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Beam position monitor (BPM) coefficients are calculated from induced charges on four-button
BPMs in circular and elliptic beam chambers for y >> 1. Since the beam chamber cross-section for
the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM
coefficients and their inversions are computed from two-dimensional electrostatic field distributions
inside an exact geometry of the beam chamber. Utilizing Green’s reciprocation theorem, a potential
value is applied to the buttons rather than changing the beam position, and potential distributions
corresponding to the beam positions are then computed.

1. Cylindrical Chamber

A charged particle beam of short bunches induces charges on the beam chamber wall. Due to
the Lorentz contraction, for y >> 1, where v is the relativistic factor, these charges have the same
longitudinal intensity modulation as the beam. The electromagnetic fields associated with the beam
are obtained by the Lorentz transformation from the fixed lab frame F to a moving reference frame
F', where the charged beam is at rest [1, 2]. The field distribution inside the beam chamber becomes
an electrostatic problem in the moving reference frame. Here we assume that the buttons are
installed flush with the inner surface of the beam chamber, with the chamber having constant cross-
section and the chamber wall at a uniform potential.

For the charge density of a filament beam located at (x,y,) in the transverse plane of the
Cartesian coordinates and moving with a wave number k in the longitudinal direction z in the lab

frame F,

p=p.(x,,y,)cosk(z—vt); 1)

the charge density in the reference frame F', in which the beam is at rest, is expressed as

pi= e o) oy, ¥)
Y
For the filament beam of Eq. (2) located at (r,,0,) in the cylindrical coordinates, the Poisson's
equation is
19, d 1 9* k2 p'
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The solution for the electrostatic potential is a form of the Bessel function with an argument of
krly. When k/y — 0 and ¢(a,6) = 0, the potential for r > r, is given by
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The surface charge density induced per unit length on the inner surface of the chamber in the
longitudinal direction is calculated from Eq. (4) in the lab frame F

o(a,0)=— ‘;’; cosk(z—vOll+23 (a)"cosn(e ~6,)l, ()

n=1

where 1/y is cancelled from the relation E, =y E',. Assuming the BPM coefficients are not depend
on cos k(z-vt), that factor is omitted in the following expressions. The induced charges associated
with the sum, vertical, and horizontal signals for four-button BPMs, shown in Fig. 1(a), are
therefore given by
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2. Elliptic Chamber

The Poisson's equation in the Cartesian coordinates, V2¢ =—p'/g,, for the filament beam
of Eq. (2) may be written as

aZ 82 k2

[—5x—2+ay—2—7]G(x V3%, Y,) =—0(x—x,)8(y—,), €))

where G(x,y;x,,Y,) is a Green's function to be solved, and the electrostatic potential in the lab frame
can be calculated from the Green’s function

o= [[dx,d, ~’1’{-“%"—)cosk(z—w)c;(x, ViX,,9,)- ®)

o

For a beam chamber of elliptic cross-section, the following inverse hyperbolic cosine
transformation makes it possible to solve Eq. (7) analytically:

w = u + 10 = cosh’\(z/d),
or z=Xx+iy=d (cosh u cos @ +i sinh u sin 6) )]
with  h, =h, =|dz/dw|=d(cosh® u—cos®6)">.




Then, for a constant u,,

x 2 Y 2
+ =1 10
dcoshu, ) (d sinhu, ) (10)

represents a confocal ellipse with foci at + d, and similarly, constant values of 6 make a set of
confocal hyperbolas orthogonal to the ellipse as shown in Fig. 1(b). Table 1 lists the parameters for
the synchrotron and storage ring chambers before and after the transformation.

Table 1. Beam Chamber Parameters with Units in mm
Synchrotron  major axis=30 minor axis=185 4. =0.7196 d=23.62
Storage Ring 42.34 20.85 0.5393 36.85

After the elliptic transformation, Eq. (7) becomes

[az + " _kd” (cosh® u—cos’0)IG(u,0;u,,0 )=-6w—-u,)5(0—-0)) (11)
auz 862 72 L Rl [ 0/*

and
&u,0) = E 2”-p"—(:"}”—e"—)-cosk(z —-v)G(u,0;u,,6,)d6,du,. (12)

Equation (11) may be separated into two Mathieu equations. After Laplace transformations, radial
solutions are obtained as a series of Bessel and Neumann functions with arguments of kd/y cosh u
and kd/y cos 6. For kdfy << 1, it is not worthwhile to perform the task of calculating an exact
solution and then approximate it in order to compute numerical values [3]. Instead, kd/y is set to
zero in Eq. (11) and solved with boundary conditions of ¢(i.,8) = 0 and ¢(0,6) = continuous. Then,
the Green's functions are given by
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Because of the boundary condition that ¢ be continuous near u = 0, there are no terms such as
cosh(mu) sin(m0) and sinh(mu) cos(mB) in Egs. (13) and (14). Since the curves with constant values
of 0 are orthogonal with the chamber surface, u = u,, the induced charge density on the chamber
surface 6(u.,6) = - €,(d¢rou) at u=u, is calculated from Egs. (12) and (14) as




o, ,0)=— [1 ZZ(%cosmG cosm@ +S—h—ﬁuism m@, sinm®)]. (15)
i coshmu, sinhmu,

As in the case of the cylindrical chamber, the cos k(z-vf) factor is omitted in the following
expressions. The induced charges associated with the sum (Q;), vertical (Q,), and horizontal (Q,)
signals for four-button BPMs shown in Fig. 1(b) are given by

4A6 = coshm sinmAB /2
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3. Numerical Values of the BPM Coefficients

Numerical values of the BPM coefficients and their inversions are computed from two-
dimensional electrostatic field distribution inside an exact geometry of the beam chamber. The last
three equations were used only to cross check the computation results. Figure 2 shows the cross-
section of the beam chamber. The four 10-mm-diameter buttons are installed symmetrically with
respect to the origin of the coordinates at (x,y,) = (¥14.0 mm, £19.0 mm), flush with the chamber
surface.

When +1.0 V is applied to all four buttons and the conducting chamber is grounded, the
potential at any point in the chamber is defined as the sum signal Q;. In Fig. 2 there are 20
equipotential lines between a button and the chamber. The potential near the origin is between 0.25
and 0.3 V. The potentlal at (5, 5), for example, is 0.302 V. Having Q; = 0.302 C in Eq. (16) with py
= -0.95 C/mm” yields equivalent results. Since we are only concerned with the relative magnitudes
of the sum, vertical, and horizontal signals, the signal units will now be ignored.

The equipotential contours for the vertical and horizontal signals are shown in Fig. 3. The
vertical signal Q, was obtained by applying +1V to the upper two buttons and -1V to the lower two
buttons. Similarly, the horizontal signal O, was obtained by applying +1V to the right two buttons
and -1V to the left two buttons. Asymmetry of the signal (due to the antechamber) is relatively
small. At y, = 5 mm, the vertical signal difference for x, = £ 10 mm is less than 103, and that for x,
= -i_-315 mm is 5 x 107>, At ¥, = 0, the horizontal signal difference for a given + x, is less than 2.5 x
10™.

Vertical and sum signals vs the vertical beam position y, are plotted in Fig. 4 at selected
horizontal beam position x,. Higher sensitivities of the signals for ly,| > 10 mm at x, = 15 mm, for
example, are seen from the contour plots of Figs. 2 and 3. Fortunately, the normalized vertical
signals (Q,/Q;), plotted in Fig. 5, are closer to linear variations with respect to the vertical beam
positions. The normalized signals are also plotted as a function of the horizontal beam positions in
Fig. 5.




Similarly, horizontal, sum, and normalized horizontal (Q,/Q;) signals are plotted in Figs. 6 and
7. Relatively large variations of Q; and Qs at y, = 15 mm are expected from the contour plots of
Figs. 2 and 3. The variations of the normalized signals are smoother. However, their sensitivities
are severely reduced for Lx,| > 10 mm.

In Table 2, coefficients for polynomial curve fits are listed for the normalized vertical signals
(Qy/0,) vs the vertical beam positions y, and their inversions at selected horizontal beam positions.
Ideally, the coefficients of even orders should be zero; small values are due to the antechamber and
computation errors. Within ly,| < 15 mm, as the R-values indicate the reliability of the curve fits,
third-order polynomial seems to be good enough. In the last row, the coefficients for linear fits
within ly,l < 5 mm are listed.

The coefficients for the normalized horizontal signals are listed in Table 3. The horizontal beam
positions are limited to Lx,l < 15 mm for y, = 0 and 5 mm, and Ix,| < 10 mm for y, = 10 and 15 mm.
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Table 2. Polynomial coefficients for 0/Q; vs y, (ly,l < 15 mm) and their inversions up to
the fifth and third orders at selected values of x,. R-values indicate the reliability of the
curve fits. The linear coefficients within ly,| < 5 mm are listed in the last row.

@) V=M, + My, + Mpy, + -+ Msy,”, (V=0,/0,)

x_é___-—_-___()l X, =5 X, =10 x, =15 X, =20
M, -1.52E-06]  8.56E-05| 0.0003699, 0.0008404] 0.0013309
M, 0.055024|  0.059777|  0.069485  0.074561]  0.069003
M, 7.29E-09] -3.11E-06] -4.23E-06] -3.32E-06] -1.95E-06
M; -6.14E-05!  -5.22E-05|  -4.59E-05| -4.36E-05|  -3.69E-05
M, -4.04E-11 1.38E-09]  7.99E-09] 101E-09]  1.68E-09
M; 3.37E-08) 2.30E-08) -1.69E-08) -6.13E-08] -3.02E-08
R 1 1 1 1 1
() V=M,+ My, + Mzy,” + May,”
M, -1.52E-06]  7.94E-05|  0.000334] 0.0008359] 0.0013234
M; 0.055024 0.05949,  0.069696  0.075324]  0.069378
M, 7.29E-09] -2.84E-06] -2.66E-06| -3.13E-06| -1.62E-06
M; -6.14E-05| -4.64E-05| -5.02E-05] -5.92E-05| -4.45E-05
R 1 1 1 0.99999 1
l
() Yo = Mo + My V + my V24 --- + msV>, (Inverted polynomial coefficients)
X, =0 Xo=3 x, =10 X, =15 X, =20
m, 3.01E-05] -0.001185] -0.005304] -0.011073] -0.019332
my 18.412 16.828 14.521 13.633 14.603
m, -0.000107] 0.0054239] 0.0098128| 0.0011322| 0.0011304
ms 2.5812 2.7239 0.75408 -0.36652 0.608
my 0.0004878]  0.048948 0.00424] 0.0069947,  -0.009774
ms 21.593 6.6561 3.3942 3.7815 2.8276
R 1 1 1 0.99999 1
(d) yo.=my+ my V+m, V> + msV°
m, 2.30E-05] -0.002415] -0.005465] -0.011718] -0.019131
my 17.39 16.298 13.989 12.88 14.137
m; 6.24E-05 0.02768]  0.012252] 0.0072527] -0.003556
m; 13.121 6.9488 3.7834 3.4361 3.1995
R 0.99993 0.99998 0.99996 0.99992 0.99997
(€)yo=mY for ly,| <5 mm
m | 18.49) 16.96| 14.55| 13.55] 14.62




Table 3. Polynomial coefficients for /0, vs x, (Ix,] < 15 mm for y, = 0 and 5 mm,
and Ix,l < 10 mm for y, = 10 and 15 mm) and their inversions up to the fifth and third
orders. R-values indicate the reliability of the curve fits. The linear coefficients within
x,l < 5 mm are listed in the last row.

(@) H =N, + Ny x,+ Nax,°+ - + N5 x,°, (H=0,0,)

Yo=0 Yo=3 Yo =10 Y =15
N, 3.20E-05 -0.000551] -0.001332] -0.002377
N; 0.057954]  0.065643]  0.089754 0.12658
N2 -1.14E-07]  491E-06] 1.49E-05| 3.21E-05
N3 -9.89E-05| -0.000129] -0.000268]  -0.000516
N4 2.08E-10| -9.96E-09] -5.15E-08] -1.22E-07
Ns 1.21E-07]  1.66E-07] 5.64E-07|  1.15E-06
R 1 1 1 1

() H =N, + Ny X0+ Naxo + N3 x,°

N, 3.11E-05] -0.000507] -0.001285] -0.002267
N 0.05645] 0.063576]  0.088347 0.12371
N, -7.33B-08] 296E-06] 1.04E-05| 2.14E-05
N3 -6.82E-05| -8.66E-05| -0.000204| -0.000385
R 0.99996 0.99994 0.99999 0.99997

©x,=n,+nH+n, H+ -+ nsHs, (Inverted coefficients)

Yo=0 Yo=8 v, = 10| Yo =15
n, -0.000551; 0.0081524 0.014706 0.018208
n 17.462 15.597 11.248 8.2602
n; -0.000259| 0.0036981; 0.0001707, 0.0083058
n3 4.4509 0.88597 2.4051 -1.1738
ny -0.000822| -0.057578] -0.024826/ -0.021612
ns 30.068 29.088 9.7406 7.1476
R 1 0.99999 1 0.99997
dx,=n,+nH+ n, H? + n;H°
n, -0.000558;  0.0094429 0.015501 0.020148
ny 16.15 13.846 10.645 7.0779
n; -0.000341)  -0.020362| -0.012441, -0.009957
n3 18.474 16.789 7.8307 5.3098
R 0.9999 0.99979 0.99994 0.99964
(e) x, =nH for for lx,l <5 mm _
n | 17.68| 15.67| 11.67| 8.42




v><

Fig. 1. (a) Four-button BPMs on a circular beam chamber of radius a. Here (a, ;) is the
button position in the first quadrant, (a A@) is the button diameter, and (r,, 0,) is the beam
position. (b) Elliptical beam chamber with major and minor radii of d cosh u; and d sinh
u., and foci at + d. (uc, 9p) is the button position in the first quadrant, (u; A@) is the button
diameter, and (u,, 0,) is the beam position.
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Fig.2. Equipotential lines for sum signals from four-button BPM:s installed on the storage

ring beam chamber. The 10-mm-diameter buttons are located at (+14.0 mm, £19.0 mm)

flush with the chamber surface. There are 20 equipotential lines between the BPMs

(which were applied +1.0 V) and the grounded beam chamber.
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Fig. 3. Top: Forty equipotential lines for vertical signals between the top two BPMs at
+1.0 V and bottom two at ~1.0 V. Bottom: Forty equipotential lines for horizontal signals
between the right two BPMs at +1.0 V and the left two at 1.0 V.




Vertical signal vs. vertical beam position
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Fig. 4. Vertical (Qy) (top) and sum (Q;) (bottom) signals vs vertical beam position y, at
selected horizontal beam positions. The signal units are in volts when the BPMs are
applied plus or minus one volt.




Nomalized vertical signal vs. vertical beam position
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Fig. 5. Normalized vertical signal (Q,/Q;) vs vertical beam position (top) and horizontal
beam position (bottom).




Horizontal signal vs. horizontal beam position
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Fig. 6. Horizontal (Qy) (top) and sum (Q;) (bottom) signals vs horizontal beam position x, at
selected vertical beam positions. The signal units are in volts when the BPMs are applied
plus or minus one volt.




Normalized horizontal signal vs. horizontal beam position
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Fig. 7. Normalized horizontal signal (Q»/Qs) vs horizontal beam position (top) and
vertical beam position (bottom).




