T (2.26)
" xo 1

where Hyg =2Hj, og =Hp, and X = X' - iX".

The absorption line, X", is a Lorentzian in shape typical to narrow NMR spectrum of
liquid. This absorption line can be obtained by sweeping o(= yH) 6r Hg as is
typically done in a continuous-wave NMR experiment in frequency domain. On the
other hand My(t) can be acquired in a time domain after applying a short duration of
the radio frequency pulse. Such an obtained transient (Free Induction Decay, or FID)
would be Fourier transformed to have NMR spectrum in frequency domain, which was
first demonstrated by Lowe and Norberg in 1957 [149]. The pulse NMR technique is

described in section 3.3 of Chapter III.
2.2.2.2 NMR Spectrum

In solid state NMR, one is interested in both the line shape and position of
NMR. In high resolution NMR, or MAS NMR (magic angle spinning NMR) [150], one
may be mainly interested in the position of the narrow line. The position of line, thus a

shift from Lamor frequency, is accessible through spin Hamiltonian,

H=1-4-S (2.27)
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where, 4 is coupling tensor of the 2nd. rank of interaction between nuclei and its
environment. The S can be a spin of either a nuclei (like or unlike) or an electron. The
diagonalization of the coupling tensor with respect to the eigen states, and the use of
the selection rule for the nuclear transition will suffice to give a resonance
frequencies. Since the equation (2.27) is dealing with the two body interactions, it is
quite an approximation which could be applied only to the narrow enough lines. In a
real systems, such as solids, which involves many body interactions, the line is usually
broadened and shifted by interactions to the surroundings. The main key for the
formulation of the above complex spectrum might be simplification, considering the

nuclear spin, lattice symmetry and the electromagnetic properties of the interactions.
2.2.2.2.1 Dipolar Interaction

Even for the dipolar line shape can not be predicted exactly, and the most basic
being the moment expansion derived by VanVleck [151]. The nth. moment are defined

as,

M, = Tf(a))(w—wo)"dw (2.28)

where f(w) is the normalized line shape. Usually the 2nd. moment is considered and

averaged over all angles for power samples, such that,

(2.29)

MY =2y

S| =
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for like spins I and I, and for unlike spins,

M} = f—syfyihZS(SH)Zk,% (2.30)

rlk,

The simplest approximation for the solid line shape assumes that f(w)ytobea

Gaussian,

f(@) = 1 eXp[— M] | (2.31)
O'\E; 20

where Mj = o) and 1-3-5---(2n- 1)o®" = M,, for the nth. moment. Then the full

width at half maximum intensity, FWHM is given as,

FWHM = 2,/M, -./2log2 (in radians per seconds) (2.32)

which is typically on the order of kHz. The dipolar broadening of the Zeeman level

and the corresponding broadened line is shown in Fig. 2.2.
2.2.2.2.2 Quadrupolar Interaction

The quadrupole interaction described in equation (2.12) is described in the
laboratory coordinate system. The EFG tensor which is the 2nd. rank symmetric,

i

traceless tensor, may be diagonalized. In the EFG principle axis system, Vij =V.8

there are three components, and since the EFG tensor is traceless,
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Fig. 2.2 Broadening of spin = 1/2 Zeeman energy levels by the successive applications

of I = 1/2 dipolar interactions. The line shape of each level is shown at the right,

where Ao, is the intrinsic half width of dipolar spectrum [141].
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Vyx + Vyy + Vy, = V2V =0 (2.33)
only two of these are independent. These are usually chosen as,

Vyz=eq and 7n=(_ -V, )/V, (2.34)

where 1 is called the asymmetry parameter and is a measure of the departure of the

EFG from axial symmetry. The principle axis are usually chosen so that

IV| ZlVW|Z|I/'_.:|, then 0 <1 < 1. With these definitions the Hamiltonian becomes,

LINY

=l p (i s = 22 o

° T ar@r-nle o 1T el =)

(2.35)
3e*qQ

h SR
Y TCY

which is the lowest pure quadrupolar energy when n=0.

When the quadrupolar energy is considerably weaker than the Zeeman energy, the first

order perturbation treatment is adequate, such that,

hv, ,
E = -hv0m+(m|Hle> = —hvyn+ ™ [3771' ~-I(I+ 1)]@ (2.36)

where © = 3 cos* -1+ 77cos 2;0(cos2 é- l).The transitions for I=3/2is,
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Vo
Vanen = Vo _76
Nie-12 = Yo (2.37)
Vv,
_ Q
Vine-s2 = Vo +—0

2

v,
Therefore the satellite peak are at v, i—z—g and shoulder are at v, v,  whichis

shown in Fig. 2.3 (A) and (B), with the dipolar broadened powder spectrum.

The 2nd. order quadrupole interaction, the single crystal energy levels for the

axially symmetric case (77=0) are,

E,=-hvyn+ f ;Q [3)712 -I(I+ l)][3 T ]]
_ /72V:Qo m(l - ,u!){,u?[] 8I(7 +1)~-34m’ - 5] _ [2](] +1)=2n7* - 1]}

(2.38)

where u=cosé. The transitions are

Yo (a2 I
Wm e m-1)=v, +—29-(3,u' _1)(”1—5)

2
th

32y,
~[21(7 +1)-2m* -1

(l - ,uz){,u2 [lOZm(m —1)=181(I +1) - 34m>* - 5]

(2.39)
The 2nd order term produces a splitting of the central traﬁsition, and the separation

between two maximums are given by,
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Fig. 2.3 (A) Energy level diagram for I = 3/2, (B) First order quadrupole spectrum,

1%
where the satellites are at v, i—Z—Q, (C) 2nd order quadrupole spectrum, where the

. - L . 25 v,
separation Av=v —Vv" are given in equation (2.40), and for I = 3/2, Ay=">-2

8 v,
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2

o Vo 34 _i 3
Av=v' -y ~{V°+16 [7(Z+1) 4]} {Vo 5 l:]([+l) 4]}

VO 0

(2.40)

for I =3/2,
_25Y
48 v,

Ay (2.41)

The power pattern for split central line due to the 2nd order quadrupole interaction are

shown in Fig. 2.3(C) .
2.2.2.2.3 Hyperfine Interaction

Another important interactions in NMR is the magnetic interaction due té electron
.Though FIC is usually an insulator with some exceptions of mixed electronic and ionic
conductor, it is worth to consider this type of interaction.

The electrons could be in localized state or extended state or itinerant state.
The 4 - f electrons in rare earth metal is localized on the ions to form a large magnetic
moment. Such an unwan’éed substance in FIC would be a paramagnetic impurity, which
affect the NSLR more or less. For 3d - electrons the local moments do not correspond
to the extended or localized behavior. Due to this special combination of
circumstances, the conduction electrons, called itinerant which form a collective state
characterized by a periodically varying spin density (called spin density wave, SDW),

with a wavelength that is incommensurate with the lattice spacing.
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By confining the discussions to conduction electrons and unpaired (localized)

electrons, equation (2.22) can be rewritten as,

where Heff is the effective field produced by the electrons at the nucleus. They are
conduction electron field, local field, transferred hyperfine field, and core field. Here
the term 'local field' has narrow meaning such that it is due to the unpaired electrons
on the other atoms or ions.

In diamagnetic materials, the first order effect of the electron-nucleus coupling
vanishes due to the quenching of the orbital momentum apd the zero value of the total
spins. However, the applied field Hg polarizes the electron clouds, which in turn
produce a magnetic field at the nucleus proportional to H, The total field the nucleus

see can be described by ,

H=H,(1-3) (2.43)

where 1 is the unit 3x3 matrix, and & is the 3x3, shielding tensor or chemical shift
tensor. The principal values of chemical shift tensor can be related to the micro -
structure and chemical bonding in a glass.

In metals, nucleus couples to the conduction electrons which is Aescribed by the
Bloch wave function. Therefore each nuclear spin sees simultaneously the magnetic
field produced by all the conduction electrons. These internal fields cause line shift,
known as Knight shift [152], In the one electron approximation, the expression for

Knight shift can be written as
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K=2up [th (S)Ns(Ef) +Hy [@)N, (Ef)]

: j
+ H, (0)y
(NAtuB hf() ’

(2.44)

where 4, is the Bohr magneton, Ny is Avogadro's number, and Ng and Ny are s- and
d-band density of states at the Fermi level respectively. Hyg(s), Hpe(d) and Hp(0) are
the relevant hyperfine fields per electron at the nuclei, and arise from the following

mechanisms: the Fermi-contact interaction [139,140] with unpaired s- electrons; core -

polarization of the spin - paired s - orbitals due to d - electrons; d-electron orbital

interactions. x, is an orbital VanVleck susceptibility

2.2.2.3 Nuclear Spin Lattice Relaxation

As was defined macroscopically in the Bloch equation (2.24). the nuclear
relaxation process involves two process of approaching to the equilibrium, following
the rf excitation: a spin-spin relaxation time T, a characteristic time of approaching
to the equilibrium in spin system, and a spin-lattice relaxation time Ti, a
characteristic time of approaching to the equilibrium in the whole spin-lattice system.
The Ty process does not involve any energy exchange with lattice, rather it is due to
the dephasing of spins resulting from individual nuclei interacting with slightly
different internal fields. Since the internal fields also determine the width of the NMR

spectrum, a general relation holds between line width and spin - spin relaxation time

as,

Ty = (80))’1 for Lorentzian line shape (2.45)
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Ty = (\/ln 2 /7r)/5a) for Gaussian line shape (2.46)

where 8o is half width at half intensity of spectrum.
The microscopic relaxation of the nuclear spin system could be expressed in a

simple form as,
R =17 =EXf(r) (2.47)

where R} is NSLR and Ec is coupling energy between nuclear spin and surroundings.
The surroundings would be the other nuclear spin or heat reservoir, so called a lattice.
A small perturbing rf would excite the nuclear spin which in turn excite the lattice by
transferring energy to the lattice, while de-exciting it-self. The excitation and de-
excitation of nuclear spin is purely quantum mechanical in nature, though the one of
lattice could be described as either quantum mechanically or semi classically.

In FIC-system if one consider FIC as a simple insulator, then the NSLR of the
immobile-ion of insulator could be due to quasi particle excitation such as phonons.
The NSLR of the diffusing mobile-ion would be due to the semi classical excitation
due to the motion, so called a motional relaxation. Motion with spectral components
near o( can thereby induce transitions between the spin energy. With the exception of
some favorable cases, the description of the motion of the lattice would be in the
frame work of a classical picture, by using the idea of the random motions or

stochastic fluctuations which modulates nuclear spin-lattice interactions. For a system

undergoing random fluctuations, the microscopic dynamics can de described only by

means of the correlation function of the atomic positions or its Fourier transform,
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giving the spectralization of the random motion. Such a microscopic formulation of
nuclear spin relaxation would require some approximations in practice, such as a high
temperature approximation which assume the infinite specific heat of the lattice to
form an ideal heat reservoir. Another important approximation is spin temperature
approximation, when Ty << T1, as usually in the solid NMR. In most cases, the
density matrix formulation applied, and is a completely general method for the systems
in which the lattice is described classically and the resonance width is substantially
narrowed by the motion of nuclei which is treated in the following section.

A general approach relating to the relaxation rates to the spectral densities of
the motions which is modulating the various lattice functions is the ' weak collision

theory' [153], where additional interaction to the Zeeman level and rf excitation are

treated as time dependent perturbations causing transitions between the stationary

energy levels of the spin system. Therefore the Hamiltonian of the spin and the lattice

system can be written as ,

H = Hg + Hq (t) + HL (2.48)
where s and L stands for spin and lattice respectively. The assumption is made that
the correlation time is much less than the relaxation time so that many elementary

processes of fluctuations are required to relax the nuclear magnetization, in particular,

AV (2.49)

Through 2 lengthy quantum-mechanical calculation [143], which we omit here,

it can be shown that
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1 1 K .
fzn?ﬁﬁﬁkﬁdpwawiquHﬁ (2.50)

where the bar represents the average over a thermal equilibrium ensemble, and HsL* is

the operator associated with HSL in the Heisenberg representation and given by
H:L (l) — ei(H, +H, )HhHsLe-i(H: <H, tih (2.5 1)

One could now specify the spin-lattice coupling HsL for dipolar, quadrupolar, or

interaction to the electrons.

2.2.2.3.1 Dipolar Relaxation

The dipolar Hamiltonian in equation (2.10) can be written as

2
H,=Y FqAq (2.52)

g=-2

where

1-—cos®> @
() _
=— Am=aP§4g+aﬁa+L&ﬂ

70 _ sin @ cos 6 exp(—ig)

r3

(2) _ sin’ @exp(-2ig) A® = %oerS+

r3

3
a=—§ v and F(-q) = F(q)*, A(-q) = A(q)+ 2.53)

F

AV =of1.S, +1,8,]

F
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Since the time dependence enters only through the inter-nuclear vector and not through

the spin operators, the time dependence of the interaction is then expressed through the

correlation function

690 = X (FPOFE 1) @59

where the sum is over all spins and <...> means ensemble average. A more useful

quantity is the Fourier transform of G(@)(t)

J ) (w) = IG(")(Z) exp(—iat)dt (2.55)

On the assumption, and usually is the case, that the dipolar interaction is sufficiently

weak to apply the perturbation theory , the results for like spins are given as [143],

= % y I + 1)[J(')(a>o) +J0) (2a>0)]

N|-

= %y“hz](] +1)[J(°)(O) - IOJ(')(w0)+J(2)(2a)0)] (2.56)

i.\ll,_. 3=

= %y“hz](l + 1)[J(°) (2w,)+10J0(a, )+ J(z)(Zcoo)]
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The terms with o result from single spin flips caused by C and D term of Hy
(equation 2.11) : terms with 20 come from flips of both spins via term E and F; the
terms with J(O)(O) derives from the flip-flop term B of Hy.

2.2.2.3.2 Quadrupolar Relaxation

If the quadrupolar interaction can be considered as a weak perturbation on the Zeeman
interaction, the associated spin relaxation rates due to the quadrupolar coupling may

expressed in terms of the same spectral density functions as in the dipolar case.

1 2
T = 56oz[J(')(cuo)+4J(2)(2a10)]

1 3 ]
== a[3J(°>(o) +570(w,) +2J(2)(2a>0)] (2.57)

2
1 3
=223/ (20,) +5/%(2,) +2/7 20,)|

where the constant a is defined by

a = (z'e’qQ/n) (21 +3)/[1*(21 - 1)] (2.58)

where z' is the effective charge. Except for the above case the relaxation becomes very
complex, leading to multi-exponential recovery of the nuclear magnetization due to non
equivalent energy level spacing due to considerable quadrupolar modification of the
Zeeman level. To see this effect, one can consider a rate equation for the populations

of each energy level which is unequally spaced due to quadrupolar interaction. This

rate equation is called as master equation.
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D NRO A (2.59)

To go further, one must assume a form for Wij by postulating a relaxation mechanism
or combination of relaxation mechanism. One can simply divide the relaxation
mechanism as one with magnetic origin (e.g. magnetic dipolar) and one with electric
origin (e.g. quadrupolar). The transition of the adjacent level (Am ==1) is allowed for
the magnetic transition whereby electric transition is allowed for Am=+1,+2. By
solving the master equation [154] which is omitted here one have the "recovery law"
for the nuclear magnetization. For I = 3/2 with saturating only the central line (1/2¢>-
1/2) with two distinct initial conditions : (a) t << T1, (b) t >> T1, where t is the

duration of the rf irradiation. Then for each conditions one have,

a,, = 0.5 +0.5¢72"

Wz -2t n] —2W5t
a. = { ———=— ! o (—— 2
1z (VK+VI/2)e (W,+Wz)e

]

(2.60)

for the NSLR due to electric interaction where W and W corresponds to the
transition Am = *1,%2 respectively and aj/p is normalized nuclear magnetization. For

the NSLR due to magnetic interaction,

a,, = 0.1 10.9¢ 12t

2.61
a,, = 0.4 +0.6¢72"! (2-61)

The single exponential recovery of nuclear magnetization can be obtained if one

saturates whole spectrum for the magnetic interaction, then
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=€ (2.62)
For the electric interaction, single exponential recovery is obtained when one saturates
the superimposed central line and satellites and have condition of W} = W5 = W, then

a

. 2SGH AW -2
1 =€ T =e (2.63)

otherwise (if satellites are out, but one can saturate only the central lfne),

-2

a,, =2e e (2.64)
On the above, one should aware that the static part of the quadrupolar interaction
cause the unequally spaced energy level and dynamic part of the interaction cause the

population change among the levels.

2.2.2.3.3 Electronic Relaxation

Electronic contribution to NSLR can be approached by the concept of the
generalized susceptibility [155] regardless of the state of the electrons, e.g. extended,
itinerant or localized. For electrons in extended states, within the free electron
approximation and assuming that only s- and d- orbitals contribute to the hyperfine

. interaction, the conduction electron contribution to the NSLR, Tlelis given by [156],
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rva 4mnyK {[H w ()N, (EF)]2 +[H,,f (@)N, (EF)]zq +[H,,f (o), (.E,..)]2 p} (2.65)

where Ng (Ef) and Ny (EF) are the s - and d - band densities of states at Fermi level
respectively, and p and q are constants determined by the nature of electron states at
the Fermi level. Hp#(s) is due to the Fermi - contact interaction with unpaired s-
electrons at Eg, Hp£(d) is the core polarization hyperfine field of paired s - orbitals

due to the unpaired d-electron at Eg, and Hpf(0) is the d - electron orbital interaction.

The expression can be greatly simplified to

T
— =R =— 2.66

where the "Korringa constant" K depends on both |l//(0)12 and N(EF)Z. Korringa [157]

first discovered a useful relation between the Knight shift and the relaxation rate

caused by contact and core polarization contributions,

(AvIVY' LT =(y . 1y,) Shi(47K,) (2.67)
where g, is the electron gyro magnetic ratio and S depends on the electronic structure.

2.2.2.3.4 Relaxation due to Paramagnetic Impurities

Electron spins of paramagnetic impurities create large fluctuating magnetic
fields by continually flip - flopping between spin states. If the fluctuating fields have

spectral components near the Lamor frequency, they can relax nearby spins, which can
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in turn relax other spins in the sample via spin diffusion at low temperature. At higher
temperature atomic diffusion will allow direct coupling between all the moving nuclei
and the impurities. The result is a relaxation rate with a rather complex temperature
dependence. The two most prominent features are : low temperature relaxation rates
which do not go through the origin and have a slight frequency dependence, and
relaxation maximums which can occur at various temperatures. The best way to deal
with this usually unwanted relaxation process is sometimes simply to get very pure
material. The related concepts of spin temperature and spin diffusion are useful in

many NMR analysis. The spin temperature qg can be defined via

P
- exp (B ~ En) /K0 (2.68)

m

where Py is the occupation probability of a spin state with energy E,.. The concept of
a temperature is valid only when the state of the entire system is described through the
occupation probabilities alone (i.e., when off-diagonal elements of the density matrix
vanish). When Ty << T, the concept is most usefulh in certain experiments in solids,
where different spin temperatures can be assigned to different frames of reference.
The most useful definition of the spin temperature for these purposes is found by

simply inverting equation (2.2) to define the temperature qg

212
g o L _NPRIT+Y

$=3 XM (2.69)

spin lattice relaxation rates then represent the return of the spin temperature to
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the equilibrium lattice temperature. Energy can be exchanged via mutual spin

flips induced by the flip-flop term of the dipolar interaction which will eventually

results in a uniform spin temperature. It was shown by Bloembergen [158] that
the process does indeed follow a diffusion equation (Fick's law) with Dgpin =
a2/50T2, where a is the lattice parameter. Spin diffusion coefficients are usually

rather small, on the order of 10-13 cm?2/sec.
2.2.3 BPP and Beyond

In order to gain information about particle motion from nuclear relaxation rates
some model that relates G(Q)(t) to particle hopping time must be employed. A nearly

exact expression for polycrystalline samples is [159]

G(1) = b, > F(c0s b.)

Ar 3 r:r;

P(ra,rﬁ,t) (2.70)

where the bq are constants, Py is a Legendre polynomial, and P(rg, I, t) is the
probability of a pair of spins being separated by g at time t given that they were
separated by ry at time zero. The most common approximation of G(@)(t), originally

employed by Bloembergen, Purcell, and Pound (BPP) [94], uses only the first term in

equation (2.69). Corresponding correlation function is taken to be

G (t) =G (O)e-llllfe .71
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where 1. is called correlation time which is characteristic of random motion. Fourier

transform readily yields the BPP spectral densities

J9%) = G9(0 _ 2%
(@)= 60

- (2.72)
G(")(O) = i J' J(q)(m)dw

—~0

Relaxation rate predicted by the BPP approximation for hopping with a single
activation energy at high temperature, is independent of @ but proportional to 7,
while at low temperatures R} « l/('cccooz). Slope of the high and low temperature in
log(R) vs. 1000/T curves are proportional to the activation energy. The maximum of
R is proportional to My/w( and occurs when w1, = 1. The relaxation rates in many
systems do not show the predicted behavior of BPP. The most common deviation are
low temperature relaxation rates with frequency dependence Ry « 1/0S, where s < 2,
and asymmetric log(R|) vs. 1000/T curves that predict higher activation energies at
high temperatures. When this behavior is not ascribed to a distribution of hopping
rates different ad-hoc correlation functions [160] are often used to fit the data. One

such function is the "sfrefched exponential" introduced in section 1.2.3..

2.2.3.1 Beyond BPP

The inherent disorder in the glassy material enables one to have common

treatment of relaxation rate. The introduction of the distribution of hopping times r(t)

which produces the measured Ry via
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R, = [dzp(r)R,(7) (2.73)

where R (t) is the relaxation of spin at a given site with dwell time t. Probably
convincing support for the use of equation (2.72) has come from computer simulation
[161] with distributions of both site and saddle point energies.

Probably the better way to describe the distribution of hopping time which has
better connection to the physics of disorder, is the scheme of the distribution of

activation energies. The resulting Ry is given by
R, = JdE,g(E, )R (B, 2(E,)) (2.74)

where g(Ea) is a temperature independent normalized distribution of activation energy.
A distribution of activation energies can be directly connected to the disordered
structure, and produces many of the same features of R vs. 1000/T plots not only in
the glass but also in systems that do not follow normal NMR spectral densities. The
weakness of the distribution of Ea is that it assumes temperature independent
distribution which may not always be true. The formalism also may ignores the
possible correlation effect among mobile species. Still the formalism of distribution of
activation energy seems to provide more information about disordered system. The
stretched exponential correlation function is also widely used, although the physical

significance of the derived correlation time is not readily apparent.

2.2.3.2 NSLR in Glass
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The simple extension of BPP with a distribution of activation energy is a
rewriting the BPP expression of NSLR into the form of equation (2.74) and is treated
in the section 3.4.3, although it is the main approach used in this work. In this section
more general background of NMR in glass are discussed.

NMR in disordered material poses some difficulties both in theoretical approach
and in interpretation of raw data of NSLR (e.g., recovery of nuclear magnetization to
the equilibrium following the excitation). Therefore one has to have a correct way to
interpret measured NSLR data, before inquiring the cause of the non exponential
behavior of the relaxation in the disordered system. The more fundamental issue are
asking why the glass show much faster NSLR than the crystalline phase of the same
stoichiometry.

The 7Li-NSLR of glassy material as in this work, has a merit that it shows
exponential recovery of nuclear magnetization M,, in the pulsed NMR experiment.
Therefore the recovery of the nuclear magnetization could be interpreted to have NSLR
without any considerable ambiguity. On the other hand almost all the other nuclei
(e.g. 23Na, 11B) in glass shows non exponential and/or multi exponential recovery of
M,.[162]. The reason why 7Li-NSLR shows exponential recovery is explained by G.
B. Jollenbeck et al. [162]: The nuclear quadrupole moments of 7i_.i is small and de
tuning of the nuclear energy levels via static quadrupole distortions which quenches
the transport of spin temperature does not occur. Hence, common spin temperature is
established in a very short times.

Since the glass net work (NWF) can be modified by alkali (NWM) which
provide the mobile alkali ion, one tempt to distinguish the NSLR of mobile ion passing
through the host net work and NSLR of immobile ion which belongs to the host net

work. When the mobile ion is in motion (at elevated temperature), the first issue of
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NSLR is the existence of NSLR maximum due to the motional relaxation. This should
be satisfied when the correlation time of the motion is about the magnitude of the
inverse of the Lamor frequency of the probing nuclei. Even though there is a
distribution of correlation times due to disorder, the condition is satisfied by the most
probable correlation time. The motional maximum of NSLR which is naturally
expected for the mobile ion, could be expected for the immobile ion. This is because
the main interaction between nuclei of the immobile ion and the lattice could be
modulated by the mobile ion motion or at least it should be affected. In the former
case the NSLR maximum of both mobile and immobile ion should occur around the
same temperature or up to the activation energy of motion due to the interaction to the
mobile ion. M. Rubinstein et al [163], G. B. Jollenbeck et al. [162], A. Avogadro et
al.[164], and O. Kanert et al [165] reported the NSLR maximum of !IB-NSLR in a-
B,03 at elevated temperature ( ~ 300 K), whereas J. Szeftel and H. Alloul [166,167]
did not report it in the same material.

The next issue is the mechanism of NSLR e.g., at low temperature, where the
mobile ion is practically frozen (below ~ 100 K)and the NSLR of both mobile and
immobile ion may be treated in the same work frame. The classical motional
relaxation is no more dominant and even be absent. In NSLR measurement of the glass,
one is observing practically NSLR of an insulator in which relaxation mechanism

would be a relaxation due to phonon. Though the observed NSLR in glass seems to

show the power law behavior (R ~ T5) similar to the phonon relaxation in the ordered
system, the observed rather weak field dependence in the glass would require NSLR
mechanism specific to disordered system.

The phenomenological two level system (TLS) was introduced to explain NSLR

mechanism in glass; for the magnitude and dependence on field (or Lamor frequency)
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and temperature. Although TLS itself is a matter of a continuing debate, NSLR due to
TLS is known to explain why glass has much faster NSLR than crystalline phase of the
same stoichiometry, as well as the dependence on temperature and field. Therefore
NSLR mechanism of nuclear spin flip process to be due to the localized low energy
excitations of disordered mode (TLS) intrinsic to the glass is most widely accepted
[162].

The model for TLS was taken to be an asymmetric double well potential
(ADWP) with a broad distribution of the barrier height, V, between wells, g(V) and of
their energy difference A, P(A). Then the derived equation for NSLR is [165],

max 2
Los[*™ar | a P(8)e7) 4
T s cosh’(A/2K,T) 1+ w?e7?

(2.75)
where, & is the strength of TLS-nucleus coupling and A,y and V44 are the
maximum energy difference and maximum barrier height. Below 1K, tunneling process

occur and above 1K excitations are assumed to be thermally activated, therefore

[165],

©(AV,T)=7,sech(A/2K,T)exp(V / K, T) (2.76)

The NSLR above Tg is also reported by Marco Villa et al. [168] where the
mechanism is described as: (1) field independent region just above Tg( ~ Tg + 50 K)
where defect motion (10-8 < ¢ defect < 10710) enhance the NSLR and o t defect <<

1 practically gives no field dependence (2) field dependent region ( ~ Tg + 100 K)

suggest the contribution of mainly re orientation motion of the tetrahedra (e.g., BO4)
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2.3 Model for Ionic Conduction

2.3.1 Free Ion Type Model

True dc-conductivity can not be observed due to the accumulation of ionic
charge on the electrodes. However, at very low frequency the conductivity becomes
frequency independent (dc plateau) and one can assume the value at the plateau as the
dc conductivity with the following discussions..

In FIC dc conductivity is dominated by the long range drift of the light cations
which move by thermally activated hops over energy barriers. By assuming that the

ions are almost free, one can use the Drude - model to describe the conductivity.
Cdc = (Ze)np (2.81)

where Ze is the charge of the carrier. If one can increase the mobility m, or the charge
density n, the dc-conductivity should be improved. Such an effort has been done
extensively on glassy-FIC. The mobility of the ions, p, can be expressed in terms of
the diffusion constant D by the Nernst - Einstein relation [170]. In a random walk
description of the activated hopping motion over the energy ba;rrier Ea the diffusion
constant can be expressed in terms of the jump distance A and the jump frequency v as

D =a A2v where the jump frequency v is assumed to be thermally activated. One has,

J =cE
= (Ze)npE
= (Ze)nD(Ze)/kgTE
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{(Ze)2navA2/kgT}E

(Zez)nakzvo
~—>———exp(-Ea/kgT)E (2.82)
kg T

As seen on the above formulation, free ion type model exploits the relaxation
time approximation and the assumptions of quasi free, and independent charge carrier.
Thus, equation (2.81) would have to be modified to describe the conductivity in glassy
FIC to include effects due to disorder and possible correlation arr;ong ions.

The connection between the contribution of the mobile ions and the one of the
polarizable host lattice has been explored through an empirical relation, so called

"BNN relation" after Barton, Nakajima and Namikawa [48,49],

0(0) = pAgs,w , (2.83)

where oy, is the frequency of the dielectric loss peak. P is a constant of proportionality

close to the unity and Ag is the dielectric strength, Ag = 8(0) —~ &,. It was observed

that @, shows Arrhenius behavior vs. temperature with the same activation energy as

for dc conductivity. The validity of the relation (2.83) gives some experimental

evidence that the mechanism of ac-conductivity is not different from the mechanism of
the dc conductivity. The BNN relation has been interpreted such that P is the ratio of
average drift velocity of the current charge to average accumulation velocity of bound

charge [11].
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At this point, it is worth while to list the general features of the ac conduction
in glassy-FIC, which can not be understood on the basis of the simple models discussed

above:

i) o'(w) ~wS, with0 <s <1
where s may frequency’or temperature dependent which apparently approach
to the unity at low temperature and high frequency. As s approaches unity at
low temperature, the ac conductivity becomes practically independent of the
temperature.

i1) Gradual transition to a frequency- independent conductivity at @y, the
frequency-independent conductivity being defined as o4 Whenever dc
conductivity is measurable there is always a dielectric loss peak, when there
is no o4, measurable, s seems to approach to unity.

iii) @, and o(0) are usually Arrhenius with the same activation energy.

2.3.2 Hopping Model

2.3.2.1 Hopping Models in Disordered System

As was seen in the previous section, the free-ion type model which adopt Drude
type expression and thermally activated hopping motion of ionic charges is too

simplified. A number of models have been proposed which try to incorporate effects

due to disorder and correlation in the ionic motion. All the above models rely on the

basic assumption that ions move through the lattice by thermally activated hops.

Therefore we should first review the approximations involved in a hopping model; the
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frame of the immobile structure (either ordered or disordered ) sho{ﬂd be sufficiently
open to insure an abundance of physically interconnected and accessible sites and
unhindered movement of ions through relatively large windows connecting these sites.
The glass, due to its inherent disorder and open structure appears to satisfy this
condition and even the lack of interconnection of available sites the percolation effect
may enable the conduction. The fundamental parameter in hopping motion is the
probability of the individual hopping which is used to formulate appropriate master

equations for the hopping rate. In the simplest approach the individual hopping

probability is assumed to be time independent and the sequence of hops is assumed to
be a Markovian process. In a realistic formulation of a hopping model in glassy FIC,

one should take into account the following effects on the hopping rate :

i) The inherent disorder in glassy material

ii) The interactions among mobile ions, e.g., coulomb interaction

iii) Forward and backward hopping sequence which may introduce correlation
affecting the hopping rate, giving rise to effect sometimes called 'bounce

back effect' and 'caterpillar mechanism'

In order to incorporate the effects listed above, several models have been
proposed. The one adopted by us [54 - 57] includes the effect of disorder by allowing
for a distribution of activation energies and consequently a distribution of exponential
correlation functions with different correlation times (in homogeneous correlation
function ). The coupling model, introduced by Ngai [104], includes mostly correlation
effects by means of a phenomenological model whereby the hopping probability is

assumed to be time dependent leading to a non exponential single homogeneous
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correlation function. The diffusion controlled model, introduced by Elliot [185 - 187]

and the jump relaxation model introduced by Funke [172] deal mostly with the "bounce

back effect” and " caterpillar mechanism".

2.3.2.2 Simple Hopping Model

The ionic motion can be considered to consist of vibrations about local
equilibria with occasional hopping from one equilibrium configuration to another. A
simple example of hopping ion is one in which a mobile ion in FIC moves from one
site to another, but the remaining ionic configurations remains unchanged. Therefore
one has a simple picture shown in Fig. 2.4.

Considering site i, the potential difference and local electric field due to the

applied electric potential V is given by

(2.84)

Fig. 2.4 Consider a sample of length | and area of cross section S which is loaded by

voltage V. Let Ei be the activation energy required for hopping at site i.
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where E is the electric field acting on site i. The electric current through the cross

section of area S can be written as

J. =

1

%-(v+ -v_) (2.85)

where ny. and n. denote the hopping rates of incoming and outgoing charge carrier
through the area S respectively and N is the number of ions on the surface S. The
barrier height that a charge carrier at site i has to overcome the activation energy Ei

?

plus or minus the extra barrier due to the applied voltage.

( eAVi\
= tp| —Ei /k T)- 1+
vy =V, exp( i1k \ kBT)
g \ (2.86)
( eAVi
v_ =v,expl-Ei/k T)- 1-
0
B \ kgT/

where we have expanded the exponential function for V; << kgT. The equation (2.85)

and (2.86) then give

Ne E. ZeAVi
1. =?voexp -

1
kBT k

(2.87)

BT

Let n be a number of carrier per unit area, n = N/S. Using equation (2.84), one finally

J —nezdz ( —i) AE (2.88)
.= -V, exp| — -AE. .
i T 0 T i
kB kB

has,
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Therefore , by counting the six possible directions in space (i.e., T = (6v)'1)

conductivity is given by

nezd2 ne:zd2

= L=
kBT'c 6kBT'c

c (2.89)

which is identical with the result of the almost free - ion model ( see equation 2.81 or

equation 1.4),

2.3.2.3 Hopping Model with Distribution of Hopping Frequencies

and Percolation Scheme

Starting from equation (2.89) one can introduce modifications into the simple
hopping model. If there is a distribution of energy barriers then the total current can be
calculated by averaging the current due to ion i (equation 2.88) over the distribution of
ions having different hopping frequencies. This implies the assumption of a random

diffusion and no correlation effects nor "bounce back effects" , one has

2

-1
_ _pnet |2 E;
J=3RJ; = P T(d >av<roexp[k TJ> E (2.90)

B B

where P is the percolation fraction defined as:

_ fome Z(E)dE

2.91
foZ(E)dE @20
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and Z(E) is the distribution of probabilities to find the activation energy E. The idea
behind the model is the following: in order to have dc conductivity one has to assume
that there are a fraction of ions which can move from one end to the other of the
sample ( or at least to move over a macroscopic distances). The lowest barriers will
allow ions to drift faster. If one has a distribution of barriers corresponding to the
different lattice sites there will be a minimum number of barriers, i.e., the ones from
zero up to Emax, which allow for the ions to "percolate" through the sample without
having to go over barriers higher than Emax. The fraction of barriers from zero to
Emax with respect to the total number, defines the percolation factor P (see equation
3.27).

The factor P should depend on the lattice structure. For our glassy FIC we take
P to be adjustable parameter since the fraction of barriers, and therefore the fraction
of ions which give rise to percolation determined a lot on the short and intermediate
range order of the glass. There are occasional hops over barriers higher than Emax
but these should not be important for dc conductivity, since the ions can percolate
around these barriers. The average hop length of the ions in the direction of the field
is <d2>ave=d2/6 and average correlation time v,y is calculated using the distribution

of barriers up to the cut off Ep,4:

2.2

o (0,1) = phed 1 (2.92)

6kBT Tay

with

Z(E
Tay = Jom> iv-—(—ldE (2.93)
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being the average time between jumps in the direction of the electric field.

2.3.2.4 Other Hopping Models; The Coupling Model

There are a number of microscopic models which go beyond the simple hopping
model and incorporate effects due to correlation among hopping ions. Besides the
diffusion controlled model [185 - 187] and the jump relaxation model [172] already
cited. We quote the effective medium approximation [177], the continuous time
approximation [181] and the extended pair approximation [182]. Although these
models are elegant and sophisticated, they do not lead to simple general formulas
which can be easily tested with both NMR and conductivity results and will therefore
not be considered here. On the other hand, a special attention is devoted below to the
semi phenomenological coupling model since it leads to some simple predictions which
can be tested on the basis of our experimental results. The main assumption and
predictions are listed below.

The model based on time dependent relaxation rate which is constant if there is

no correlation effect. Therefore the rate is actually constant in a very short time

defined as t; after which the correlation effect comes in:

_ E
W) =Wy =7 = veq oxp| —— 0t < 1 (2.94)
kgT

W) =Wy(oet) 0,1 > 1 (2.95)

W(t)o(t) = dp / at (2.96)
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where constant relaxation rate, W, o« m-1/2 and ¢(t) is the correlation function. The

correlation function is given by

o) = exp(_ _’_J 0eT< 1

p
¢(t) = exp —(L*j 0T > 1

where t* is given by

1

*
t =t5exp| —=|=|[(1-n)o" 7 |I-n
0 (kBTJ ( ) cc

where 1. = 14 exp(Ea/kgT), and the B is related to n by,

Thus n in equation (2.99) and (2.100) is measure of ion - ion correlation.

(2.97)

(2.98)

(2.99)

(2.100)

The most important predictions is about the microscopic activation energy

which is given by [188],

¥ *
B nprEa jpr = PoBa = Ea

(2.101)

The above prediction should be tested for various glass systems and compositions.
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CHAPTER III. EXPERIMENTAL DETAILS

3.1 Sample Preparation

The sulfide glass samples are made in a two step process. The first is the
preparation of the vitreous net work former (GeSy and B9S3), and the second is the
binary ( or ternary) preparation. The binary preparation is done by reacting net work
modifier to net work former. The ternary is prepared by adding salt dopant to prepared
binary, which dopant addition is known to increase the ionic conductivity. Mixture of
several net work former can be prepared as well as mixture of several net work
modifier which is not considered here. In this work, we avoid using commercially

available BpS3 and GeS», but these are prepared from the high purity raw materials.

3.1.1 Lithium Thio germanate Glasses

High purity v-GeSy were synthesized from Ge metal (3N, Cerac) and sulfur
(5N, Cerac) using a solid state reaction. Since the materials used in this study are air-
and moisture- sensitive, a glove box ( <1 ppm HpO and O5) was used for all handling
of glasses and starting materials. An initial charge of Ge metal and sulfur powder was
inserted into a previously dried quartz tube.

The tube was sealed with a stopcock assembly, removed from the glove box,
and evacuated through a liquid Ny trap and then sealed with a gas torch. The tube was
heated to 1000 OC for 12 hours in a furnace, and then quenched to room temperature.
When the v-GeS) was removed from the tube, it consisted of a homogenous transparent

yellow rod. xLipS + (1-x)GeS, glasses in the 0.35 < x < 0.55 were prepared by
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weighing appropriate amounts of v-GeSy (prepared as described above) and LiS
(Cerac, 3N), mixing together and melted in a vitreous carbon crucible using a muffle
furnace (Thermolyne) inside the glove box. Furnace temperature was 850 °C and
weight loss due to evaporation of the melts was below 3 wt % when the melting time is
kept low. Finally, the melts were quenched into pre-heated stainless (~ 150 °C) steel
molds. The last step of the preparation is the vacuum sealing the powdered sample in
quartz tube for NMR measurement, and sputtering the disk shape molded sample with
gold for conductivity measurement. All the process requires extreme care in the glove

box, i.e., the possible magnetic impurity was carefully avoided for NMR samples.
3.1.2 Lithium Thioborate Glasses

The starting materials were reagent grade powers of LiS (Cerac, 99.9%) and
prepared B5S3 of high purity. Appropriate amounts of the reactants are weighed and
thoroughly mixed in a glove box. The mixture was transferred to a covered vitreous
carbon crucible and melted in an electric furnace at about 900 °C depending on
composition. Melting times of 5 - 10 minutes were adequate to obtain clear melts.
These melts were quenched between two stainless steel blocks. The binary mixtures
were homogenized by swirling of the crucible, and also by quenching, breaking up and
re melting.

Commercially available BS3 is gene.rally of very low purity with high
contamination due to oxygen and water. Preparation of high purity B,S3 has been
much researched by D. Bloyer[118] at Iowa State University, whose method was used

to prepare the sulfide glass samples.
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3.2 Conductivity Measurement by Impedance Spectroscopy

Impedance Spectroscopy (IS) is a relatively new and powerful method of
characterizing many of the electrical properties of materials and their interfaces with

electronically conducting electrodes. The general approach is to apply an electrical

stimulus of a known voltage or current to the electrodes and observe the responds of
the resulting current or voltage. The stimulus can be in the form of a continuous or a
pulsed sinusoidal function , therefore the observation can be done in the frequency
domain and in the time domain. Different methods have their own advantage and
disadvantage. Since the applied voltage is much smaller than the thermal voltage V(T)
( = kpT/e), the measurement reveals the electrical properties of the sample to an
excellent approximation.

In this work, the measurement of complex impedance at constant temperature is
done by applying a sinusoidal voltage to the specimen and measuring the magnitude
and phase angle of the current through the specimen. The four terminal method was
used to measure the input voltage and the output current of the specimen as shown in
Fig. 3.1. The measurement of the output current has instrumental limitation. In

———
present work, the Solatron 1260 Impedance Gain-Phase Analyzer (Schlumberger
Instruments) was used, which performance is summarized below.

e resistance: 1 Qto 100 MQ

e capacitance: 1 pF to 1 mF
o frequency: up to 32 MHz ( 50K frequencies per sweep)

The temperature range of measurements depend on the probe design which

should protect the sample from oxygen and water. The details of the probe design
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Fig. 3.1 Principle of the four terminal measurement

appears in the Ph.D. thesis of H. P. Patel [46] and omitted here. The temperature
range could be covered from ~ 100 K to ~ 500 K. Overall instrumental limit with the
available sample dimension allowed lower limit of conductivity measurement of about
10-11 (chh)']. The glass sample of size 20 mm (diameter)x1 mm (thickness) is
sputter coated with gold electrodes ( ~50 mm thickness) and loaded in the probe inside
of the glove box.

The calibration of the probe ( sample holder and connecting coaxial cables to
the analyzer) was done by built-in features of Solatron Analyzer. The fully automated
Impedance Spectroscopy workstation is shown in the Fig. 3.2, and the probe
(conductivity cell) is s};oxvn in the Fig. 3.3.

The measured magnitude and phase of the complex impedance at several
different temperature ( of 0.35Li»S + 0.65GeS3) can be converted into the complex
conductivity, by considering the cell constant kg ( = d/S, where d is thickness and S is

the area of the sample), since the impedance is given by
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Fig. 3.2 Impedance Spectroscopy work station set up (taken from reference No. 46)
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Fig. 3.3 Variable temperature conductivity cell (taken from reference No. 46)
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*

Z" = Vinput(stimuli) — d - * (3 . 1)

*
Ioutput(rmponsc) c S

Therefore the complex conductivity is given by

o'= lk—°lc059
(3.2)

o'= ﬁsin 6

2]

In an ideal lossy material, both the conduction and polarization of species
occur, and these causes the ohmic losses and energy storage. The simple model of
ideal lossy materiel would be RC-circuit, the complex impedance of such a circuit is

given by

7= R, oRC . 1=RC (3.3)
1+(aRC)*  1+(wRC)
The complex impedance plot (Z' vs. Z") shows semi circle for ideal lossy
material (one may use simple RC-circuit), whereas the glassy fast ionic conductors
shows deviation from the semi circle. This behavior is dependent on the relaxation
behavior of the material, therefore it provides a tool to investigate the relaxation
behavior of the glassy fast ionic conductors. Since Impedance Spectroscopy observes
the macroscopic electrical properties, microscopic study of ion-dynamics is needed to

understand the fast ionic conduction in the glassy materials.
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3.3 Measurement of Nuclear Spin-Lattice Relaxation Time

Understanding the NMR measurements requires knowledge of both method and
instrumentation to have reliable NMR data. A simple description of the NMR
experiment is on and off of the transmitting a radio frequency (rf) signal to a tuned
sample coil placed in the magnet pole and observing the responding signal from the
sample. One can transmit either a continuous rf signal or a pulsed rf signal at
resonance frequency of nuclei, whereas the detection of response signal can be done by
an absorption or a dispersion mode. The pulsed NMR spectrometer will be described
in this section following the inversion recovery method of measuring Ty, which is a
simple introduction to the pulse NMR experiment. The more detailed experimental

procedures will be discussed after a brief description of the NMR instruments.

3.3.1 Inversion Recovery Method of Measuring Tj.

As mentioned in the previous chapter, in the rotating frame spins will precess
with angular velocity o = yHj around a rf field Hj oscillating at ®,. In the
exper’iment an rf field along the x' axis is produced by a sample coil perpendicular to
the Zeeman field Hy. During the time t, the rf magnetic field Hj is applied, the
magnetization will precess through an angle 6 = ot about the x' axis. In the
inversion recovery method of measuring Tj the rf field is first left on just long enough
to invert the magnetization; this is a 180° or @ pulse. The magnetization then begins
to relax back to equilibrium by exchanging energy with the lattice. After a time 1 the
magnetization is measured by again turning on the rf field long enough to rotate the

spins through 90°, i.e., a n/2 pulse is applied. The magnetization is now in the x-y
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plane and will precess about H creating a changing magnetic flux in the coil, inducing
a measurable voltage proportional to the magnetization.

The transverse magnetization decays in a time Ty *, which can be quite shorter
and is often due to in homogeneous fields at the sample. The envelope of the
oscillating decay signal is the "free induction decay" better known as the FID, where
"free" means no rf field is applied while the spins are decaying. The spins gradually
relax back to equilibrium and the process begins again with a 1809 pulse followed by a
900 sampling pulse delayed by a time © greater than the previous values. In this way
the "recovery curve" M() is obtained, from which Ty is readily determined using the
Bloch equations [2.24]. Other methods of measuring relaxation times are more

appropriate in different situations, but this simple example is sufficient to introduce

some of the requirements placed on the instrumentation.
3.3.2 NMR Pulse Spectrometer

NMR pulse spectrometers are designed to deliver specified sequences of high

power radio-frequency (rf) magnetic field pulses to the sample and then to quickly

receive the micro volt level signals induced by the spin system. Six Ames Laboratory

spectrometers which differ only in detail were used in this study in order to span a
large frequency range. A block diagram of the spectrometer on which the majority of
measurements were made is shown in figure 3.4.

3.3.2.1 Pulse Generation and Transmission

The pulse sequencer initiates a measurement by sending a series of logic pulses
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Fig. 3.4 Block diagram of phase coherent pulse NMR spectrometer. The present set
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averager is substituted by softwares. Further software control and data acqusition

based on personal computers instead of LPI11 is underway.
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to the "rf switch" which turns the rf pulses on and off. The microprocessor based
pulse programmer was designed as a general purpose NMR spectrometer controller
capable of producing standard pulse sequences for the measurements of NSLR and
NMR spectra in a solid. The programmer also provides the facilities of an automatic
time base advance function for relaxation time measurements. Each of its four analog
adjustable pulse channels has a range of 0.5 to 80 microseconds over six ranges. The
toggle switch associated with each pulse channel can be used to manually enable or

disable a channel output. Three programmable trigger channels produce 100 nano

second pulses, which can be issued under program control and used for triggering data
acquisition equipment. The experimental repetition rate can be set from 0.001 to 999
seconds per each measuring sequence by the slow c]o'ck.

The pulse programmer triggers the rf switch which allows a pulse of rf voltage
with a selected phase with respect to a reference frequency to be passed from a
frequency synthesizer to a gated rf power amplifier amplifier. A low phase noise
synthesizer is used which also provides a coherent time base for the programmer. The
combination of a continuous phase coherent source and a time base which is definitely
related to the phase of the rf pulse is therefore created. These are important criteria
for the stability of multiple pulse measurements and phase sensitive detection.

The rf pulse is amplified to approximately a kilowatts by a gated power
amplifier or transmitter. This transmitter produces an rf pulse magnetic field to
satisfy the rotating frame condition of Hyf > H]gcaj in the sample.

The duplex circuit [145] is used to couple the transmitter output, pulse NMR
probe and receiver preamplifier together, consisting of A/4 cables and crossed diode

switches, directs the rf power pulses to be transferred from the amplifier to the probe,

~ with minimal voltage leaking to the sensitive receiver, yet does not reduce the smaller
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signal coming from the probe to the receiver. During transmission of the rf pulse, the

shunt diodes at the end of A/4 cable at the receiver preamplifier-input creates a high

impedance path in the direction of the receiver so that essentially all of the rf power is
transferred to the probe, which is tuned to 50 Q resistance at the~ resonance frequency.
The low level voltage from the sample probe will see a high impedance path back
towards the transmitter power amplifier due to the presence of the series diodes but

low impedance in the direction of the receiver.
3.3.2.2 Pulse NMR Probe

The pulse NMR probes consisted mainly of a single coil, two tuning capacitors,
a cylindrical dewar pipe, a cylindrical heater, dual thermocouple and tuning box as
shown in figure 3.5. The unique design by D. R. Torgeson allows the very short
distance from the pickup coil to the tuning circuit thus optimizing the capability and
tunability of the probe. The heater was wound non-inductively and was made from
manganin wire. The low temperatures were attained by blowing a chilled nitrogen gas
by boiling of liquid nitrogen. Two copper - constantan thermocouples were installed
near the sample to monitor and control the temperature. The automatic feedback
control of temperature was accomplished using an Omega programmable three term
temperature controller and heater current switching circuit. The rf coil was made from
the #16 copper coil for 7Li and 11B NMR experiment and #18 platinum wire for 23Na

NMR experiment. For the use of super conducting magnet for the high field
NMR experiments, commercial Oxford CF-1200 continuous transfer, variable
temperature chambers were used which had capability of temperature control from the

liquid He temperature to 500K by a continuous flow of liquid He or liquid Nj.
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Fig. 3.5 Variable temperature probes designed by D.R. Torgeson. Direct connection

of rf tunning circuit at the bottom of this probe prevents from possible loss of signal
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3.3.2.3 Receiver -

The receiver consisted of a preamplifier, three limifing amplifier stages
followed by a quadrature phase sensitive detector. One operational problem which all
pulse NMR spectrometers have is the saturation of the receiver during and for a period
of time after the rf pulse due to an unavoidable overload of the preamplifier and
following rf stages, within the receiver resulting in a "dead time" after application of a
high power pulse. Because the transient signals in solids decay extremely fast,

experiments with solids require fast recovery receivers. The receiver unit employed in

our experiments is a version of the one designed by Adduci et al.[189] in the Ames

Laboratory.

3.3.2.4 Magnet

The static magnetic field H, was produced by a 37.5 cm diameter pole, Varian
Associates electromagnet which can supply a maximum field strength of 2.5 Tesla.
The field drift was controlled by Hall effect regulator. For fields greater then 2.5 T,
measurement were made using Oxford Instruments super conducting magnets. At
present the two Oxford super conducting magnets are set to 3.7 Tesla and 8.2 Tesla

respectively.

3.3.3 Experimental Procedure and Data Processing

The motion of the nuclear magnetization described by the Bloch equations was

discussed in chapter II. The NMR experimental procedure will be described in more
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detail in this section. Another common method of NSLR measurement other than the
inversion recovery method (see 3.3.1) is the saturation comb ( (#/2), - T - =©/2) pulse
sequence. This sequence enables the operator to prepare the initial non-equilibrium
state of the spin system via n preparatory pulses. Whenever the nuclear magnetization
recovery is not single exponential, one should examine carefully the possible sources
of the non-exponential recovery. This can be done by changing the number of
preparation pules, the pulse width or the pulse intensity. For the case of exponential

recovery, the recovery of the magnetization is described by

M,(t) = Mg [ 1 - exp(-1/Ty) ] (3.4)

Using a saturation comb does not require one to wait many (5 to 10) T} time periods
until the equilibrium magnetization is restored naturally to full equilibrium. The
saturation comb method is faster than the inversion recovery method. Thus this
method is useful when one must signal average many transient signals in the computer
memory due to poor signal to noise ratio or when the Ty is quite long.

The spin-spin relaxation time T is a characteristic time for magnetic
interactions between the spins. Following a n/2 pulse, the magnetization in the x'-y'
plane is observed to decay in time exponentially with the time constant To* andis

€

defined as

1/To* = 1/Ty + 1Ty’ (3.5)

The first term is due to the dipole-dipolar interaction between the spins, and the second

term results from the combined contributions due to the spin - lattice relaxation
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process and in homogeneity in the magnetic field from either the detailed shape of the
sample particles or from the spacial variations of the field in the magnet. When

diffusion is negligible, the two pulse Hahn [190] spin-echo pulse sequence can be used

to reduce or eliminate field in homogeneity effects, yielding an exponential decay of
the amplitude of the successive spin echoes with the natural relaxation time T5.
Therefore one is measuring the rephasing time of the nuclear spin due to the local
dipolar field produced by the neighboring nuclei. When there is diffusion or any other
source of the modulation of spin-spin interactions, the rephasing will not be
exponential but may be expressed as a product of exponential and some function of
time f(t). A measurement of f(t) will provide the information of the diffusion or any
other source of the modulation of spin - spin interactions. A general expression for the

amplitude of the spin echoes observed in the presence of the diffusion[192]

2-23
2 2nDy =G
M(z") = MO exp(— —Igj . exp(_ ﬂ—f]

5 3 (3.6)

where n is the number of = pulse repetitions in the Carr - Purcell - Meiboom - Gill
(CPMG) sequences, [(n/2)y - (1 - Tyt - T echo)nl> Which eliminates the accumulation
of small errors in pulse width of Hahn echo sequence. D is a diffusion coefficient ,
here v is the gyro magnetic ratio of the nucleus and G is the magnitude of the field

gradient,
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3.4 Methods for Data Analysis and Computer Program
3.4.1 KWW Stretched Exponential Model

The analysis of conductivity data and NSLR data using the KWW stretched

exponential correlation function approach and the distribution of activation energies
approach were done using software package written in the FORTRAN language. The
integration of the stretched exponential was done with Dishon's formula [193]. The
FORTRAN programs for both NSLR and conductivity approaches can be found in
Appendix. The use of the KWW correlation fun;:tion which was used to obtain the
fitting parameters, will be discussed below

The NSLR is related to the spectral density function J(wg,) of the fluctuations
of local magnetic and electric fields due to the cation hopping. The NSLR R is given

by
R; = C[J(oy) + 4J(2w1))], where ‘ (3.7)

J(@@1) = Re f dt £(t) exp (-iwpt) = Re f dt exp[-(t/tesdP] exp (iwpt)  (3.8)

where C in (3.7) is the strength of the interaction between nuclei and its environment.

The correlation function, f(t), describes the time decay of some lattice function
due to the diffusion of cation. The lattice is referred as any substances other than

nuclel in the system.



104

By using the stretched exponential correlation function in equation (1.5) as the

correlation function in equation (3.8), with the help of Dishon's formula [193], one has

1 VA

where u = t/t and Z = o1 and

1 poo 1&, i L(A+nB) . (nn
0,(2) =;L exp(—M)cos(Zu)du:;Z_‘;(—l) 17 sm( 5 ) (3.10)

therefore one has fitting parameters B, C, To* and E,*, which is a measure of the
disorder, interaction strength between nuclei and lattice, effective correlation time and
effective activation energy, respectively. Therefore, by measuring NSLR as a function
of temperature and NMR Lamor frequency, we can deduce the correlation function f(t)
and related parameters of the cation-motion in FIC glasses.

Complex conductivity is related to the complex dielectric function as seen in
equation (8). And the dielectric function is given by its correlation function as in

equation (9) [77],

1/e(0)* = (/g )[1- j dt exp(-iwt) (-de(t)/dt) ]
0

where, ¢(t) is a correlation function probed by conductivity measurement. From

equation (8) and (9) one has
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z-:Osooo}9 cos(at)p(t)dt
0 (3.11)

o(0)=—< 7 ® 2
[ (_gsin(oat)cp(t)dt] +[ (f) cos(ot)p(t)dt]

By using the stretched exponential correlation function in equation (1.5) into equation

(3.6) and with the use of Dishon's formula [193], one has

0,(z
o'= eoawi 2'8( ) > (3.12)
(25@) +(75(2)
where
1. 8 1o, w1 T(1+np)  (na
Qﬂ(Z)—;J'O exp(—u )cos(Zu)du—;nZ:jl(—l) n[zl'*'”ﬂ sm( 5 ) (3.13)
1o (B _1® il T(1+np) (nzr)
Vﬂ(z)_ - I exp( u )sm(Zu)du— Mél( 1) gpsTy cos = (3.14)

where u =1/t and Z = ot. Therefore by measuring ac conductivity as a function of
temperature, one again is able to deduce the correlation function ¢(t) and related

parameters B, €4, To* and E,;* which is a measure of disorder, dielectric constant at

infinite frequency, correlation time and activation energy, respectively.
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3.4.2 Limiting Behavior of Stretched Exponential Correlation Function

The difficulty involved in the use of stretched exponential function is in the
evaluation of the integration. Therefore one can use numerical method as in the
previous section or estimating its limiting behavior [54]. From equation ¢(t), for o—

0, one has an expression of dc conductivity from the limiting behavior

o(@—=0) = ogdc. = epe/ | A @(t) = ege /1 (3.15)
dc 0 0 eff

-

where, tq¢r is effective correlation time of corresponding correlation function. For
exponential correlation function t.¢f can be defined as a correlation time © . The non-
exponential KWW correlation function itself can be represented as sum of exponential,
in this case tefr is the average T or < t>. Considering the 7Li spin-lattice relaxation
rate at high temperature and high ion jumping rate or short correlation times then T <<
mL'l, the correlation function has decayed essentiallj to zero, and one has from

equation (3.8),

Ry e« J(0) =2 [di £(t) = 2tegs (3.16)

-0

From the above two equations, one expects,

(R1)high temperature * o4 (3.17)
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If the KWW function is used to express both the conductivity ¢(t) and NMR f(t).
correlation functions, then one should expect

p@t) o f(t) o exp[-(t/1e£9)P] (3.18)
with

Teff = Tp* exi)(Ea*/kBT) (3.19)

using equations (3.4), (3.6), and (3.11) the following limiting behavior can be deduced

for high temperature and rapid ion hopping and short correlation times

01,7c << 1, R} « 1e¢r, 0o(0) =04, =« 'reff'l (3.20a)
for low temperatures and slow ion hopping and long correlation times

opte>>1, R} « coL‘(l'*‘ﬁ) teff'B, o(e) « o(l-B) Toff -B (3.20b)

and for an intermediate temperature

01,7c ~ 1, Rimax < exp(Ea*/kgTyax) (3.20¢)

where Region 1, II and III of Fig. 1.4 corresponds to opte <<1, eoptz~1, and o1,

>> 1 respectively. Similar limiting behavior is expected also with coupling model,

since the model also employs stretched exponential correlation function.
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3.4.3 Distribution of Activation Energies and Percolation Scheme -

The 7Li NSLR is affected by all microscopic motions the ions in thus provides the
essential information for the microscopic ion dynamics in a glassy fast ion conductor.
The disorder in a glass can be characterized with a Gaussian distribution of activation

energies

(Em - Ea)2
2

1
VA Ea)= exp| — (3.21)
, NMR( ) ‘/EEb P

where Eyp, is the half width around E, the mean or center of the distribution. The ion
jumping rate r is a function of Ea and T at the ion location in the glass which is

thermally activated and of the form

Ea
r(Ea,T) =1/t =14 exp| - (3.22)
kBT

where kp is the Boltzman constant and T is the absolute temperature in Kelvin. The
attempt frequency rq = 1/, can be deduced from the oscillation frequency, fog., of the
ion mass m dwelling in the one dimensional potential well, which could be

approximated by a simple sinusoidal function of the form

V(x)=%sin(—2d£x—§) (3.23)
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where Ea is the height of the barrier or the activation energy and d is the interwell

distance. Then one can have f,. near the origin x = 0,

o _L\/E _1 v | Jeaim (.24
05¢ix=0 2 Ym 2% m d .

x=0 x=0

where k is a spring constant. The total attempt rate depends upon the number of
possible jump directions z( = 6) at each ion site times the f,5. deduced from the one-
dimensional sinusoidal potential barriers, therefore

-1 1 d
_ _ - (3.25)

Ta =1, = =
0°0 2, 6JEa/2m

The NSLR is given by the simple extension of the BPP type relaxation

o0
R(,T) = 42 tlz 4Tz dEa (3.26)

0 1+a)2(r/z)2 1+4a)2(2'/z)2 NMR

where A is the strength of the nuclear spin interactions and Zy\MR the Gaussian
distribution of activation energies[56,57]. For the calculation of dc conductivity, a
simple hopping model was used with the substitution of the single correlation time by
the average correlation time by the Gaussian distribution up to the percolation

threshold.
_ npezd2

ch_szTt) (327)
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where n is the concentration of the ionic charge carrier, e = 1.6 x 10719 coulomb is the
Li ion charge, < 1 > is the average correlation time by the Gaussian distribution up to

the percolation threshold Ec

p

Ec

E
(z‘) = (l) {)c 7 exp(— ;ELTJ " Z npR9Ea
B (3.28)

where p is the percolation fraction and represents the fraction of all ions which
contribute to long range ion motion derived by truncating ZyMR at energy Ec. Those
ions whose motion is characterized by hops of lower energy from essential 0 up to Ec
are those ions which are not trapped in deep energy traps above Ec and can not

contribute to long range motions.
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CHAPTER IV. RESULTS AND DISCUSSIONS

4.1 xLipS + (1-X)GeSy

In this section we present and analyze data of NSLR and conductivity in lithium
thio germanates with three compositions (x = 0.35, 0.45, and 0.55). Differences in the
effective correlation times from the two techniques were observed as well as non -
Debye behavior of relaxation in both measurements. The NSLR showed non BPP

(Bloembergen, Purcell and Pound) behavior and the characteristics of the motional

relaxation. The conductivity showed almost Arrhenius behavior of dc plateau and
dispersive behavior which approaches a power law at low temperature and/or at high
frequency. ‘

In order to explain the NSLR and the conductivity and the difference in
effective correlation times, both models, i.e., the phenomenological KWW approach
and the distribution of activation energies, were tested.

It is shown that the dc conductivity in FIC can be calculated essentially from
the distribution of acti\'/ation energies obtained from the NMR relaxation data with a
cut - off for the maximum barrier probed by the long range ionic diffusion. From the
fit one obtains the fraction P of percolating ions as a function of the composition of
the sample.

The phenomenological KWW approach, on the other hand, although useful in

analyzing the data, does not provide any valuable microscopic insight. The main

predictions of the coupling model [188] are also tested and found to be only in partial

agreement with the data.
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4.1.1 7Li Nuclear Spin Lattice Relaxation Measurements

The 7Li - NSLR vs. temperature is shown in Fig. 4.1 for one of the three
samples (x = 0.35) at three different resonance frequencies. Similar results were
obtained for the other samples with composition x = 0.45 and x = 0.55 and those will
be shown in the following paragraphs together with the theoretical fitting curves. The
main features of the data in Fig. 4.1 are: (i) the slopes of the log Ry vs. 1000/T plot
are different on the high and low T side of the maximum. This is a clear indication of
departure from BPP model with single exponential correlation function. (ii) the
frequency dependence on the low temperature side of the maximum is less pronounced

than the Ry « o-2 dependence predicted by the BPP model. (iii) the magnitude of the

relaxation rate R at the maximum is larger than predicted for nuclear dipole - dipole
interaction while it is consistent with a relaxation mechanism driven by fluctuations of

the quadrupole interaction with the electric field gradient in the disordered lattice.
4.1.2 Conductivity Measurements

The measurements of the ac conductivity are shown in Fig. 4.2 plotted as a
function of frequency at fixed temperatures for the same sample used in the NMR
study. Again, similar results were obtained for the other two samples ( x = 0.35 and
0.45 ) and will be shown in the following. In Fig. 4.3 we plot the same conductivity
data vs. temperature at fixed frequency. The dc conductivity is obtained from the
frequency independent plateau in Fig. 4.2. The deviations from the dc plateau at very

low frequency in Fig. 4.2 is due to electrode polarization effect of accumulated ions
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Fig. 4.1 7Li NSLR at 4, 12.1 and 22 MHz in logarithm of the relaxation rates as a
function of reciprocal temperatures in 0.35 Li9S + 0.65GeSy; data show BPP type of

maximum and asymmetry about maximum in Ry curve.
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Fig. 4.2 The real part of ionic conductivity of 0.35 Li;S + 0.65GeS, vs measurement

frequency for several temperatures.; data shows elctrode polarization at low frequency,

114

L3 IIHHI

L1

i IHIHII 1 llllllll

L} ll”lll

llllllll] UL

Illll 1 ll”llll LIRS

= 343K mmnmmmﬂaa -1
oo v
. o ¥ |
- nn 323K vvvv'v s
- -
— u" vquvwwvvwvvvvvvvvwwvwwvvv ..l‘;
A ] A
- v ® ad -
R D" 31 3K !n.-:l A‘ 029
OV yeReRRESEEERERE st 0]
i o™ 303K RSt
v a o
L gl. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ° © l“n'I .
A ° ) &
a ° abd}
& L4 -] A
EEA 293K 0000° ‘,nn A X
00000 b i ‘A X X
— ob_o0°°° &s" ol i
= °§°° 283K - A" x P
. o At X oo ]
o ’-ﬂpsn_ a® "xou °
= a X' ° »
o [} a X Do -5
L. ) g ad” x" o
= Dcnc’n B 268K NG e o° -
oo E‘a AAAAAAA x" o0
- oo B |, aaas888888000888888088808080 X g8 .0 ]
,00® BB, 84 X g8 o
4
'v'ﬁ 258K xgxx"x o0 o°
x °
— v o4 xxxxxxxxnmxuxx:o:xxxxxxmxx*" 8% o° =
— o Ea’ax o8 =
o 248K o
[~ ov° = oat® ° -
ovY -.lgB mgmmmomnﬂwocoa °°° -
[ a® 288 Doamggacocom °°° —
- A o -]
(L] A, a o®
B 238K 0°
= a4 & z °°c°°°° -
28 QEB ooocoooooooooooooooooooooooO
o¥8 00
© o°
o QF
| a0 ES —]
=R .
L]
M

{ Illlllll ! llJJllll t !ll]lll' L 1 111

lllll I llllllll 1 11148

102 10° 10*
Frequency (Hz)

10° 10°

d.c. plateau in the middle range and dispersive behavior at higher frequency.

5 0,oe e s At e o G rarp s ¢



115

E T it l | SR | SRR} ‘ T 1 11 l BRI l T T 11 l TT 11 I LR ?

102 =

E10* F 3

(&) F ]

E i J

E B 3

e : B 4 f

N E— B i

> - D.C.plateau i

S1 06 3 3,825,300HZ 3

© - ]
3 - o 4

& = =

3 118,880HZ

© - o g

i ©g,148.1HZ]

'8 = A —:E:

10 : o 41,122.2HZ

N o) i

- 0109.03HZ5

10.593H2 ]

- i 1t 1.1 l 1 1t l f it I 1 L 1t I P 1 8t | 1t 11 j | I . | I |
10719
2 3 4 5 6

1000/(T) (K)

Fig. 4.3 Arrhenius plot of the real conductivity data shown in Fig. 4.2 of 0.35 LisS +
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on the electrode, and it should be disregarded. The main features of the data in Fig.

4,2 and 4.3 are: (i) the onset of the frequency dependence is a function of temperature
. The frequency dependence goes as @S with the exponent s becoming close to unity
for the lowest temperatures and highest frequencies. (ii) Apparent Arrhenius behavior
of the dc conductivity. The apparent Arrhenius behavior is largely due to the narrow
temperature range in which the conductivity is plotted. As will be shown later,
measurable deviations from Arrhenius behavior can be observed in dc conductivity at

high temperature in some FIC.

4.1.3 Direct Comparison of Correlation Times from NMR and Conductivity

Before proceeding to a detailed analysis of both NMR and conductivity data in
terms of the two models outlined in section 2.3, it is worthwhile to point out that there ‘
is an obvious and direct evidence that the correlation times measured in NMR is orders
of magnitude different from the one measured in conductivity.

The NSLR data in Fig. 4.1 convey a direct information about the correlation
time 7 of the Li ionic motion which is b_elieved to drive the NSLR through the
modulation of the electric field gradient. In fact the maximum NSLR is observed
when the correlation frequency 1-! is of the order of the Lamor resonance frequency.
Thus from the condition ot ~ 1 at the maximum in the curves in Fig. 4.1 , one can get
three values at three different temperatures. These data are plotted in Fig. 4.4 and 4 .5
for the x = 0.35 sample and also for the other two samples at x = 0.45 and 0.55.

A similar direct information can be obtained from the conductivity data in Fig.
4.2. In fact the frequency at which the conductivity starts deviating from the dc

plateau corresponds to the condition @t = 1. The onset of dispersion in the ac
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of the conductivity dispersion (square). The lines are from the calculation using
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difficulties prevented up to now to get data directly for both o4, and NSLR in the

same temperature range.
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conductivity shows dependence on composition in X LipS + (1-X)GeSp; X=0.35, 0.45
and 0.55. The values of 1 obtained from the onset of dispersion in Fig. 4.2 are plotted
also in Fig. 4.4 and 4.5 vs. temperature for x = 0.35 and x = 0.45 samples. Clearly in
the presence of non exponential decay of the correlation function or alternatively in the
presence of distribution of correlation times the exact meaning of the t plotted in Fig.
4.4 and 4.5 is not known. However, it certainly does represent a value which relates to
the hopping frequency of the Li ion as probed by NMR and conductivity respectively.
The mere fact that these two sets of t’s are different by more than one order of
magnitude indicates that the correlation is not a simple exponential, and that the two
techniques do probe the Li motion in a different way. This is going to be one of the
main point to be clarified by the analysis of the data presented in the following

sections.

4,.1.4 Analysis of the Data with the Phenomenological KWW Correlation

Function and the Coupling Model

As was described in the section 3.4, we used the Dishon's formula for the
numerical integration of the stretched exponential correlation function which does not
have analytic solution except that for B = 0.5. For the fitting procedure for the NSLR
and conductivity data, IMSL (see the Appendix) software package was used for the
optimization process. FORTRAN language was used for the fitting programs and
calculations. The measurements of impedance and conversion to the conductivity data
was done with the software package developed by H. K. Patel and S. W. Martin [46].

The curves fitting the NSLR data according to equation (3.9) (Fig.4.6, 7 and 8)

are in good agreement with the data except for deviations below about 200K.
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The deviation could either indicate a failure of equation (3.9) at low temperature or the
presence of an extra relaxation mechanism at low temperature. The parameters
obtained from the fit are summarized in Table 4.1.

The curves of best fit of the conductivity according to equation (3.12) are
shown in the Fig. 4.9 and 4.10. The fits are good excepts for the data at low
temperatures. The deviations from the fitting curves observed at low temperature for
both NMR and conductivity could indicate that when the Li ion motion "freezes" other
mechanisms which are not properly included in the KWW formalism become operative.

The fitting curves are compared with the experimental data vs. temperature in

Table 4.1 Experimental Parameters obtained from KWW - Model for NSLR

measurements.
x =0.35 x = 0.45 x = 0.55
A (ra:d / sec)? 6.5x109 6.2x109 6.1x109
10* (sec) 1.3x10-14 7.5x10-15 2.0x10-13
Ea* (K) 6500 6300 6100
B 0.38 0.31 0.31
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Fig. 4.11 and Fig. 4.12. Here we see that the disagreement between experiments and
theory is more pronounced at low temperature and at high frequencies.

An extra contribution to the ac conductivity is often attributed to the low energy
excitations in the disordered material [50], the so called two level systems of still ill-
known microscopic origin [194]. The low energy excitations may be negligible at a
elevated temperature where the long range ionic motion is dominant.  Therefore the
parameters for the motion of the ionic charge carrier should be obtained from the high
temperature region while the extra conductivity at low temperature and at high
frequency should be neglected. The parameters obtained from the fit of the
conductivity are shown in the Table 4.2 and of the NSLR to the KWW - model are

presented together in Fig. 4.13 in order to facilitate their comparison.

Table 4.2 Experimental Parameters obtained from KWW - Model for

conductivity measurements.

x =0.35 x = 0.45
oo 3.4 1.2
70* (sec) 1.9x10-15 1.9x10-15
Ea* (K) 5230 4730
B 0.43 0.44
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From the comparison of the parameters in Fig. 4.13, it can be seen that all three
parameters i.e., 10*, Ea*and B obtained in the KWW model are different in NMR and
conductivity. The difference of the parameters leads to a different effective
correlation time t* which was already evidenced in the direct comparison discussed in
section 4.1.3.

Since both NSLR and conductivity are determined ( except for the low
temperature, high frequency region) by the motion of the Li ion, the observed
differences in the correlation functions must be related to a different mechanism by
which the two techniques probe the Li ion dynamics. As was pointed out in the
referenced work [54] the correlation function which is involved in the NSLR formulas
is the local position - position correlation function of the Li ion while the correlation
function involved in conductivity is the macroscopic polarization - polarization
correlation function; therefore a difference in the two correlation functions is not
surprising.

As was discussed in section 2.3.3 the KWW formalism has been interpreted by
Ngai in terms of a phenomenological model which attributes a physical significance to
the parameters 'ro*, Ea*and B . We are going to test some of the predictions of the
coupling model against our experimental values. First let us check the prediction in
equation (2.101) whereby the true single-ion activation energy barrier should not be
identified either with the Ea* from NMR or from conductivity but with the quantity
Ea = ﬂNMREa;MR = ﬂo_EaZﬁ, The predic‘tion is approximately verified from the data
in Table 4.1 and 4.2. One would conclude that the microscopic barrier is Ea = 2300
K for x = 0.35 and Ea = 2000 K for x = 0.45. Another predictions of KWW

formalism and coupling are that the slope of log Ry vs. 1000/T on the low temperature
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side of NSLR data should be Ea since in the low frequency region NSLR probes the

short time part of the correlation function. From equation (2.99) and (2.100) we have,

*
NMR
(TO)NMR _ ® )NMR (m i )EB— @1
" 175 o) "o NMR -
(t) ()
0c fo]

From the parameters in Table 4.1 and 4.2 we can derive the cross - over frequency o,
predicted by the coupling model (see equation (2.94 - 2.96)). One finds o¢ 75 =
3.5.103 for x = 0.35; o¢ 15 =3.1-10 for x = 0.45. The cross - over time t; = o -1
obtained above is of the order of 10-15 sec to 10-17 sec for T ® 10-14 sec. These
values of t; are unreasonably short to have a correct physical meaning of cross - over
times in Ngai’s coupling theory [188].

Finally one should point out that the KWW formalism and the coupling model
predict a strictly Arrhenius behavior for the dc conductivity. As will be seen in the
next paragraph, the experimental data, is some cases, do show a slight deviation from

Arrhenius behavior which could not be explained with the coupling model.

4.1.5 Analysis of the Data with a Distribution of Activation Energies

and the Percolation Model

We turn now to the analysis of the data based on the assumption that the Li
ions move independently with thermally activated hopping motion but that the energy
barriers are different in different sites of the lattice. The NSLR is given by the simple

extension of the BPP type relaxation
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t/z t/z

R (0,7)= 4% | +4 dEa (4.2)
I 0 1+a)2(1/z)2 1+4c02(z'/z)2 NMR

where A is the strength of the nuclear spin interactions and with the Gaussian

distribution of activation energies Ea's [50,57]

L ex -—(E"’_Ea)z
Jazg, Y| 2E?

Zy(Ea) = (4.3)

where Eb is the half width around Em, and the correlation times in the equation (4.2)

are thermally activated form of

E
T=17 exp[+——-9—} 4.4)
kgT

where kp is the Boltzman constant and T is expressed in Kelvin. Then the total rate on
the ionic hopping is z times the fy5. of equation (3.24), where z is assumed to be 6 for
the simple harmonic oscillator's of depth Ea and site distance d, which is extending in
space. As was mentioned in the previous section, the site distances should not change
much (therefore in the range of 2A° ~ 6 A°) to affect the whole calculation of the
NSLR. Actually the calculation does not show considerable deviations if one use a

reasonable estimation (site distances to be in the range of 2A° ~ 6 A°) of the
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prefactor of the correlation time. Here we used d = 3.7 A° to be the site distance,
which is estimated from the crystal structure of the di thio germanate [138].
Therefore we could use the equation (4.2) with the IMSL optimization package in the
VAX computer to fit the NSLR data (see appendix). The fitting parameters are the
width Eb and the average Em for the Gaussian distribution function of the activation
energies. The fittings of equation (4.2) with equation (4.3) to the NSLR are shown in
the Fig. 4.14, 15 and 16 for x = 0.35, 0.45 and 0.55 respectively. By using
parameters from the fitting, the distribution of the activation energies are plotted for x
= 0.35, 0.45 and 0.55, as shown in the Fig. 4.17. By using the distributions of
activation energies derived from NMR (Fig. 4.17) we estimate now the dc conductivity.
For the calculation of dc conductivity, the simple hopping model is used in
which we replace the single correlation time with the correlation time averaged over

the Gaussian distribution up to a cut - off energy Ec. One has:

nPe:zd2 (4.5)
c, =———

de :
szT<'c>

where n is the concentration of the ionic charge carriers, e = 1.6x10-19 coulomb, <>

is the average correlation time:

(4.6)
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where we define P as the percolation fraction. The site distance was estimated from
the measured density of the glasses; d =2 .59 gm/cm3 for x = 0.35 and d = 2.48
gm/cm3 for x = 0.45. The average 7 is determined by the width Eb around Em, and by
the percolation fraction P, which is chosen as a fitting parameter to bring the
calculated value of dc conductivity in agreement with the measured one.

The fitting to the measured dc conductivity yields P ~ 0.35 for lithium thio
germanate and lithium chrolo borate [56] which shows similar dc behavior, and P ~
0.25 for lithium thio silicate[57] which has better conductivity than the thio germanate
and chrolo borate. The measured and fitted dc conductivity are shown in Fig. 4.18
and 19 for x=0.35 and 0.45 respectively, with the distribution of activation energies
cut off at Ec. It is noted that the percolation fraction obtained here are consistent with
theoretical estimates for simple cubic lattices [28]. Also we find that Ec > Eadc which
is also reasonable. o

Here we revisit the problem of the consequences of using the distribution of
activation energies on the dc conduction. With the distribution of correlation times
one should observe a deviation from Arrhenius behavior of dc conductivity. In Fig.
4.20 the Arrhenius plot for several calculated dc conductivities with a distribution of
correlation times are shown for;(I) for the low ionic conductor as oxide glass, (II) for
the intermediate conductor as thio germante glass and (I1I) very highly conductive
glass as silver thio borate. In the graph, one can clearly see the almost-Arrhenius,
slightly non Arrhenius and non Arrhenius behavior of the dc conductivity for each
cases. Therefore one can argue that the observed behavior of almost-Arrhenius is due
to the fact that the measurements are performed mostly on low conductivity glasses,

and moreover in a limited range of the temperature where the non Arrhenius behavior
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Fig. 4.19 Fit of Gaussian distribution, Zypgr, with peak position Em = 5600 K and
width Eb = 1150 K (Top graph),in 0.45 Li»S + 0.55GeS»_ Truncation at Ec = 5200 K

gives the dc conductivity from the striped fraction P = 0.38 which is shown in the
second graph (curve), as a function of inverse temperature, T. The squares represents

experimental data.
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d.c. conductivity (ohm cm)’!

1000

Fig. 4.20 The calculated d.c. conductivity vs inverse temperature using simple
hopping model of equation (3.26) and (3.270 for various values of peak and width for
the distribution of activation energies with percolation effect. The parameters for
calculations (Em / Eb / P) are: (I) 7000 K / 1800 K /0.24 (II) 4000 K /1000 K / 0.26

(IIT) 2000 K / 500 K / 1.0 (IV) 2000 K / 500 K / 0.24 respectively.
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is difficult to observe within the experimental error. Clear deviations from Arrhenius
behavior were indeed observed recently by J. Kincks et al. [196]. The results are shown

in Fig. 4.21. We believe that this observation strongly supports the model adopted here

of a distribution of activation energies.
4,2 xLipS +(1-X)ByS3

In this section we present and analyze data of NSLR and conductivity in lithium
thio borates with two compositions (x = 0.65 and 0.70). The NSLR in log Rj vs. 1000/T
plot showed two distinct maxima. For the main maximum the NSLR showed non BPP
behavior. The dc conductivity showed slight deviations from Arrhenius behavior.
Dispersive behavior which seems to approach a power law (conductivity vs. frequency in a
log-log plot looks linear) at low temperature and/or at high frequency were observed as was
in lithium thio germanate glasses. \

It is shown that both NMR and conductivity data can be explained in terms of a

distribution of activation energies with two distinct maxima. It is shown that the motion of

Li - ion hopping to the non-bridging sulfurs of BS4 - environment and BS3 -environment
feels different (but weakly overlapping) distribution of activation energies, thus revealing
two distinct motional maxima in 7Li - NSLR. This simply means that one SRO group has
slightly higher average activation energy than the other SRO group. The 11B - NSLR in
the BS3 structural units and in the BSy4 structural units were measured separately. Each
maximum corresponds to the motional relaxation maximum in the 11B in BS3 and in the
BS4 structural units respectively. From the fit of 1B - NSLR we could conclude that the
relaxation of 11B is not due to Li jon motion but rather to a local rearrangement of BS3

(BS4) groups which can be triggered by the hopping of Li ions in the proximity.
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4.2.1 TLi Nuclear Spin Lattice Relaxation Measurements

The 7Li NSLR vs. temperature is shown in Fig. 4.22 for two samples (x = 0.65 and
0.70) at three different resonance frequencies. The data in Fig. 4.22 are similar to the
one observed in lithium thio germanate glasses (see section 4.1.1), except for the
secondary maximum in log Ry vs. 1000/T plot. Four different batches of samples prepared
with the same method were measured and showed the same features. The recovery of the
TLi nuclear magnetization in thio borate glasses was found to be exponential down to the
90% of signal intensity for all temperatures, except at temperatures in the vicinity of the
secondary maximum. This is shown in Fig. 4.23, for the higher resonance frequency (40
MHz) for which the signal to noise ration is best. NSLR in Fig. 4.22 were obtained by the

observed exponential decay of nuclear magnetization for the first 90% of decay.

4.2.2 Conductivity Measurements

The measurements of the dc conductivity are shown in Fig. 4.24 for x = 0.70. The
main features of the data are again similar to the one for lithium thio germanates, except

that now the departure from a simple activated Arrhenius behavior is more evident at high

temperatures. This non Arrhenius behavior is a central finding of the present work because
it strongly supports the model of distribution of activation energies.

4.2.3 Interpretation of the Anomalous /Li NSLR Curves

In order to put in the evidence the anomaly in the 7Li NSLR data in Fig. 4.22, we

try first to fit the data with a KWW correlation function. As was discussed
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Fig. 4.22 7Li NSLR at 7, 12.1 and 22 MHz in logarithm of the relaxation rates as a

function of reciprocal temperatures in 0.65 Li3S + 0.35B5S3 (upper graph) and 0.70
LisS + 0.30B,S3 .
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Fig. 4.23 Logarithmic 7Li recovery vs. time (in mili sec) in 0.70 Li»S + 0.30B,S3
measured at 40 MHz, at three different temperatures 364 K, 283 K and 209 K. The solid

line represent the single exponential decay of nuclear magnetization along the direction of

external magnetic field.
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before this fit is practically equivalent to the fit in terms of a single Gaussian distribution
of activation energies. The curves fitting the NSLR data according to equation (3.9)

and(3.12) shows “extra relaxation” which is one order of magnitude smaller than the main

relaxation described by equation’(3.9) and (3.12). The fitting were done to the data in the
vicinity of the first maximum, and then the assumed extra relaxation rate or "extra NSLR"
were obtained by subtracting the predictions of equation (3.9) and (3.12) from the raw data
of NSLR ( since NSLR is additive).

The 7Li (I = 3/2) spectrum shown in Fig. 4.25 does not reveal any structure which
could come from an extra phase. The spectrum consists of central line transition (1/2 <
- 1/2), and a broad wing due to the powder distribution of satellite transitions shifted by
the first order quadrupole interactions. The independence of the width of the broad wing
from the external magnetic field supports the above arguments. It is noted that the broad
satellite signal may also contain a distribution of quadrupole interactions due to different
local vQ and n for different Li ion sites. The broad wing disappears at around 250K

because of motional narrowing in agreement with the correlation times inferred from the

NSLR data.

The possibility that the extra NSLR contribution is due to paramagnetic impurities
was ruled out by chemical analysis of the sample which shows less than 10 ppm of Fe, Co
and Ni and less than 0.5 ppm of Mn and Cu. The possibility of the cross relaxation of 7Li
with 11B was also ruled out as an explanation of the extra NSLR because it would give a
sizable contribution only at frequencies lower than 4 MHz contrary to the experimental

results.
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Fig. 4.25 TLi spectrum in 0.70Li»S + 0.30B,S3 at 406 K and 77 K. The spectrum shows
motional line narrowing at ~ 250 K. The rigid lattice spectrum is composed of dipolar
broaden central line and broad wing of 1st order quadrupolar splitted satellites with

possible distribution of the quadrupole frequencies and asymmetry parameters.
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4.2.4. Analysis of the Data with a Distribution of Activation Energies and the

Percolation model

We notice that the structure (SRO) of thio borate has both of 3 - coordinated
boron's (BS3) especially for high alkali glasses, and 4 - coordinated boron’s (BS4) a
situation which is noticeably different from the (thio)silicate and (thio) germanates.
Therefore 7Li hopping motion may probe distinct distributions of activation energies.

One may assume that there are two different kind of couplings of the 7Li nucleus to
the “lattice”. One coupling which we will denote with the constant A in equation (4.2)
which is modulated by the motion in the vicinity of the BS3 trigonal groups and is
characterized by the distribution of activation energies Z| MR- A second coupling which
we will denote by the Li ion motion in the vicinity of the BSy tetrahedral group and is

characterized by a different distribution of activation energies Zy NMR:

T T T T
- 4— - 4—
2 .00 z z 2 0 Z Z
Rl (m,‘!) =A IO 2t 2 ZI,NMRdEa+B IO 7+ 2 ZZ,NMRdEa
21 ¢ T 21 T 2{ T
I+ | — 1+40 | — 1+ | — 1+40 | —
| z z/ ] L z zz ]

4.7)
Alternatively one can interpret equation (4.7) as the average relaxation rate of two kind of
7Li nuclei which have the same coupling but is modulated by different dynamics. In this
case one would observe a single relaxation rate in presence of common spin temperature or
a non exponential decay of the nuclear magnetization in absence of a common spin
temperature. In the case of two kind of 7Li nuclei relaxing with different rate, the coupling

constants in equation (4.7) can be written as A2 = A, 2 xfandB2= A02 x (1-f) where
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A, is the coupling constant common to both kind of nuclei and f is the fraction of 7Li
nuclei relaxed by the correlation function corresponding to Z] NypR. The correlation time

in the equation (4.7) is given as usually by:

=1, exp(—fiTJ (4.8)

B

where kg is the Boltzman constant and T is expressed in Kelvin. Then the total rate on the
ionic hopping is z times the fg. of equation (3.23), where z is assumed to be 6 for the
simple harmonic oscillator's in a one dimensional sinusoidal potential barrier of amplitude
Ea and spacial period d as was explained in section 2.3.2.

As was mentioned in the previous section, the site distance d should not change
much (therefore in the range of 2A° ~ 6 A°) to affect appreciably the calculation of the
NSLR. Here we used d = 3.7 A° to be the site distance, which is estimated from the
crystal structure of the di thio borate [138].

The results of the fit of the NSLR are shown in the Fig. 4.26 and 4.27 for x = 0.65
and x = 0.70. Each Gaussian Z) NMR and Zy NMR are shown in Fig. 4.28 for x = 0.7
with MHz data. By using the parameters from the fitting, the distribution of the activation
energies are plotted for x = 0.65 and 0.70 in the Fig. 4.29 together with the ones for
lithium thio germante. The Fig. 4.30 shows comparison of the distribution of activation
energies obtained from the fit of the NMR data in different samples. The values of the

average Em correlates very well with the activation energies obtained from the dc

conductivity. We calculate now the dc conductivity from our simple hopping model (see

section 3.3.2) and by using the distribution of barriers in Fig. 4.29:
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Fig. 4.26 7Li spin lattice relaxation rate in 0.65Li3S + 0.35B»S3. The solid line
represent theoretical fit of equation (4.7) with the parameters shown inside graph. The

fitting shows that fz 1 NMR = 0.91 (see equation 4.7)
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Fig. 4.27 TLi spin lattice relaxation rate in 0.70LipS + 0.30B5S3. The solid line
represent theoretical fit of equation (4.7) with the parameters shown inside graph. The

fitting shows that fz1NMR = 0.91 (see equation 4.7)
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Fig. 4.28 Fitting curves of Fig. 4.27 (solid line) are decomposed into two contributions of
NSLR due to each Gaussian distributions of activation energies, for 7 Mhz (thick broken
line) and 22 Mhz (thin broken line) data. The main NSLR is assigned to be due to 7Li

motion in the vicinity of BS3 groups.
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nPezd2
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%do zkp T(x) @9

here n is the concentration of the ionic charge carriers, € = 1.6e-19 coulomb, <7> is the

average correlation time by the Gaussian distribution up to the percolation threshold Ec.

T)=1|— TaCxXpl —— | - a
P/ 0 0 kBT NMR

. Ec

(4.10)

where P is the percolation fraction. As was done in the thio germanate, the parameter P is
obtained from the fit. The fitted dc conductivity are plotted in Fig. 4.31 for x = 0.70 and

shows again very good agreement.

4.2.5 Measurements of 11B NSLR

The analysis of the 7Li NSLR in terms of two “relaxation channels” suggests that
one of the channel may be the hopping motion in the vicinity of the BS3 groups
and the other is due to Li nuclei moving in the vicinity of the BS4 groups. From the
analysis in terms of a double Gaussian distribution function one finds that the fraction of
nuclei in the two relaxation channels is 90% and 10% respectively, which corresponds
indeed to the relative fraction of BS3 aﬁd BS4 groups respectively as determined from 11B
NMR (see Fig 4.32). Furthermore this hypothesis agrees with the argument based on
chemical bonding strength between Li - ion and non bridging sulfur in BS3 and BSy4

structural units. The one extra sulfur bond to the boron (balance 3)in BSy4 results
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Fig. 4.31 Double - Gaussian distribution, ZN\\R, obtained from the fit of NSLR in Fig.
4.29 and 4.30. Eml = 4500 K, width Ebl =910 K, Em2 = 3300 K width Eb2 = 260 K
(Top graph), in 0.70Li3S + 0.30B5S3. Truncation at Ec = 4400 K gives the d.c.
conductivity from the striped fraction p = 0.54 which is shown in the second graph (curve),

as a function of inverse temperature, T. The squares represents experimental data.
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Fig. 4.32 11B powder spectrum at 27 MHz taken at room temperature in 0.70LiyS +
0.30B,S3. 3 - and 4 - coordinated Borons experiences vQ ~ 700 and 200 kHz [119,120]
respectively. 3 - coordinated Borons results in the 2nd order quadrupole split central
transition in hatched area of spectrum thus represents 3 - coordinated boron fraction. The
fraction of the 3 - coordinated Borons determined from the hatched area of the spectrum is

about 90%.
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in weaker bonding to Li - ion, thus corresponding to the lower activation energy. The

result also agrees with the observed IR absorption line at 400 cm™! and 450 em=1 which
were claimed to be the vibrational mode due to Li - ion motion in the potential well due to
the non bridging sulfur sites in BS4 units and BS3 units respectively [195].

The circumstances listed above suggest an elegant and direct way to check the
validity of our assumption. In fact as seen from Fig. 4.32 the 1 1B NMR from the two
SRO groups BS3and BS, are separated sufficiently in frequency that the NSLR can be
measured separately in the two 1B sites.

The measured NSLR of 11B is shown in Fig. 4.33, where one can see clear
dependence on external magnetic field and the existence of the motional maximum. The
relaxation rate in Fig. 4.33 is only indicative since it represents a mixture of the relaxation
of the two 11B sites.

The next step is to make a separate measurements of 11B - NSLR for each
structural group. The measurements could be accomplished by using a narrow window in
frequency domain to irradiate only the central line (corresponding to the BS4 groups) or
only one of the 2nd order quadrupolar split central line singularities (corresponding to the
BS3 groups) in the spectrum shown in Fig. 4.32. The experimental conditions were
carefully set so that H; > Hy , where Hj is rf field strength and Hy is dipolar field among
nuclei.

The NSLR of 1B for each structural group is shown in Fig. 4.34. One can see
clearly two distinct relaxation maxima centered at different temperatures for the two 11B
sites corresponding to the BS3 and BS4 groups respectively. Due to extremely poor signal
to noise ratio, we have concentrated the effort to measure the NSLR around the two
maxima and their relative magnitude and position while the investigation over the whole

temperature range was not performed. Contrary to what one might expect at first, the
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Fig. 4.33 1IBNSLR in 0.70Li,$S + 0.30B5S3 at 27 MHz and 112 MHz vs. reciprocal
temperature; shows motional maximum and clear frequency dependence as described in

section 2.2.4.
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Fig. 4.34 11IBNSLR in 0.70Li5S + 0.30B,S3 at 22 MHz vs. reciprocal temperature;
shows two distinguishable motional maxima each corresponding to 4 - and 3 - coordinated
Borons in the same sample. The assignment of each NSLR to the BS3 and BS4 group
respectively is made possible by irradiation of different regions of the 11B NMR spectrum
(see Fig. 4.32).Table 4.3 Parameters from the fit of equation (4.11) to the 1 1B NSLR data

relaxation of 11B is not directly driven by the interaction with the Li hopping ion. This
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can be seen from the comparison of the position of the NSLR maximum for 7Li and 11B,
The maximum of NSLR for 1B in BS4 occurs at higher temperature (see Fig. 4.34).
Instead, the maximum of 7Li NSLR associated with the motion in the vicinity of the BS4
group occurs at lower temperature (see Fig. 4.28). In fact if the relaxation of both 7Li and
11B nuclei were due to the same dynamics (i.e., Li ion hopping), one should have the
maxima in the same temperature range for the same Lamor frequency since at the maximum
of the NSLR one has o1 7 = 1 independent of the nucleus and/or of the coupling

parameters. Furthermore the 1B NSLR maxima can be fitted with a simple BPP

expression:
1 T 47
—= + 4.11
T |:1+ooi1:2 1+4c0,2_12] ( )

with a single activation energy for T The parameters of the fit are given in the Table 4.3. It
can be seen that the activation energy obtained from !1B relaxation and the prefactor 1)
are completely different than the average one obtained from /Li relaxation (see Table 4.3)
besides being a single activation energy and not a distribution. It is interesting to point out
that the values of the relaxation parameters obtained for ! 1B NSLR in our sample are very
similar to the one obtained for silver borates ( see Table 4.3).

Thus we conclude that the 1B NSLR must b’e driven by a local and thermally
activated motion over a small barrier which can be microscopically envisioned as a
structural reorientation of the BS4(BS3) group following the interaction with hopping Li
ion. The above qualitative picture supports the diffusion controlled model of Elliot [171]

and the jump relaxation model of Funke [172].
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Table 4.3 Parameters from the fit of equation (4.11) to the 1 1B NSLR data (see Fig. 4.34)

are compared to the result of A. Avogadro et al [164] for silver borate glass which is

composed mainly of BS units.

11B in BS4 units

11B in BS3 units

(Agl)g.5(Agy0e2B,y
03)0.5 [164]

¢ (rad/sec)? 3.6x109 3.1x109 1.5x109 ‘
70 (sec) 1.8x10-12 7.7x10-12 2.0x10-12
Ea (Kelvin) 2390 1490 2500

It is noted that for some temperatures the recovery of the 7Li nuclear magnetization shows

a departure from a single exponential recovery (see Fig. 4.23). This is probably due to a

break down of the common spin temperature assumption whereby the 7Li nuclei in the two

“ relaxation channels” relax independently.
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CHAPTER V. CONCLUSIONS

The microscopic ion - dynamics in glassy fast ionic conductors, especially sulfide
glasses has been investigated by both NMR techniques and IS (Impedance Spectroscopy)
techniques below the glass transition temperature range ,Tg. For lithium thio germanate

glasses, the data were analyzed in terms of two schemes: i) a stretched exponential

correlation function (KWW) and ii) a distribution of activation energies.

The approach by the phenomenological stretched exponential correlation function
describes well the NMR data and from the fit one can derive reasonable values for
parameters such as the correlation time, the effective activation energy and the B -
exponent of the stretched exponential correlation function. The problem with the KWW -
scheme is that it is not clear what the microscopic meaning of the parameters is. The
coupling model ascribes a microscopic meaning for the parameters whereby (B - Ea*)NMR
(B - Ea*) conductivity is claimed to be the true microscopic single particle activation
energy and the stretched exponential is explained as due to the time dependence of the
single particle hopping rate. It is shown in the present work that while the first prediction
is approximately borne out in the experiments, the second one is not.

Furthermore the KWW approach predicts a single Arrhenius behavior for the dc
conductivity while it is shown that a small but detectable deviation from Arrhenius

behavior can be observed in some glasses. The scheme based on a distribution of activation

energies fits very well the NMR data. The value of the dc conductivity and its temperature

dependence can be reproduced remarkably well by a simple hopping model with percolation

factor which is obtained from the fit of the data and it represent an important parameters
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for the characterization of the FIC. Furthermore the deviation from Arrhenius behavior is
a natural consequence of the presence of a distribution of barriers.

Thus we conclude that the simple model of distribution of barriers which includes
mostly disorder effects is best suited to describe the NMR and conductivity. Within the
framework of this model one can interpret the difference in correlation times observed by
the two techniques whereby the shorter time observed in the conductivity is due to the
percolation of ions around the higher barriers.

By using a double Gaussian distfibution of barriers we could interpret satisfactorily
the anomalous NSLR of 7Li in lithium thio borate glasses, and related it to the 11B NSLR
can be microscopically envisioned as a structural reorientation of the BS4 (BS3) group
following the interaction with hopping Li ion in the same sample. It is concluded that the
two different distributions correspond to the different structural environment around the
two major structural groups i.e., BS3 and BS4. Although the NSLR of the immobile ion is
not a direct consequence of the mobile ion motion, it is shown that the NSLR of immobile
ions are indirectly related to the mobile ion motion. It can be microscopically envisioned
as a structural reorientation of the BS4 (BS3) group following the interaction with hopping
Li ion. Therefore one should consider structure (SRO) carefully when one study the NSLR
of immobile ion and correlate it to the NSLR of the mobile ion.

Therefore the effect of disorder on the motion of mobile ions in glassy fast ionic
conductors have been modeled by the distribution of activation energy which indeed

explain both the microscopic and macroscopic-observations.
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APPENDIX

F.ORTRAN programs to optimize the models to the measured data of NSLR and
conductivity are presented in this appendix. The optimization package "DBCLSF" in
IMSL MATH/LIBRARY, Version 1.1 of Problem-Solving Software Systems is used in
the main program as a subroutine. The other sub routines are to evaluate the functional
form of the model (e.g., KWW and distribution of activation energies) used in the
analysis. Therefore each program has similar structures in the main program except
the assignment of the fitting parameters and data structure, however each subroutines
are programmed according to the model. The functional form of each model is

described in the section 3.4. The usage of each program is appear on the first line of

the comment statements.

Program i
c***************************************************************************
¢ FIT KWW TO NMR T1 DATA
¢ PREPARED BY K.H.KIM MAY '94 FOR FIC-PROJECT
c IN NMR/PHYSICS DEP'T ISU
c***************************************************************************

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION XGUESS(4),X(4),XLB(4),XUB(4),XSCALE(4),

& FSCALE(50),FVEC(50),IPAR(6),RPAR(7),FTAC(50,4)

COMMON TEMP(50),T1(50), OHMEGA

COMMON /PI/ PI, TIP

COMMON /GAM/ A1,A3,A5,A7

common /pre/ ALPHA Ea

common frequency

DATA XSCALE/4*1.D0/,FSCALE/50*1.D0/

EXTERNAL fcn

Al=1.D0/1.2D1

A3=-1.D0/3.6D2

A5=1.D0/1.26D3

A7=-1.D0/1.68D3

PI=DATAN(1.D0)*4.D0

TIP=DLOG(6.2831853D0)/2.D0
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print*,'enter NMR-frequency in MHz'
read* frequency
OHMEGA=2.D0*PI*frequency/10.
PRINT*,'ENTER A=E10 TAUO=E-14 BETA Ea=T/1000 iexcess.’
READ* ,XGUESS, iexc
xguess(1)=2.*xGuess(1)
print* xguess(1),xguess(2),xguess(3),xguess(4)
TIMIN=1.D3
I=1
1 READ(7,*,END=2) TEMP(®),T1(I)
TEMP(I)=TEMP(1)/1.D3
IF (T1(I).Le. T1IMIN) THEN
ISP=I
TIMIN=T1(1)
END IF
I=1+1
GOTO1
2 NDAT=I-1
print* 'iexcess=',iexc
print* 'ndat=',ndat
C************************************************************************
VARIABLE ASSIGNMENT
X(1)=A
X(2)=TAUO
X(3)=ALPHA
X(4)=Ea
Rkkkkkkkdkkkkkkkkkkkkkkkkkkkkkkkkskskokskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk %k
CALL DU4LSF(IPAR,RPAR)
IPAR(3)=5000
IPAR(4)=4*IPAR(3)
CALL

DBCLSF(FCN isp+iexc,4,XGUESS,1,XLB,XUB,XSCALE,FSCALE,IPAR,RPAR,
X,FVEC,FJAC,isp+iexc)

sum=0.40
do i=1,isp+iexc

sum=sum-+fvec(i)
end do
print* ipar(3),ipar(4)
PRINT*'A='X(1)*1.D10/2
PRINT*,'TAU0=",X(2)/1.d14
PRINT#*,'Alpha='X(3)
PRINT*,'Ea=',X(4)*1.d3
print*,'Error=',sum
STOP
END

C
C
C
C
C
C



182

b L e S LR LR L e

C SUBROUTINE FOR EVALUATING FUNCTION
C************************************************************************

SUBROUTINE FCN(M,N,X.,F)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N

~-DIMENSION X(N),F(M)

COMMON TEMP(50),T1(50),OHMEGA

common frequency

A=0OHMEGA/X(1)

ALPHA=X(3)

PRE=OHMEGA*x(2)/1.d7

print*,'A='x(1)*1.D10/2., TAUO=",x(2)/1.d14

print* 'beta='x(3),’ Ea=',x(4)*1.d3
print* ' NMR T1 fit using KWW '
print*,'temperature(k) T1-data(mili sec) Kww-fit'
fsum=0.d0
DO I=1,M
Z=PRE*DEXP(x(4)/TEMP(1))
5 CALL QEVAL(ALPHA,Z,Q1,Q2)

F(I)=A/Z/(Q1+4*Q2)-T1(I)
PRINT* TEMP(I)*1.D3,T1(I),F(I)+T1(I)
END DO

PRINT#* '========== (Frequency=',frequency,' MHz' '
RETURN
END

C************************************************************************

C SUBROUTINE FOR EVALUATING Q
C************************************************************************
SUBROUTINE QEVAL(ALPHA.Z,Q1,Q2)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER N
COMMON /P1/ P1,TIP
COMMON /GAM/ A1,A3,A5,A7
Q1=0.0D+00
Q2=0.0D+00
FACT=0.0D+00
ZLOG=DLOG(Z)
ZL0G2=DLOG(Z*2.D0)
ARG=PI/2.D0*ALPHA
DO 10 N=1,1000
D=N
ONA=1.D0+D*ALPHA
ONASQ=0NA**2
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GAMMA=(ONA-0.5D0)*DLOG(ONA)-

ONA+TIP+(A1+(A3+(A5+A7/ONASQ)Y/

&

10

ONASQ)/ONASQ)/ONA
FACT=FACT+DLOG(D)
DSD=DSIN(D*ARG)
Q1=QI+(-1)**(N-1)*DEXP(GAMMA-FACT-ONA*ZLOG)*DSD
Q2=Q2+(-1)**(N-1)*DEXP(GAMMA-FACT-ONA*ZLOG2)*DSD
CONTINUE
RETURN
END

Program ii
C**************************************************************************
C FIT KWW TO FiIXED TEMPERATURE CONDUCTIVITY DATA

C PREPARED BY K.H.KIM MAY '94 FOR FIC-PROJECT IN NMR/PHYSICS DEP'T

C..ISU

C**************************************************************************

&

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION XGUESS(4),X(4),XLB(4),XUB(4),XSCALE(4),
FSCALE(100),FVEC(100),IPAR(6),RPAR(7),FTAC(100,4)

COMMON FREQ(100),S(100),0HMEGA(100),A(100),PRE(100),V(100)

COMMON /ALPHA/ ALPHA,TEMP

COMMON /Pl/ P1,TIP

COMMON /GAM/ A1,A3,A5,A7

DATA XSCALE/4*1.D0/,FSCALE/100*1.D0/

EXTERNAL fcn

Al1=1.D0/1.2D1

A3=-1.D0/3.6D2

A5=1.D0/1.26D3

A7=-1.D0/1.68D3

PI=DATAN(1.D0)*4.D0

TIP=DLOG(6.2831853D0)/2.D0

print*,'enter TEMPERATURE=K/1000"

read*, TEMP

PRINT*,'TEMPERATURE=',TEMP,'E3K'

PRINT*,'ENTER A=EOE00 TAUO=TAU(0*1E14 BETA Ea=T/1000'

READ* XGUESS

print* xguess(1),xguess(2),xguess(3),xguess(4)

PRINT*,'ENTER #PT TO EXCLUDE FROM END OF DATA'

READ*,STP

I=1

READ(7,* END=2) FREQ(I),S(I),V(l)
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FREQ(I)=FREQ(I)/1.D7
I=[+1]
GOTO1
2 NDAT=I-1
print*,'ndat=",ndat
ndat=NDAT-STP
print* ,'ANAdat=',ndat
C************************************************************************
VARIABLE ASSIGNMENT
X(1)=A
X(2)=TAUO
X(3)=ALPHA(=BETA)
X(4)=Ea
Fkkkokkkkkkkkkkkdkkkkskkokskkskkkkkkokskskkkkokskkkkkokkokskokkkkskkkskskskoskskskokkkkkkk sk kskkkkk
CALL DU4LSF(IPAR,RPAR)
IPAR(3)=5000
IPAR(4)=4*IPAR(3)
CALL
DBCLSF(FCN,NDAT,4,XGUESS,1,XLB,XUB,XSCALE,FSCALE,IPAR,RPAR,
& X,FVEC,FJAC,NDAT)
sum=0.d0
do i=1,NDAT
sum=sum-+fvec(i)
end do
print*'MAX# ITERATIONS=',ipar(3),' ',MAX# FUNC EVAL='"ipar(4)
PRINT*,'A='X(1)
PRINT*,'TAU0=",X(2)/1.d14
PRINT#*,'Alpha=',X(3)
PRINT*,'Ea=',X(4)*1.d3
print* 'Error=',sum
STOP
" END

C************************************************************************

C SUBROUTINE FOR EVALUATING FUNCTION
C************************************************************************
SUBROUTINE FCN(M,N,X,F)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER N
DIMENSION X(N),F(M)
COMMON FREQ(100),S(100), OHMEGA(100),A(100),PRE(100)
COMMON /ALPHA/ ALPHA, TEMP
COMMON /PI/ P1,TIP
ALPHA=X(3)
print* 'A="x(1),) TAUO='x(2)/1.D14
PRINT*,'BETA="X(3),) Ea='x(4)*1.d3

C
C
C
Cc
C
C
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print* '=======Conductivity relaxation fit using KWW correlation===='
print* ' at constant temperature == =
print*,'FREQUENCY(HZ) Real Conductivity KWW - Fit'
fsum=0.d0
DO I=1.M
OHMEGA(I)=2.D0*PI*FREQ(I)
END DO
DO I=1.M

A(T)=OHMEGA(I)*X(1)
PRE(I)=OHMEGA(I)*X(2)/1.d7
Z=PRE(I)*DEXP(x(4)/TEMP)
5 CALL QEVAL(ALPHA,Z,QC,QS)
PRINT#*,'qc=",qc,'qs='",qs
F(I)=1.D7*(A(1)/Z)*(QS/(QS**2+QC**2))-S(I)

print*,'F(I)=",F(I)

print¥* FREQ(I)*1.D7,S(1),SI)+F(I)

END DO

print*' KyungHan, Kim/NMR/Physics '

RETURN

END

C************************************************************************

C SUBROUTINE FOR EVALUATING Q
C************************************************************************

SUBROUTINE QEVAL(ALPHA,Z.QC,QS)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N

COMMON /PI/ PL, TIP

COMMON /GAM/ A1,A3,A5,A7

Qc=1/Z

Qs=0.0D+00

FACT=0.0D+00

© ZLOG=DLOG(Z)
ZL0G2=DLOG(Z*2.D0)

ARG=PI/2.D0*ALPHA
DO 10 N=1,1000
D=N
ONA=1.D0+D*ALPHA
ONASQ=0NA**2
GAMMA=(ONA-0.5D0)*DLOG(ONA)-ONA+TIP+(A1+(A3+(A5+A7/ONASQ)/
& ONASQ)/ONASQ)/ONA

FACT=FACT+DLOG(D)
DSD=DSIN(D*ARG)
DCD=DCOS(D*ARG)
QS=QS+(-1)**(N-1)*DEXP(GAMMA-FACT-ONA*ZLOG)*DSD
QC=QC+(-1)**N*DEXP(GAMMA-FACT-ONA*ZLOG)*DCD
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CONTINUE
RETURN
END

Program iii

of R e T T TP TS

C FIT KWW TO FIXED FREQUENCY CONDUCTIVITY DATA (ARRHENIUS

C PLOT)

C PREPARED BY K.H.KIM MAY '94 FOR FIC-PROJECT IN NMR/PHYSICS
DEP'T ISU

C**************************************************************************

&

Ana'

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION XGUESS(4),X(4),XLB(4),XUB(4),XSCALE(4),
FSCALE(50),FVEC(50),IPAR(6),RPAR(7),FTIAC(50,4)

COMMON TEMP(50),5(50),OHMEGA

COMMON /PI/ P1,TIP

COMMON /GAM/ A1,A3,A5,A7

common /pre/ ALPHA Ea

DATA XSCALE/4*1.D0/,FSCALE/50*1.D0/

EXTERNAL fcn

Al1=1.D0/1.2D1

A3=-1.D0/3.6D2

A5=1.D0/1.26D3

A7=-1.D0/1.68D3

PI=DATAN(1.D0)*4.D0

TIP=DLOG(6.2831853D0)/2.D0

print*,'enter CONDUCTIVITY-frequency in MHz'

read* frequency

PRINT*,'FREQUENCY='FREQUENCY,'MHZ'

OHMEGA=2.D0*PI*frequency/10.

PRINT*,'ENTER A=EOE00 TAUO=TAUO*1E14 BETA Ea=T/1000 #dat for

READ*,XGUESS,nodt

print* xguess(1),xguess(2),xguess(3),xguess(4)
I=1

READ(7,* END=2) TEMP(I),S(I)
TEMP(I)=TEMP(1)/1.D3

I=I+1

GO TO 1

NDAT=I-1

print* 'ndat=',ndat
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ndat=nodt
print*,'# of data to be analyzed=',nodt

C************************************************************************

C
C
C
C
C
C

VARIABLE ASSIGNMENT
X(1)=A
X(2)=TAUO
X(3)=ALPHA(=BETA)
X(4)=Ea

Fhkkckkokdkkkkkkkkkkkkkkkkkkkdkokkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkxk

CALL DU4LSF(IPAR,RPAR)
IPAR(3)=5000
IPAR(4)=4*IPAR(3)

CALL

DBCLSF(FCN,NDAT,4,XGUESS,1,XLB,XUB,XSCALE,FSCALE,IPAR,RPAR,

&

X,FVEC,FIAC,NDAT)

sum=0.d0
do i=1,NDAT

sum=sum-+fvec(i)
end do
print*,'MAX# ITERATIONS="ipar(3)," ','MAX# FUNC EVAL='ipar(4)
PRINT*,'A="X(1)
PRINT*,'TAU0=",X(2)/1.d14
PRINT*,'Alpha=',X(3)
PRINT*,'"Ea="',X(4)*1.d3
print*,'Error=',sum
STOP
END

C************************************************************************

C

SUBROUTINE FOR EVALUATING FUNCTION

C************************************************************************

SUBROUTINE FCN(M,N,X,F)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N

DIMENSION X(N),F(M)

COMMON TEMP(50),S(50), 0HMEGA .

A=OHMEGA*X(1)

ALPHA=X(3)

PRE=OHMEGA*x(2)/1.d7

print*,'A='x(1),)  TAUO='",x(2)/1.D14
PRINT* 'BETA=',X(3),’ Ea='x(4)*1.d3

print*,'=======Conductivity relaxation fit using KWW correlation===="'
print*,' at constant frequecny
print*,'Temperature(Kelvin) Real Conductivity KWW - Fit'
fsum=0.d0

DO I=1,M
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Z=PRE*DEXP(x(4)/TEMP(I))
5 CALL QEVAL(ALPHA,Z,QC,QS)
F(1)=1.D7*(A/Z)*(QS/(QS**2+QC**2))-S(I)
print* temp(i)*1.d3,S(1),S(I)+F(I)
END DO

print* ' KyungHan,Kim/NMR/Physics

RETURN
END

C************************************************************************

C SUBROUTINE FOR EVALUATING Q

C************************************************************************
SUBROUTINE QEVAL(ALPHA,Z,QC,QS)
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER N
COMMON /PI/ P1,TIP
COMMON /GAM/ A1,A3,A5 A7
Qc=1/Z
Qs=0.0D-+00
FACT=0.0D+00
ZLOG=DLOG(Z)
ZLOG2=DLOG(Z*2.D0)
ARG=PI/2.D0*ALPHA
DO 10 N=1,1000
D=N
ONA=1.D0+D*ALPHA
ONASQ=0NA**2
GAMMA=(ONA-0.5D0)*DLOG(ONA)-
ONA+TIP+(A1+(A3+(A5+A7/ONASQ)/
& ONASQ)/ONASQ)/ONA
FACT=FACT+DLOG(D)
DSD=DSIN(D*ARG)
DCD=DCOS(D*ARG)
QS=QS+(-1)**(N-l)*DEXP(GAMMA-FACT-ONA*ZLOG)*DSD
QC=QC+(-1)**N*DEXP(GAMMA-FACT-ONA*ZLOG)*DCD
10 CONTINUE
RETURN
END
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Program iv
c*****************************************************************************
¢ FIT (Gaussian distribution of Ea) TO NMR T1 DATA version 1.1
¢ PREPARED BY K.H.KIM SEPT '94 FOR FIC-PROJECT IN NMR/PHYSICS DEP'T
ISU
c*****************************************************************************
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION XGUESS(3),X(3),XLB(3),XUB(3),XSCALE(3),

& FSCALE(50),FVEC(50),IPAR(6),RPAR(7),FJAC(50,3)
COMMON TEMP(50),T1(50),OHMEGA
COMMON PI,FREQUENCY,Eai,Eaf,D
DATA XSCALE/3*1.D0/,FSCALE/50*1.D0/
EXTERNAL fcn
PI=DATAN(1.D0)*4.D0
print*,'ENTER FREQ(MHZ)'
read* frequency
OHMEGA=2.D0*PI*frequency
PRINT*,'ENTER A[e9] Eb[K] Em[K] WELL-DISTANCE[ANGSTROM]
iexcess.'
READ* XGUESS,D,iexc
print* ,xguess(1),xguess(2),xguess(3),D,IEXC
T1IMIN=1.D3
I=1
1 READ(7,* END=2) TEMP(I),T1(1)
IF (T1(I).Le. TIMIN) THEN
ISP=I
TIMIN=TI(I)
END IF
I=I+1
GOTO1
2 NDAT=I-1
print*,'iexcess=",iexc
print*,'ndat=',ndat
print*,'enter summation range Ea,init(K) Ea,final(K)'
read* ,Eai Eaf

C************************************************************************

C  VARIABLE ASSIGNMENT
C X(1)=A

C X(2)=Eb

C X(3)=Em
C
c

kkkkkdokdkokokskokkkkkkkkkkkkkkkkkkkkkkkk Rk Rk kkkkkkkkkkkkok bk kkkkkkk kR kkk kR kk

CALL DU4LSF(IPAR,RPAR)
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IPAR(3)=5000
IPAR(4)=4*IPAR(3)
CALL

DBCLSF(FCN,isp+iexc,3,XGUESS,1,XLB,XUB,XSCALE,FSCALE,IPAR,RPAR,

&

X,FVEC,FJAC, isp+iexc)

hap=0.d0
do i=1,isp+iexc

hap=hap+fvec(i)
end do
print* ipar(3),ipar(4)
PRINT*'A="X(1)
PRINT*,'Eb',X(2)
PRINT*,'Em=",X(3)
PRINT* 'interwell distance',d
print*,'Error=' hap
STOP
END

C************************************************************************

C

SUBROUTINE FOR EVALUATING FUNCTION

C************************************************************************

33

SUBROUTINE FCN(M,N,X,F)

IMPLICIT REAL*8 (A-H,0-2)

INTEGER N

DIMENSION X(N),F(M)

COMMON TEMP(50),T1(50),OHMEGA
common pi,FREQUENCY, Eai,Eaf,D

A=X(1)

print*,'A="'x(1),’ Eb=",x(2)

print*,'Em="',x(3), ' interwell distance=",d

print*,’' NMR T1 fit using ditribution of Ea

print* 'temperature(k) T1-data(milisec) fit'

fsum=0.d0

DO I=1,M

sum=0.D0

do 33 j=Eai,Eaf
R0=6.d0*24.3366178d0*(J**0.5)*1.D4/d
RT=Dexp(-j/temp(I))*R0O
rho=(1./SQRT(2.*PI)/X(2))*exp(-(J-X(3))**2/2./x(2)**2)
R1=a*rho*(1./RT/(1.+(ohmega/RT)**2)+4./RT/(1.+(2.*ohmega/RT)**2))
rl=rl*1.d3
sum=sum+R1

continue

f(I)=(1./sum)*1.d3-T1(I)

PRINT*,TEMP(I),T1(I),F()+T1(I)

END DO
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PRINT#*,'========== Frequency=',frequency,'MHz','s=============== !
RETURN
END

Program vi
c*****************************************************************************
¢ FIT DOUBLE-Gaussian distribution of Ea TO NMR T1 DATA version 0.1

¢ PREPARED BY K.H.KIM OCT '94 FOR FIC-PROJECT IN NMR/PHYSICS DEP'T
c ISU

C*****************************************************************************

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION XGUESS(6),X(6),XLB(6),XUB(6),XSCALE(6), .
& FSCALE(50),FVEC(50),IPAR(6),RPAR(7),FTAC(50,6)
COMMON TEMP(50),T1(50),0HMEGA
COMMON PI,FREQUENCY, Eai,Eaf,D
DATA XSCALE/6*1.D0/,FSCALE/50*1.D0/
EXTERNAL fcn
PI=DATAN(1.D0)*4.D0
print*,'ENTER FREQ(MHZ)'
read*,frequency
OHMEGA=2.D0*PI*frequency
PRINT*'ENTER A[e9] Eb[K] Em[K] Ebl Eml x(ratio of two Gaussian)'
PRINT*'ENTER interwell distance iexcess' '
READ*,XGUESS,D,iexc
print* xguess(1),xguess(2),xguess(3),xguess(4),xguess(5),xguess(6),D
TIMIN=1.D3
I=1
1 READ(7,*,END=2) TEMP(I),T1(I)
IF (T1(I).Le. TIMIN) THEN
ISP=1
TIMIN=TI(I)
END IF
I=1+1
GOTO1
2 NDAT=I-1

print*,'iexcess=',iexc

print*,'ndat=',ndat
print* 'enter summation range Ea,init(K) Ea,final(K)'
read* ,Eai Eaf

C************************************************************************

C VARIABLE ASSIGNMENT
C X(1)=A
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C X(2)=Eb x(4)=Ebl
C X(3)=Em x(5)=Eml
C x(6)=x
C************************************************************************
CALL DU4LSF(IPAR,RPAR)
IPAR(3)=5000
IPAR(4)=4*IPAR(3)
CALL
DBCLSF(FCN,isp+iexc,6,XGUESS,1,XLB,XUB,XSCALE ,FSCALE,IPAR,RPAR,
& X,FVEC,FJAC,isp+iexc)
hap=0.d0
do i=1,isp+iexc
hap=hap+fvec(i)
end do
print* ipar(3),ipar(4)
PRINT*,'A="X(1),'"Eb=",x(2),'Em=",x(3)
print* 'Eb1=",x(4),'Em1=",x(5)
PRINT*,'x=",X(6)
PRINT#* 'interwell distance',d
print*'Error=' hap
STOP
END

C************************************************************************

C SUBROUTINE FOR EVALUATING FUNCTION
C************************************************************************

SUBROUTINE FCN(M,N,X,F)

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER N

DIMENSION X(N),F(M)

COMMON TEMP(50),T1(50),0HMEGA

common pi,FREQUENCY, Eai,Eaf,D

- A=X(1)
print*,A=",x(1),' Eb="x(2) 'Em=',x(3), ' interwell distance=',d
print*, print*,'Eb1="'x(4), 'Em1=",x(5), 'x=",x(6)
print¥* '===== =NMR T1 fit using ditribution of Ea================
print* 'temperature(k) T1-data(milisec) fit'
fsum=0.d0
DO I=1,M
sum=0.D0

do 33 j=Eai,Eaf

R0=6.d0*24.3366178d0*(J**0. 3)*1 D4/d
RT=Dexp(-j/temp(1))*R0O
rho=(1./SQRT(2.*PI)/X(2))*exp(-(J-X(3))**2/2. /x(2)**2)
rhoo=(1./sqrt(2.%pi)/x(4))*exp(-(-x(5))**2/2./x(4)**2)
rhotot=x(6)*rho+(1-x(6))*rhoo
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Rl1=a*rhotot*(1./RT/(1.+(ochmega/RT)**2)+4 /RT/(1.+(2.*ohmega/RT)**2))
rl=rl1*1.d3

sum=sum-+R1

continue

£(I)=(1./sum)*1.d3-T1(])
PRINT* TEMP(),T1(1),F(I)+T1()
END DO 7
PRINT#*,'========== (Frequency=',frequency,' MHz",'
RETURN
END




