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Abstract

It is shown that as the resonance condition of the particle-wéve interaction is varied
adiabatically, that the particles trapped in the wave will form phase space holes or clumps
that can enhance the particle-wave energy exchange. This mechanism can cause much larger
saturation levels of instabilities, and even allow the free energy associated with instability,

to be tapped in a system that is linearly stable due to background dissipation.
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I. INTRODUCTION

There are many cases in plasma physics where the resonant interaction of particles and
waves determine interesting physical phenomena. A common example arises when a coherent
mode, established by the interaction of the electromagnetic field and the majority of plasma
particles, is destabilized through a particle-wave resonance with a minority component that
is supplying “free energy” to feed the wave. Examples vary from the basic bump-on-tail
instability!—? arising in plasma oscillations to the instability of a fusion producing plasma in
a torus where the Toroidal Alfvén Eigenmode*~7 can be destabilized by alpha particles that
tap the universal instability drive. Another type of instability is exemplified by the so-called
fish-bone instability,®~!® where the minority species is needed to both establish the wave,
and destabilize it due to a resonant energy exchange mechanism. Other examples of the use
of particle resonances occur in applications to current drive!! and energy “channelling”.!?

In this note we wish to point out a mechanism first reported in Ref. 13, whereby the power
transfer of particles to waves can be enhanced from the prediction of linear theory through the
adiabatic transport of resonant particles trapped in a coherent wave as the resonance location
in phase space is continuously varied. Another study of such effects has been discussed by
Mynick and Pomphrey,!4 where they primarily addressed how particles can be extracted by
frequency sweeping and they noted that energy can also be extracted by this method. Here
we show how to apply the results of Ref. 13 to determine the field amplitude and energy
conversion level as a result of sweeping. By scanning frequency sufficiently slowly, trapped
particles can remain trapped in a wave as the resonance condition changes and thereby phase
space gradients build-up as the trapped particles, with their specified distribution, convect
into other phase space regions where the surrounding distribution is different. We shall show

that these gradients, which, depending on the system and the direction of the frequency scan,




take either the form of phase space “holes”!® (where the trapped distribution is depressed

"16 (where the trapped distribution is

from neighboring regions) or phase space “clumps
enhanced from neighboring regions) enhance the energy transfer rate of the resonant particles
to the wave. This phenomenon has the effect of allowing for much larger saturation levels
than otherwise would be expected in an unstable system. In a system linearly stabilized
by background dissipation, the enhanced energy exchange associated with this mechanism,
allows the wave energy to spontaneously grow from an imposed low level seed perturbation.

This phenomena allows energy channelling to be more efficient than otherwise, as background

dissipation no longer sets a stringent bound for tapping the particle free energy.

II. POWER TRANSFER BY ADIABATIC RESONANCE
SWEEPING

In order to tap the free energy reservoir of weak instabilities it is normally necessary for
the linear instability drive to overcome dissipation from mechanisms related to the back-
ground plasma. The evolution of the wave energy can be described as the rate of change of
wave energy W, being equal to the power extracted from the linear drive, minus the power
absorbed by the background plasma through dissipation. In linear theory all the terms of
such an equation are proportional to the square of the electric field, E, of the wave. In this
discussion it will be convenient to use the mean trapping frequency, @ g, for particles deeply
trapped in a finite amplitude wave as one can express in a universal way, the response of any
physical system with weak instability in terms of @p. The trapping frequency of a particle,
w3, is proportional to |E|'/2. The kinetic particles driving the instability have a “free energy”
Wr, in a volume V occupied by a single mode, that in principle can be transferred to the
mode. Roughly, the free energy is the energy that has to be extracted from the particles to
make the kinetic distribution of the particles be stabilizing, and the free energy is generally

comparable to the kinetic energy of the particles. It can be shown that the relation between




wave energy, free energy, and bounce frequency scales roughly as

Wr @4
W ——= 1
v (1)

where {2 is the spread of the frequency resonance function over the particle distribution
function (for a particle in resonance = 0), and v, is the linear growth rate. We will
primarily use the electrostatic one-dimensional bump-on-tail problem as a paradigm, as for
a given mode, wp needs to be determined only at the one point in velocity space where there
is resonance. However, our results are quite general if a mean value of wp is taken. In the
bump-on-tail problem, the resonance is 2 = w — kv, with w the mode frequency, k¥ the mode
wavenumber, v the particle velocity, and the bounce frequency is given by wp = (& kE)!/2

with E the electric field amplitude.

Now the equation for the wave energy evolution can be written as

% W =2y W - 2y W (@)

with ~, the damping rate. Upon substituting Eq. (1) in Eq. (2), this relation becomes

17,
& -43 = 2’)’[,043 - 2’)’4 U“B. (3)

It has been shown!”~2! that under many conditions a single mode saturates at a level
where @Wg ~ v = 7L — Y4 The free energy released by particles to the wave, AW, is then
found from Eq. (1) to be

AW ~ Wi (%)3 % 4)
This is a rather low level of conversion of free energy to wave energy.

We now note that we can convert considerably more free energy if we can slowly change

the resonance position in time. This problem has already been analyzed analytically in

Ref. 13, where it was assumed that the destabilizing particles were slowing down due to

drag, and that diffusive processes such as pitch angle scattering, were unimportant. In fact
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it turns out that the treatment of the problem is identical whether the resonance condition
(recall 2 = w — kv for the electrostatic problem) for a particle changes, due to drag (then
4 — _k % = vkv = vw where & = —wv), or due to the mode frequency changing in time
(for which % = % — yy;, where now v = 1 %) The analysis shows that if & « w}, there
will be an adiabatic invariant that causes the particles trapped in the wave field to remain
trapped as the resonance changes. This means that as the resonance is swept, particles that
are originally trapped at a phase velocity %91 = vp4(0), and having a distribution weight
of fo (v,,h(O)), keep the same distribution weight as the particles adiabatically track the
resonance. Thus when the phase velocity becomes 9%2 = vm(t), the weight of the deeply
trapped pérticl&s will still be fo (vph(O)) # fo (vph(t)). Thus, there will be a rapid change
of f near the instantaneous phase velocity of the wave. The power transfer arising from this
rapid change in f can be readily calculated.

A quantitative expression for the power transfer arises from a straightforward physical
picture. We first consider the simplest physical system, that of the one-dimensional bump-
on-tail instability. In this case the resonance function is 2 = w — kv, where we take w
to be time dependent, and k a constant wavenumber. The electrostatic field is taken as
E = E sin(y), with ¢ = kz — [)t wdt, and we define the quantity v = w/w.

To calculate the power transfer we first calculate the momentum, AM, that is removed in
a time At, from the free energy reservoir, as the frequency is being swept. This momentum
is transferred to the wave. From basic principles, the wave energy, AFE, added to the wave
is AE = AM w/k. The power transfer, P, is then P = AA—At‘ L.

Let us compare the phase space contours of the distribution function (of the particles
constituting the free energy reservoir) at a time to and a time ¢, + At, where we take
%% > At > %E, with wp is the bounce frequency of the particles trapped in the wave.

The phase space plot is shown in Fig. 1. We assume v, %92 > 0. Note that the f-values

of the distribution function inside the separatrices is then substantially below the f-value of
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the distribution function outside the separatrices. Outside the separatrix the distribution is
essentially fo (‘—;;—) with fy the unperturbed distribution function. Thus it is clear that the
kinetic distribution at t = ¢, + At, with its hole at higher speeds, has less energy than at
t = to, with the energy difference being converted to wave energy. To quantify the energy
transfer we note that inside the separatrix the distribution function is a function of the

adiabatic invariant,

Yo 2, 1/2
/ dw( w(t)) V2 / dy [6+ eisct) cos ] (5)
-vo —%0

with the particle energy ¢ in the wave frame, held constant during the -integration, and
costyp = —mke/e E(t). We have assumed v <« w3/w, so that the adiabatic invariant is
conserved as the frequency is swept. Note that v—w(t)/k = éu(y, J). For a given J, the value
of f is the value the passing particles had at time ¢’ when these passing particles were just
skimming the separatrix. For these particles, ¢ = eE(#)/mk and J = J(¥) = 8 (%ﬂ) 1/2.

1/2
eB(t) L {w)

Now the difference of momentum (averaged over a spatial period) of the free energy

Thus we have

reservoir at ¢ + At and ¢ is given by

n/k 00
AM = % //k d:z:—/ dvmu| f(t + At) — f(t)}

¢ (to+ A8)+ov(J ) £ (to)+6v(J)

= m/w-di / dvv(f(t+At)—fo) - / dvv(f(t+At)—fo) . (7

=n TN 2 (to+Ad-u(dy) £ (to)—6u(J%)

e 4

At time o + At, we have v = Liet88 4 gy, = wlo) |y Apelo) 4 gy and at time ¢t we have
v= g’%‘32+6v. Note that f(t+At)— fo = f(t)— fo, because f(t) = f(J) is constant and there




is a negligible change of the passing particle distributions, fo, due to the small difference of
phase velocity, (vAtw/k). We then find

AM:""",':Alt / (f(J) fo)

The power (per unit length) transferred to the wave, P = —% %‘-, is then

J(t) 7

/ de(J)) < %n%-”wlafo- (8)

0

mw? v J(t)
P="o / dJ(fo—f(J))) ,r(m)fo—

The inequality follows from our assumptions that -aﬁ, £, and v are greater than zero.
If we assume ﬂkﬂ - 3’1,‘91 < fo / %, we can somewhat simplify Eq. (8). We use the

approximation,

D= fo (9%) + (w(t'IEJ)) 3 w,(ct)) 6fo(u<;£]t)/k). o

Then we substitute into Eq. (8) to find

P §Wm %;‘l y af;f)%) (wB(t) (w(t) - w(O)) - 0/ dt’ a“’;tf‘!) (w(t’) - w(O)))

wp Wr vw? g;(t) - w(O))

8m w? (W(t) — wo) afO( %)
T kA

where we have assumed (v — 7)? =~ 7°.

wp(t) =~ (10)

The above formula for P also applies if v < 0. As w(t) — w(0) x v, the power transfer,
P, is independent of the sign of v. Now instead of holes forming during adiabatic sweeping,
clumps form.

Using Eq. (1) for the wave energy, and (10) for the power transfer, we find that the
change in wpg due to the adiabatic frequency shift and dissipation is

4

%’i ~ vwpw?(w — w(O.))’YL/n - Ywh (11)
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Now for simplicity we will assume £ & w. Then a rough integratibn of this equation over a
time t ~ 1/v, shows that
wp ~ (ypw?)Vo. (12)

Now using Eq. (1), the free energy release is found to be
1/3

To achieve these levels of wp in a stable system where v; > 7., one must either increase
|v] in time as wp increases or initially impose a sufficiently large value of wp with an external
source. To have growth in wp, ¥ must be large enough so that the enhanced power transfer
will be greater than the power dissipated and small enough that the adiabaticity condition,
v < w)/w, is not violated. Thus with an initially imposed wp = wpo, We require in the
right-hand side of Eq. (11), that the drive term be larger than the dissipation term, which
means

t
VYL wpw / dtvw > yawh. (14)
0

Initially v can be no larger than w%y/w. If v is constant, the value of wpg, that can be

achieved in a time ¢ ~ 1/v is then found to be
: Nn1/3 [ 2 1/3
wp ~min | (W), (whowye/va) " |- (1)

Thus, if wpo < (7aw)'/?, the level of wp that can be achieved is lower than the potentially
achievable level of (v w?)1/3.

When wpgp < (yaw)'/?, the level, wp ~ (y,w?)Y/3, can still be achieved if v changes with
time. An optimal strategy to achieve maximum energy conversion is to set v ~ w%/w. Then,
after a short interval of time, t ~ ;ﬁ)‘;, the left-hand side of Eq. (14) exceeds the right hand,
and wp will grow according to Eq. (11). As wp increases, the drive term continues to increase

faster than the dissipation term, because the driven term scales as w} when v =~ w%/w, while
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the dissipation term scales as w§. The integration of Eq. (11), over a time in which the change
in w is comparable to its original value, will then give wp & (yrw?)Y/3. Note that integration
for a larger time will not be effective when {1 ~ w, since then the resonance 2 = 0 would
correspond to a phase space position not occupied by the passing particle distribution. Note
that when v > 74, v need no longer change in time, and wp =~ (yzw?)'/? can still be achieved.
However, if the final value of v is less than -4, dissipation sets a limit on wpg. The final value
can be expressed as
wg ~ (W)Y min (1, K—). (16)
Yd _
When the background damping determines the level of wg, more energy dissipates to
the background plasma (this is the channelling mechanism) than instantaneously exists in
the wave. If v/v4 < 1 and the wave exists at the level wp ~ (w?/vr)Y3v/~4 for a time

t ~ 1/v, and the amount of energy AWy, that is channelled to the background plasma,
1
X Va /0 dt Wy, is

s\ 3
AWy ~ Wp (Zﬁ -) . (17)
w Ya

When v > 7y, a free energy release, Wp(}’f)l/ 3 is achieved after the completion of the
frequency scan. This energy can either be allowed to be absorbed by the background plasma

through dissipative processes, or directly converted to a grid with external antennae circuitry.
II1. EFFECT OF VELOCITY DIFFUSION

Another important physical process is particle scattering from either small angle colli-
sions or velocity space diffusion arising from external heating. This process can make the
achievement of an adiabatic scanning process more difficult. Straightforward dimensional
arguments show that diffusion processes cause trapped particles to escape from the trapping
region at a rate given by ver =~ v,w?/w%, where v, is the rate of relaxation of the overall

velocity distribution. Then, if we scan the frequency for a time greater than 1/v.g, the




change in the distribution, Af, in the trapping region, is

of vw 1
Af~?);_k—£ (18)

As aresult, in Eq. (11), if the scan time is greater than 1/ves, we need to replace w(t) — w(0)
by vw/veg = vw¥/wys. This result has been obtained rigorously in Ref. 13. Analytically we

can model arbitrary veg if, in Eq. (11) we replace

¢ ¢
(w(t) —-w(O)) — /dt'uw exp —/dt”ueg : (19)
0 o

When ;1%- %ﬂ < Ve, we see that both limits are recovered. Thus, when vegt > 1, Eq. (11)

changes to

oy V2
—&B = WYL — YaWp- (20)

s

The diffusion regime defined by Eq. (20) sets more stringent conditions to start-up.
We will see that if (2)/24, > v, > 93/w, a minimum perturbation of we > (Yaw)'/? is
required at start-up in order to be able to amplify to a level of wp ~ (w?y;)!/3. Further, if
vy > ()12, we will not be able to substantially amplify any initial perturbation.

To demonstrate these contentions, suppose v, satisfies the condition v,w? /w%o > f:{m > v,
so that we are guaranteed to be in the diffusion regime at start-up. Then in order to have
growth in wp, we require %ﬂ%‘— > v2wdovL/vs > Yawho. Thus growth of wp is always possible
if v, < wioyr/w?va. Assuming this condition well satisfied, then wpg changes by a substantial
amount (i.e. wp(t) — wp(0) R wpo) when v?*vyr/v,wpo = 1, and the system can enter the
diffusionless regime. We wish the inequality to arise when vt <« 1 and v < w%/w, so that the
optimum, wp ~ (w?yr)'/?, can be obtained. Thus we wish to have the following inequalities
satisfied

VsWBo Vsw

1>t = > ,
14007 WBOYL
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or, equivalently, vs < wpeyr/w. Thus the condition to be initially in the diffusion regime,

but still have the ability to amplify wp into the diffusionless regime, is

3 4
W W W

320% > YBOL ) s -5 (21)
Wy ) w

The first two inequalities on the left establish that we need wgo > (Yaw)'/2. Then v, lies in
the regime
()" > 0> 2
w w

Note that if we do not satisfy the left-hand inequality, the initial perturbation cannot be
substantially amplified. If the right-hand inequality is violated, we can choose start-up
parameters that are in the diffusionless regime.

We now note that in unstable systems wp can be amplified above the natural level,
wp ~ 7L, when the frequency is scanned nonadiabatically (v > w%/w). However, the
potential amplification level is still lower than the adiabatic case.

In the nonadiabatic regime, new particles enter the region of resonance at the rate

dAN ww
3 “on AN (22)

where AN is the number of trapped particles. If 2 > wp, the trapped distribution does
not have a chance to flatten, and the wave will continue to grow. On the other hand, the
change of the frequency is comparable to its original value in a time ¢ ~ 1/v. Thus, in order

to have at least one growth time of amplification in the nonadiabatic regime, we need
> v > wh/w. (23)

Thus, the level of wp that can be reached in a nonadiabatic scan is wp < (wvyz)/?, which is
a lower level than is in principle achievable with an adiabatic scan.
We can model these effects quantitatively as follows. We let the conventional growth rate

satisfy the relationship

_ YL
~ = rmp— T (24)
v tvw/wptveg
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For wp = 0 we recover linear theory. If there are no sources (v = 0, veg = 0), we have vy — 0
when wp — 371, which is a result previously observed in particle simulations. In Ref. 13, it
is shown the v =~ v veg /wp if veg/wp € 1, where vg represents the rate at which particles
re-enter the flattened resonance region due to diffusion. Here we have conjectured that by
scanning the frequency rapidly, we have introduced a similar source as veg, which is now
given by vw/wp. We can then write a set of model equations that include all the processes
we have described. In the adiabatic term we include an exponential cut-off when vw > w}.
The model equations are

dwp

t v
—Z2 = wh +Ywh +exp (—:—(:) wu7Lw3/dt'uw exp —'/dt”Veff) + @y () (va — 7z)
B o 0

(25)
where @,(t) is included to describe an imposed external perturbation. A set of solutions to

this equation is shown in Fig. 2.
IV. GENERALIZATION TO TOROIDAL SYSTEMS

The preceding considerations also apply to more complicated systems. For example, for
waves in a toroidally symmetric plasma such as a tokamak, where the perturbed amplitude
varies as A(t) sin(ng — wt), one can still show that Eqs. (1)-(4) are valid. The concept of
particles trapped in a wave at a bounce frequency wg o A2 is still valid. The resonance
condition is Q = w — nWy(H, Py, u) — pe(H, Py, p), where Ty, and Ty are, respectively,
the average toroidal and poloidal drift frequencies of a particle, n and p are integers, H is
the particle energy, P, is the toroidal canonical angular momentum and u is the magnetic
moment. It follows from general arguments that H' = H — £ P, is conserved as a particle
interacts with a toroidal wave. If the wave is low frequency, u is conserved as well. If we
consider an adiabatic sweeping of the frequency of low frequency waves (i.e. dw/dt = vw <«

w%), then for a particle trapped in the wave, P4 will change while H’ and u remain constant,

12



according to the relation

dQ by 0 _
_&zﬁuw——d—i—a_.”; (n@y + pe) = 0. (26)

H!

The trapped particles will then track the resonance, and one will again generate large phase

space gradients. It can be shown that the adiabatic invariant can be written as

Yo v 2 1/2
J= [ dp(P— Py =v3 [ dip|e+ —B%Y (27)
_4, e _4 [ (169/6P41 1)
where |
2 2
Q(Pdw) =0, — (P¢ - P«ﬁr) _ W cos Y (28)

2 A
()
By using similar arguments as in the one dimensional electrostatic problem, the power con-

verted to the wave is found to be

AFE _ 49 AM¢

P=Ar =7 At

(29)

where AMj, is the toroidal component canonical momentum that is lost by the resonant
particle during the time interval At as the frequency is swept. We then find, in a manner

analogous to the arguments given above, that

P—Ewﬁ‘% %@(P" P“")J(t)/d“'(f" 1)

(30)

< 8mu "f B fodrd®v8(Py— Py).
l3P¢ H'

This expression is a generalization of the expression obtained in Ref. 13 where the calculation
was done for a plasma slab when the mode frequency is much less than the diamagnetic
frequency of the kinetic component. Observe that in terms of @pg, nearly all conclusions
of the bump-on-tail problem apply to the more complicated problem. The main difference
is that in more complicated systems, @g is a suitable average over particles in resonance,

whereas in the bump-on-tail problem there is only one point resonant in phase space.
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V. DISCUSSION

In summary we discuss our results and their implications.

(1) If the frequency changes there can be an enhanced saturation level of an unstable wave.

Without a frequency change, the saturation level is given by wp = v + ( 3’1"_‘1’—:"—')‘/ % (the
case y[ ="y, is somewhat more complicated and not discussed here). This level can be
enhanced to wp ~ (yw?)'? min(1, %) by an adiabatic scan of the frequency, where
the frequency scan rate, v, satisfies v < w%/w. This level implies that in a single
scan, the fraction of free energy that can be converted to wave energy is (v /w)Y/3.
High efficiency of energy conversion of free energy to wave energy may be possible with
multiple scans. When v > w%/w, the response is nonadiabatic, and enhancement of
wp is achieved over the natural level, wp ~ 7. However, the level of wp that can be
achieved with a nonadiabatic scan is limited to wg ~ (wyz )2, which is lower than the

~ level of wp that can be achieved with an adiabatic scan.

Normally there is no reason to expect the frequency to vary during an instability
of a stationary system. However, instabilities often arise in a plasma where the back-
ground properties vary with time. In the fishbone experiment, the plasma is being
heated and is reaching parameters that approach marginal stability for MHD waves.
In this case the frequency of the fishbone is sensitive to the closeness to marginal sta-
bility. It may be that the approach of the background plasma to marginal stability
allows the frequency to change. In any event, if there exists a mechanism that allows
the frequency to shift, the processes described here allows large wave amplitudes to
grow and perhaps give rise to the kind of energetic particle transport that has been

observed experimentally® and discussed in computer simulations.??%

14




(2)

3)

For a stable system, the adiabatic response to a frequency change can allow waves
to spontaneously grow from a “seed” perturbation. Our analysis shows that growth
is feasible if either the initial perturbation is large enough, or if the frequency scan
rate is made to increase as the mode grows. Sufficiently rapid diffusion in velocity
space sets limits to obtaining large amplifications of wg. If (ya/w)Y2yy > vy > 72 /w,
then the absolute minimum perturbation that is required to amplify to a large final
wp level, is wpo ~ (Yaw)/?. Once a wave is created, its wave energy can be extracted
by terminating the frequency scan, thereby allowing the wave to damp because of
dissipation to the background plasma (this is energy channelling) or by transferring
the wave energy back to a grid through appropriate phasing with an external antennae.
This latter procedure is a form of direct conversion, and a further study is needed to
assess the feasibility of this method. If feasible, this form of direct conversion may
be applicable to a D-He® fusion system, where 15MeV protons are a principal fusion

product.

We have indicated, in principle, a method where a plasma can amplify a low level signal
to a level that one would not expect on the basis of linear theory. This arises because
it is possible to use particle adiabaticity to create phase space holes or clumps. The
scaling given here is generic to nearly every kinetic system. The only major assumption
made is that resonance overlap does not occur as the wave amplitude grows. In fact,
with the increased amplitudes achievable with frequency sweeping, may then allow

mode overlap to occur, thereby producing global plasma transport.

We note that varying the frequency can be difficult when an external antennae
excites a normal mode for which the frequency is defined by the plasma. In this case
it may be necessary to change the mode frequency by changing plasma parameters in

time by such methods as modulating the magnetic field or injecting particles with a

15




pellet.

It would be interesting to exhibit the enhancement of the power extraction rate in
a laboratory experiment under controlled conditions. Such experiments can be devised

on a variety of different plasma systems, from a ()-machine to a tokamak.
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FIGURE CAPTIONS

FIG. 1.

FIG. 2.

Phase space contours of v — w(te)/k: (a) at time ty; (b) at time to + At. Contours
of constant distribution function are plotted. If the distribution function weight at
v = w(tp)/k increases with velocity in the passing region, and there is a hole in the
trapped region, the system at time ¢ = ¢35 + At has less kinetic energy than at time

to, and this can increase the wave energy.

Example of solution of Eq. (24), for the particle trapping frequency, as a function
of time. The parameters for graphs (a) and (b) are chosen so that vz = 1/244,
and v = .5w%/w. Graph (c) is for the nonadiabatic case v = 5w} /w. On each
graph the different curves are for different normalized scattering frequencies, with
v, = wh(0)y A /w?y4. The applied frequency &g is vz in curve (a) and (c), and in

curve (b), &g = 57;.
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