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Beam position monitor (BPM) coefficients are calculated from induced charges on four-button
BPMs in circular and elliptic beam chambers for y >>1. Since the beam chamber cross-section for
the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM
coefficients and their inversions are computed from two-dimensional electrostatic field distributions
inside an exact geometry of the beam chamber. Utilizing Green’s reciprocation theorem, a potential
value is applied to the buttons rather than changing the beam position, and potential distributions
corresponding to the beam positions are then computed.

1. Cylindrical Chamber

A charged particle beam of short bunches induces charges on the beam chamber wall. Due to
the Lorentz contraction, for y>> 1, where y is the relativistic factor, these charges have the same
longitudinal intensity modulation as the beam. The electromagnetic fields associated with the beam
are obtained by the Lorentz transformation from the fixed lab frame F to a moving reference frame
F’, where the charged beam is at rest [1, 2]. The field distribution inside the beam chamber becomes
an electrostatic problem in the moving reference frame. Here we assume that the buttons are
installed flush with the inner surface of the beam chamber, with the chamber having constant cross-
section and the chamber wall at a uniform potential.

For the charge density of a filament beam located at (xO,yO)in the transverse plane of the
Cartesian coordinates and moving with a wave number kin the longitudinal direction z in the lab
fiarne F,

P = Pk(%3Yo)cosk(z-v~); (1)

the charge density in the reference frame F’, in which the beam is at rest, is expressed as

p,= Pk (%3 Y. ) Cos(kz,,y)

Y
(2)

For the filament beam of Eq. (2) located at (r0,6JO)in the cylindrical coordinates, the Poisson’s
equation is

(3)

The solution for the electrostatic potential is a form of the Bessel function with an argument of
kr/y When kiy + Oand @(a,@)= O, the potential for r > rOis given by

fw3)=--& cos(kz’/y)[ln(~) – ~~{ (~)n - (~)n }cos n(f3–tloj].
o a ~=1n r

(4)
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The surface charge density induced per unit length on the inner surface of the chamber in the
longitudinal direction is calculated from Eq, (4) in the lab frame F

cr(a,e) = –~cosk(z –vt)[l+2~ (~)” Cosfz(e –eO)],
2nn n=l a

(5)

where lly is cancelled from the relation El= ~ E’L.Assuming the BPM coefficients are not depend
on cos Ic(z-vt), that factor is omitted in the following expressions. The induced charges associated
with the sum, vertical, and horizontal signals for four-button BPMs, shown in Fig. 1(a), are
therefore given by

Q,= -P, y[l+~{l+ (–1)”}(;)” Cosliep Cosneo( ‘i;::;;2)l>
~=1

Q,= -P, ~>{l-(-l)n}(~)n sinnd, sinnf30(si~~j~~2),
n a

(6)

4A* ~{1-(-1)”}(~)” cosnep Cosneo(si:;;:;$.Q.= ‘p, ~:,
n- a

2. Elliptic Chamber

The Poisson’s equation in the Cartesian coordinates, V’@= –p’/eo, for the filament beam

of Eq. (2) maybe written as

~a’ ;a’ k’
—–Y]G(x, y;xO, yO) =–6(X-XO)6(Y-Ye),

ax’ ay’ Y
(7)

where G(x,y;xO,yO)is a Green’s function to be solved, and the electrostatic potential in the lab frame
can be calculated from the Green’s function

@= j’j’&o~yo Pk (-%>Yo) cosk(z - vf)G(x, Y;xo , Y. ).
&oy

(8)

For a beam chamber of elliptic cross-section, the following inverse hyperbolic cosine
transformation makes it possible to solve Eq. (7) analytically:

w = u + iO= cosh-l(z@),
or z=x+iy=d(cosh ucos6+isinhusin (3) (9)

with hU= ho = IdZ/d~ = d(cosh2 U –COS2 @“2.



.

Then, for a constant UC,

( x )’+(dsi:hu)2=1
d coshuc

(lo)
c

represents a confocal ellipse with foci at * d, and similarly, constant values of Omake a set of
confocal hyperbolas orthogonal to the ellipse as shown in Fig. l(b). Table 1 lists the parameters for
the synchrotrons and storage ring chambers before and after the transformation.

Table 1. Beam Chamber Parameters with Units in mm
Synchrotrons major axis=30 minor axis=18.5 UC=0.7196 d= 23.62

Storage Ring 42.34 20.85 0.5393 36.85

After the elliptic transformation, Eq. (7) becomes

~az~ 82 k’d’——
s

—(cosh’ U -COS2 19)]G(u,t?;u0,80) = ‘6(U ‘UO)6(6 -8.),
ae’ Y’

and

$(u,e) =~~ ~$f’”) cosk(z – vt)G(u,t3;u0 ,60)d60du0.
0

(11)

(12)

Equation (11) may be separated into two Mathieu equations. After Laplace transformations, radial
solutions are obtained as a series of Bessel and Neumann fimctions with arguments of kdly cosh u
and kdky cos 6. For lcdly cc 1, it is not worthwhile to perform the task of calculating an exact
solution and then approximate it in order to compute numerical values [3]. Instead, lw!lyis set to
zero in Eq. (11) and solved with boundary conditions of ~@, 6) = Oand O(O,0) = continuous. Then,
the Green’s fi.mctions are given by

1 - &mu
Q,O; UO,OO) = –u02~uC –— x c [{

cosh hWO
–e ‘~(uo-tic)}coshnw COSmeO COSl?Z8

x .=lm cosh muC

sinh muO
+{ —e‘M(UO-UC)}sinhmusin m(30sin nzO, (u 5 u.)

sinh muC

and

G(u,0;u0,60) = –~–~~~e-mu’
cosh mu

[coshmuO{Coshmu - e-~(”-ur)
n m=,m c

sinh mu
+ sinh muO{ –e ‘m(u-u’)}sinmOOsin me. (u 2 u.)

sinh muC

(13)

cos mf?o cos mtl

(14)

Because of the boundary condition that ~ be continuous near u = O, there are no terms such as
cosh(nw) sin(nkJj and sinh(mu) cos(n29 in Eqs. (13) and (14). Since the curves with constant values
of 9 are orthogonal with the chamber surface, u = UC,the induced charge density on the chamber
surface cr(uC,9 = - &@@3u) at U=UCis calculated from Eqs. (12) and (14) as



. z

“ cosh nwO sinh muO
“ 1+ 22( ~oshm~a(uc,e)=---[ Coslneo Cos??ze+ sinn@Osinm8)]. (15)

c sinh muC

As in the case of the cylindrical chamber, the cos k(z-vt) factor is omitted in the following
expressions. The induced charges associated with the sum (Q,), vertical (QY),and horizontal (QJ
signals for four-button BPMs shown in Fig. 1(b) are given by

Q,= -P, ~~{l-(-l)m}~h~ sinm60 sinm0P(si~~~~2),
cLIL “=i

Q.= -P, &g{l-(-l)”
m

cosh muO sin mA(3 /2
cos m60 cosmf3P ( ).

cosh muC mAt3/2

(16)

(17)

(18)

3. Numerical Values of the BPM Coefficients

Numerical values of the BPM coefficients and their inversions are computed from two-
dimensional electrostatic field distribution inside an exact geometry of the beam chamber. The last
three equations were used only to cross check the computation results. Figure 2 shows the cross-
section of the beam chamber. The four 10-rnm-diameter buttons are installed symmetrically with
respect to the origin of the coordinates at (.x.,yo)= (t14.O mm, *19.O mm), flush with the chamber
surface.

When +1.0 V is applied to all four buttons and the conducting chamber is grounded, the
potential at any point in the chamber is defined as the sum signal Qs. In Fig. 2 there are 20
equipotential lines between a button and the chamber. The potential near the origin is between 0.25
and 0.3 V. The potential at (5, 5), for example, is 0.302 V. Having QS= 0.302 C in Eq. (16) with pk
= -0.95 C/mm2 yields equivalent results. Since we are only concerned with the relative magnitudes
of the sum, vertical, and horizontal signals, the signal units will now be ignored.

The equipotential contours for the vertical and horizontal signals are shown in Fig. 3. The
vertical signal QYwas obtained by applying +lV to the upper two buttons and –lV to the lower two
buttons. Similarly, the horizontal signal Q. was obtained by applying +lV to the right two buttons
and –lV to the left two buttons. Asymmetry of the signal (due to the antechamber) is relatively
small. At yO= 5 mm, the vertical signal difference for x. = & 10 mm is less than 10-3,and that for XO
= *15 mm is 5 x 10-3.At yO= O, the horizontal signal difference for a given i X. is less than 2.5 x
10-3.

Vertical and sum signals vs the vertical beam position yO are plotted in Fig. 4 at selected
horizontal beam position Xo.Higher sensitivities of the signals for lyOl>10 mm at X. = 15 mm, for
example, are seen from the contour plots of Figs. 2 and 3. Fortunately, the normalized vertical
signals (Q~QJ, plotted in Fig. 5, are closer to linear variations with respect to the vertical beam
positions. The normalized signals are also plotted as a function of the horizontal beam positions in
Fig. 5.



Similarly, horizontal, sum, and normalized horizontal (Q#Q.) signals are plotted in Figs. 6 and
7. Relatively large variations of Q. and Q, at y. = 15 mm are expected from the contour plots of
Figs. 2 and 3. The variations of the normalized signals are smoother. However, their sensitivities
are severely reduced for lxOl>10 mm.

In Table 2, coefficients for polynomial curve fits are listed for the normalized vertical signals

(Q/QJ vs the vertic~ beam positions Y~ ~d their inversions at selected horizontal beam positions.
Ideally, the coefficients of even orders should be zero; small values are due to the antechamber and
computation errors. Within [y@l< 15 mm, as the R-values indicate the reliability of the curve fits,
third-order polynomial seems to be good enough. In the last row, the coefficients for linear fits
within lyOle 5 mm are listed.

The coefficients for the normalized horizontal signals are listed in Table 3. The horizontal beam
positions are limited to LXOI<15 mm for y. =Oand5mm, andlzol<10mmforyo= 10and15mm.
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Table 2. Polynomial coefficients for Q@$vs y. (lyOl<15 mm) and their inversions up to
the fifth and third orders at selected values of x.. R-values indicate the reliability of the
curve fits. The linear coefficients within ly~le 5 mm are listed in the last row.

(a) V = w+ Ml y. + M2y02+ --- + M5y05, (V = Q#QJ

x.= 01 x* = 5 x_*= 10 Xo=15 X.= 20

MO - 1.52E-06 8.56E-05 0.0003699 0.0008404 0.0013309

Ml 0.055024 0.059777 0.069485 0.074561 0.069003
i M2 7.29E-09 -3.1 lE-06 -4.23E-06 -3.32E-06 -1.95E-06
i M3 -6. 14E-05! -5.22E-05 -4.59E-051 -4.36E-05/ -3.69E-05

ml -4.04E-11 1.38E-09 7.99E-09~ 1.OIE-09~ 1.68E-09

MS i 3.37E-08 2.30E-08 -1.69E-08~ -6.13E-08~ -3.02E-08
R 1 11 1[ 11 1

(b) V = ~+ MlyO + Mzy02 + M3y03

& -1.52E-06 7.94E-051 0.000334] 0.0008359~ 0.0013234

Ml 0.055024 o.05949~ 0.069696 0.075324~ 0.069378~

M2 7.29E-09 -2.84E-06~ -2.66E-06 -3. 13E-06 -1.62E-06

M3 -6. 14E-051 -4.64E-05 -5.02E-05 -5.92E-05 -4.45E-05

R 1 11 1 11 0.999991 1

l(c)yO=~+ml V+mzV2+ --- + m5V5, (Inverted polynomial coeftlcients)
L

x.= o! X*=5 Xo= 10I Xo= 15/ x.= 20

m 3.OIE-05 -0.001185 -0.005304 -0.01 lo73~ -0.019332

ml 18.412 16.828, 14.521 13.633 14.603

I mz -O.OOO1O7 0.0054239~ 0.0098128 0.0011322 0.0011304

ms 2.5812 2.7239 $ 0.75408~ -0.36652 0.608

ml 0.0004878 0.048948 0.00424 0.0069947~ -0.009774

t

ms 21.593 6.6561\ 3.3942 3.7815 2.8276

R 1 11 1 0.99999 1

(d)yo=~+ ml V+m2V2+m3V3

m 2.30E-05 -0.0024151 -0.005465 -0.011718 -0.019131

ml ‘ 17.39 16.2981 13.989 12.88 14.137

mz 6.24E-05 0.02768~ 0.012252 0.0072527 -0.003556

ms ! 13.121 6.9488 3.7834 3.43611 3.1995

R 0.99993 0.99998 0.999961 0.999921 0.99997

(e)yO=m Vforlyolc5mm
m 18.491 16.961 14.551 13.551 14.62



Table 3. Polynomial coefficients for ~i~. vs XO(lxOl< 15 mm for y. = O and 5 mm,
and lzOlc 10 mm for yO= 10 and 15 mm) and their inversions up to the fifth and third
orders. R-values indicate the reliability of the curve fits. The linear coefficients within
lxOlc 5 mm are listed in the last row.

l(a) H = NO+ Nlxo + N2X02+--- + N5XOS,(H = QJQ,) i

~
I YA &Al J!!d!2 M

I N. 3.20E-05\ -0.000551 I -0.001332 -0.002377

N1 o.057954\ 0.065643\ 0.0897541 0.12658

N2 -1.14E-07~ 4.91 E-06~ 1.49E-05 3.21E-05

N3 -9.89E-05\ -0.000129/ -0.000268 -0.0005 16!

N4 2.O8E-10 -9.96E-09 -5.15E-081 -1.22E-07

N5 1.21E-07 1.66E-07 5.64E-07~ 1.15E-06

R I 1, 1~ 11 1

](b)H = N.+ NIxo+ N2xo’ +N3x03 I
i No 3.llE-05 -0.0005071 -0.001285\ -0.002267\

N1 0.05645 0.063576~ 0.088347 0.12371~

Nz -7.33E-08 2.96E-06j 1.04E-05 2. 14E-051
I

N3 ‘ -6.82E-05~ -8.66E-05 -o.000204~ -0.000385/

IR 0.999961 0.99994 o.99999~ 0.99997’

\ f
kc)x~ = no+ m H+ n~Hz+ --- + nsH5, (Inverted coefilcients) I

[ &?All Y(A YQ4q YQA5
no -0.000551 ~ 0.0081524 0.014706~ 0.018208

i nl 17.4621 15.597] 11.2481 8.2602!

1 n2 I -0.0002591 0.00369811 0.00017071 0.00830581

ns I 4.4509~ 0.885971 2.4051 I -1.1738!
I

m -0.000822 -0.057578 -0.024826[ -0.021612

ns 30.068 29.088 9.7406/ 7. 1476/

R 11 0.999991 q 0.99997

(d)xO=~+nl H+n2H2+n3H3

m -0.0005581 0.0094429! 0.015501{ 0.020148

1 m 16.151 13.8461 10.6451 7.07791

nz -0.000341 -0.0203621 -0.012441 -0.009957

ns 18.474 16.7891 7.8307 5.3098

R 0.9999 o.99979\ 0.99994 0.99964

(e) x.= n H for for L.GI<5 mm

L_!L.-J 17.681 15.671 11.671 8.421



(a)

Fig. 1. (a) Four-button BPMs on a circular beam chamber of radius a. Here (a, 8P) is the
button position in the first quadrant, (a A6) is the button diameter, and (r., 0.) is the beam
position. (b) Elliptical beam chamber with major and minor radii of d cosh UCand d sinh
uC,and foci at ~ d. (UC,@ is the button position in the first quadrant, (uCA6) is the button
diameter, and (uO,&J is the beam position.
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Horizontal signal vs. horizontal beam position
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Normalized horizontal signal vs. horizontal beam position
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