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We use the gradient of the energy-integrated angle resolved photoemission

(ARPES) intensity in order to define precisely the Fermi surface {1%) in

BSCCO superconductors. We show that, independent of the photon energy,
the FS is a hole barrel centered at (~, m), Then, the superconducting gap
along the FS is precisely determined from ARPES measurements on over-

doped and underdoped samples of Bi2212. As the doping decreases, the maxi-
mum gap increases, but the slope of the gap near the nodes decreases. Though
consistent with d-wave symmetry, the gap with underdoing cannot be fit by
the simple Cos(kr) – cos(kv) form. A comparison of our ARPES results
with available penetration depth data indicates that the renormalization of
the linear T suppression of the superfluid density at low temperatures due to
quasiparticle excitations around the d-wave nodes is large and doping depen-
dent.

PACK’ numbers: 71,25.Hc, 7~.25.Jb, 74.72.Hs, 79,60.Bm.
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1. INTRODUCTION

In high temperature superconductors, well-defined quasiparticle exci-
tations exist only in the superconducting state,l and a description of the
low temperature state in terms of superfluid Fermi liquid theory should be
appropriate.z In Fermi liquid theory, the quasiparticles are characterized by a
renormalized Fermi velocity VF, and their residual interactions described by
Landau parameters, which manifest themselves through a renormalization
of various response functions such as the superfluid density p~(0). In this
paper we examine whether the slope of the superfluid density at low tem-
peratures, dp$/dT, is affected by interactions or not, and what the relation
of its renormalization is to that of p~(0).

To address these issues we use the unique capability of ARPES to di-
rectly measure the Fermi wavevector k~, velocity VF, and the superconduct-
ing gap anisotropy near the node, from which we can estimate the slope
of p~(T) assuming non-interacting quasiparticles. Comparing this with the
actual value obtained by penetration depth experiments leads to a direct
estimate of the renormalization due to quasiparticle interactions. This is
done by expMting the relation3

10fj#T=O) cc;+ = Afl’c. (1)

where A is the penetration depth, and A is a doping-independent constant.4
ARPES is used to determine the three parameters at the node: the Fermi
velocity VF, the Fermi wavevector k~, and the slope of the superconducting
gap vA = l/21dA/d~l (~ = n/4), where # is the Fermi surface angle; The
only unknown in Eq. 1 is the renorrnahzation factor ,0 due to quasiparticle
interactions.

2. HOLE-LIKE FERMI SURFACE

In order to reliably measure the k-dependence of the gap function, one
has to define accuratly the Fermi surface. In high T. superconductors this
is not a trivial task since these materials are strongly correlated, and do
not show well defined quasiparticles in the normal state. Additional com-
plications arise due to strong k-dependence of the matrix elements or the
presence of strong superlattice images. 5 Nevertheless, the FS can be identi-
fied by looking at the energy integrated ARPES intensity I(k) = M(k)n(k).
Here, M(k) is the k-dependent matrix element and n(k) the momentum oc-
cupation. We further define the normalized gradient ldk~(k) I/I(k), which
is a
due

. .
very useful tool to determine the FS.6 In order to avoid complications
to the presence of superlattice imagess we have investigated lead-doped
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Bi2201 samples. Figures la) and lb) show the measured ~(k) around (n, O)
at 22 eV and 28 eV photon energy, respectively. One observes that the in-
tensity maximum strongly depends on the incident photon energy. At 28 eV
there is a large intensity drop around (m,O), due to matrix elements effects,
which makes it difficult to define the FS. Fig. lc,d show the corresponding
ldk~(k)[/I(k). The FS crossings are defined by the regions of maximum
gradients (clearest in Fig. lc,d). This method unambiguously shows that
the FS is centered around (r, m) and is photon energy independent, in con-
tradiction’ with recent conclusions. 7 It should be emphasized that we reach
similar conclusions for the B12212 system.8
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Fig. 1. a,b) J(k) obtained at 22 eV and 28 eV, respectively.
spending normalized gradients.

3. DOPING DEPENDENCE OF THE GAP

c,d) Corre-

Once the FS crossing has been determined it is possible to measure the
k-dependence of the gap function. Fig. 2a shows ARPES data at 2’=15 K for
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an underdoped B12212 75K – Z’C(UD75K) sample at different Fermi surface
(FS) angles. From the shift of spectral weight away from Z3F,one clearly sees
an anisotropic gap, which is maximal near the (r, O) point (+= O) and zero
near the (z, r) direction (~= 45°). For comparison we also plot (dashed line)
in Fig. 2a ARPES spectra from an overdoped 87K - TC (OD87K) sample
at two points on the FS. We immediately see that the UD sample has a
larger maximum gap (at ~ = O) than the OD one, but it has a smaller gap
at the corresponding point (~ = 38 degrees) near the node. Thus the raw
data directly give evidence for an interesting change in gap anisotropy with
doping. The resulting angular dependence of the gap is plotted in Fig. lb,c
for an 0D87K and an UD75K sample, respectively.
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Fig. 2. a) ARPES Spectra of OD87K and UD75K samples. b,c) Ak for
OD87K and UD75K samples. The solid line represents the best fit as de-
scribed in the text. d) ldA–2/dTl estimated from ARPES (~ = 1) (circles)
and penetration depth measurements in Bi2212 (squares).

To quantify this flattening around the nodes, we have used the following
expression to fit the gap: Ak = AmU[13cos(2@) + (1 -. B) cos(6~)] with
0< B <1, where B is determined for each data set. Note that COS(6+)is the
next harmonic consistent with d-wave symmetry and represents next nearest
neighbour interactions. We find (see Fig. 2b,c) that while the overdoped data
sets are consistent with B N 1, the parameter B decreases significantly in the
underdoped regime. Our data suggest that the change in the gap function
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with underdoping (increase oft he cos(6#) term) is related to an increase in
the range of the pairing interaction, which could arise from a decrease in
screening as one approaches the insulator, or in spin-fluctuation mediated
d-wave pairing, from an increase in the magnetic correlation length.

We now return to Eq, 1. It is known from previous” AR.PES measure-
ments that the band dispersion along (O,O)– (r, r) and kF along this direc-

910 Using ARPES inputs, together withtion are almost doping independent. ‘
the strongly doping dependent VA, we can estimate the slope ldA-2/dTl
in the case of non-interacting quasiparticles (~ = 1) and compare our re-
sults to London penetration depth data obtained on Bi2212.11 Fig. ld shows
that the sIope dp8/dT obtained from penetration depth data decreases with
underdoping, in opposition with the trend deduced from a theory with non-
interacting qua.siparticles (~ = 1) using ARPES input (circles). From our
results, it is clear that the renormalization factor ~ is considerably smaller
than unity and doping dependent, a conclusion different from that inferred
earlier.3’12
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