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Theory and Numerical Application of Subsurface Flow
and Transport for Transient Freezing Conditions

M.D. Whitetl

ABSTRACT

Protective barriers are being investigated for the containment of radioactive
waste within subsurface environments. Predicting the effectiveness of
cryogenic barriers and near-surface barriers in temperate or arctic climates
requires capabilities for numerically modeling subsurface flow and transport for
freezing soil conditions. A predictive numerical model is developed herein to
simulate the flow and transport of radioactive solutes for three-phase (water-ice-
air) systems under freezing conditions. This physically based model simulates
the simultaneous flow of water, air, heat, and radioactive solutes through
variably saturated and variably frozen geologic media. Expressions for ice
(frozen water) and liquid water saturations as functions of temperature,
interfacial pressure differences, and osmotic potential are developed from
nonhysteretic versions of the Brooks and Corey and van Genuchten functions
for soil moisture retention. Aqueous relative permeability functions for variably
saturated and variably frozen geologic media are developed from the Mualem
and Burdine theories for predicting relative permeability of unsaturated soil.
Soil deformations, caused by freezing and melting transitions, are neglected.
Algorithms developed for predicting ice and liquid water saturations and
aqueous-phase permeabilities were incorporated into the finite-difference based
numerical simulator STOMP (Subsurface Transport Over Multiple Phases).
Application of the theory is demonstrated by the solution of heat and mass
transport in a horizontal cylinder of partially saturated porous media with
differentially cooled ends, with the colder end held below the liquid water
freezing point. This problem represents an essential capability for modeling
cryogenic barriers in variably saturated geologic media.

INTRODUCTION

Frozen soil barriers, referred to as cryogenic barriers, have been proposed for
. temporarily containing plumes of radioactive and/or organic contamination
within the subsurface environment. Field-scale experiments of frozen soil
barriers require significant investments in refrigeration and monitoring
equipment and time for planning and executing. Numerical modeling of
cryogenic barrier systems with proven, physically based simulators can cut the
requirements for field-scale testing, by providing mechanisms for appropriately
scaling laboratory experiments to field applications. Critical components of a
physically based simulator for freezing conditions are the constitutive relations
. for predicting liquid water and ice saturations and aqueous relative
permeabilities as a function of temperature, interfacial pressure differences, and
osmotic potential. "
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Theories on the mechanisms of fluid-heat flow and transport in partially frozen
soil have been proposed by many investigators. Sédected studies have been
summarized by Kay and Perfect [1988]. Harlan [1973] numerically computed
coupled heat-fluid transport in partially frozen soil by assuming that the
saturation and relative permeability properties of frozen and partially frozen soil
were directly analogous to those for partially saturated unfrozen soil at similar
energy states. Jame and Norum [1980] compared numerical and laboratory-
scale experimental results involving coupled heat and mass transport under
freezing conditions. Unfrozen water saturations were computed from an
empirical expression, which was derived from experimental measurements.
Soil hydraulic conductivities were estimated from values reported for similar
soils. Engelmark and Svensson [1993] compared numerical solutions against
the experimental data of Jame and Norum [1980]. As with the previous work,
expressions for unfrozen water content as a function of temperature were
empirical. Guymon and Luthin [1974] outlined a procedure for estimating
volumetric water and ice contents and hydraulic conductivities as a function of
temperature by using the Clausius-Clapeyron equation to relate changes in
temperature with pore water pressure. Fuchs et al. [1978] expanded on the
work of Guymon and Luthin [1974] by substituting the soil water potential, as
proposed by Cary and Maryland [1972], for the matric potential to estimate the
relation between soil temperature and liquid water content at subfreezing
temperatures. Panday and Corapcioglu [1994] described a conceptual model
for predicting equilibrium saturations for a water-oil-air system in frozen soils,
which included ice saturations. In this conceptual model, phase saturations
were related to scaled two-phase capillary pressures.

The primary objective of this paper is to propose a general formulation for
computing liquid water and ice (frozen water) saturations and liquid water
relative permeabilities as a function of interfacial pressure differences, solute
concentration, and temperature for variably saturated, freezing conditions. This
formulation will build on the theories of previous researchers [ Guymon and
Luthin 1974; Fuchs et al. 1978; Cary and Maryland 1972; Panday and
Corapcioglu 1994] and use modified forms of the conventional expressions for
soil moisture retention and phase relative permeability [van Genuchten 1980;
Brooks and Corey 1964; Burdine 1953; Mualem 1976]. A secondary objective
of this paper is to demonstrate the proposed formulations in a numerical
simulation of a transient heat and mass transfer problem with freezing
conditions. The investigations in this paper do not consider the processes of
- ice-lens formation or frost heaving. .

SATURATION-PRESSURE RELATIONS

Functional relations between phase saturations and interphase capillary
pressures are required to numerically model fluid flow in variably saturated and
variably frozen geologic media. In the following derivations two critical
assumptions are made (1) ice formation occurs in the largest water filled pore
spaces and (2) a thin film of water always surrounds the ice. This latter
assumption implies that ice is completely occluded by the aqueous phase and
that no direct air-ice interfaces occur. Characterization of three-phase systems
requires two saturation-capillary pressure relations. Because retention curves
for all phase pairs can be related to the retention curve of any two-phase
interface in geologic media, the form of the retention function for both
saturation-capillary pressure relations will be identical [Leverett and Lewis
1941]. For water-ice-air systems under equilibrium conditions two interfaces




occur, gas-aqueous and ice-aqueous; where the aqueous phase is considered the
wetting phase for both fluid pairs. Following theJexamples of Parker and
Lenhard [1987] for determining multiphase retention functions for water-oil-air
systems by extending the relations for two-phase systems, two relations are
formed. The first function relates the apparent aqueous saturation to the scaled
gas-aqueous capillary pressure, and the second function relates the fraction of
unfrozen water to the ice-aqueous capillary pressure [Panday and Corapcioglu
1994]. The apparent aqueous saturation is defined as the ratio of “free”
aqueous saturation to the normalized “free” pore volume as
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where § is the apparent saturation, § is the effective saturation, s is the actual
saturation, the subscript i indicates ice, the subscript ¢ indicates aqueous
phase, the subscript m indicates irreducible, and the subscript uf indicates
unfrozen fraction. Because residual water is free to freeze, within the limit of
the ice-water interface penetrating the residual water pore spaces, the effective
irreducible saturation is defined to vary with ice saturation as shown in
Equation (1). The effective aqueous saturation represents the mobile liquid
water. Its definition follows the conventional form, except that the irreducible
saturation is replaced by the effective irreducible saturation as
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The unfrozen water fraction is defined as the ratio of actual aqueous saturation
to the sum of the actual aqueous and ice saturations as
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The ice pressure can be related to the aqueous pressure, osmotic potential, and
temperature by assuming thermodynamic equilibrium conditions and neglecting
soil deformations and their interactions. An expression of thermodynamic
equilibrium between ice and water in geologic media has been derived by Loch
- [1977] as ‘ :

P, = pi[PE—E—-hgv ln(-%ﬂ, where 1 = C, RT 4)
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where P is the phase pressure (Pa), p is the phase density (kg/m3),

7 is the osmotic pressure (Pa), A;, is the heat of fusion for water—iqe J/kg),
T is the temperature (K), C is the solute concentration (kgmol/m3), R is.the
universal gas constant, (8314.3 J/kgmol K), and the superscript o indicates
reference conditions.

As noted above, it is assumed that a single saturation-capillary pressure function
can be used for arbitrary phase pairs in porous media by scaling the capillary
pressures to eliminate the fluid dependent effects. Miller [1980] has




investigated using the air-ice capillary pressure to determine the equilibrium
configurations of water, ice, and air. However, with the assumption that no
air-ice interfaces occur, equilibrium configurations for freezing conditions will
be determined from scaled air-water and ice-water interfacial pressure
differences. With this approach the generic expression for apparent aqueous
saturation as a function of the gas-aqueous capillary pressure appears as
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where, f;; is the scaling factor for fluid pair ij, h; is the capillary head (m) for
fluid pair j, and g is the acceleration of gravity (m/s2). Similarly, the generic
expression for unfrozen water fraction as a function of the ice-aqueous capillary
pressure appears as .
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Scaling factors can be computed from the ratio of interfacial tensions [Lenhard
1994] as '
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where o;; is the interfacial surface tension (N/m) for fluid pair ij and the gas-
aqueous interfacial tension is chosen as the reference fluid system.

Various empirical forms have been published for the soil moisture retention
function, relating phase saturation and capillary pressure, which may be
adopted to parameterize the generic functions shown in Equations (5) and (6).
The soil moisture retention theories of van Genuchten [1980] and Brooks and
Corey [1964] will be applied here. Using the theory of van Genuchten the
retention expressions for apparent aqueous saturatlon and unfrozen water

- fraction appear as
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where « (1/m), m, and n are van Genuchten curve fitting parameters.
Similarly, using the retention relation developed by Brooks and Corey [1964]
the apparent aqueous saturation and unfrozen water fraction appear as
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where A and y (m) are Brooks and Corey curve fitting parameters. Ice
saturation as a function of temperature and solute concentration for the van
Genuchten function is shown graphically in Figure 1, for a constant total water
saturation (i.e.,s; =sp + ;) of 0.9 and zero-ice solute concentrations of 0.0,
1.0, and 2.0 mol/L. In these curves, solute concentrations in the aqueous phase
increased with increasing ice saturation, because of the exclus1on of solute
within the ice phase (i.e. no solute absorption).
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Figure 1. Ice Saturations for the van Genuchten Function
¢=0.0l m™}, n=2.0, m=1-1/n, 5, +5=0.9, s, =0.1

RELATIVE PERMEABILITY-SATURATION RELATIONS

Modeling fluid flow and solute transport in variably saturated, frozen geologic
media systems requires knowledge of the functional relations between phase
saturations and fluid permeabilities. Relative permeability functions for water-
ice-air systems are developed that relate aqueous-phase relative permeabilities to
effective aqueous saturations. In the following derivations it is assumed that
liquid water completely occludes ice and that no direct ice-gas interfaces occur.
The presence of occluded ice will result in the obstruction of aqueous-phase
flow and simultaneously displace aqueous fluid into larger pore spaces. To
account for these opposing effects the models of Mualem [1976] and Burdine




[1953] for aqueous relative permeability in two-phase water-air systems are
. modified, respectively, as <7
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where, k,, is the aqueous relative permeability. The terms in the brackets on
the right-hand side of Equations (12) and (13) represent the ratio of mean flow
channel radii for interconnected pores corresponding to the variably-saturated,
frozen system to that for a water saturated system. The first term of the
numerator represents all the pores with hydraulic radii smaller than the largest
water filled pores, including those occupied by ice. The second term in the
numerator is a correction to account for the pore space occupied by the occluded
ice. Equations (12) and (13) are solved using the inverse form of the van

Genuchten soil-moisture retention function, Equations (8) and (9), for the % ({)
function yielding the following expressions

2
by = (5)"? [1 - (1 - (&) ) } VWhere m = 1-~ (14)
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Similarly, when the Equations (12) and (13) are solved using the inverse
- Brooks and Corey soil moisture retention function, Equanons (10) and (11), the
aqueous relative permeability functions appear as

k, = (53)(5/.2 + 2/1) (16)

krf - (EE)(?’ + 2/2,) ~ | (17)

Aqueous relative permeabilities as a function of ice saturation for a totally
saturated system (i.e., s, +s; = 1.0) are shown graphically for Equations (14)
through (17) in Figure 2.
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m=0.5, A=0.5, s;+5;, =10, s, =0.1 -

NUMERICAL SIMULATOR

The described constitutive relations for computing phase saturations and relative
permeabilities for freezing conditions were incorporated into the Two-Phase
Nonisothermal operational mode of the STOMP simulator [White and Lenhard
1993]. The STOMP simulator is an integral-volume finite-difference based
solver for multiple-phase flow and transport systems in subsurface
environments. Governing equations that describe heat and fluid and transport
in variably saturated geologic media are solved simultaneously with Newton-
Raphson iteration to resolve the equation nonlinearities. Solute transport is
solved sequentially from the coupled flow solution. The STOMP simulator
utilizes a variable source code configuration, which allows the execution
memory and speed to be tailored to the problem specifics. The governing
. equations for the Two-Phase Nonisothermal operational mode are those for
conservation of water mass, air mass, solute mass, and thermal energy.
Transport of mass and energy occurs over four distinct phases: aqueous, gas,
ice, and solid. The aqueous phase primarily comprises liquid water, with small
quantities of dissolved air; the gas phase comprises variable concentrations of
air and water vapor; and the ice phase contains pure frozen water.

The water and air mass conservation equations equate the time rate of change in
mass within a control volume with the flux of the mass crossing the control
volume surfaces as
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where ¢ is time (8), np is the diffusive porosity, @ is the mass fraction, k is
the intrinsic permeability tensor (m?), u is the dynamic viscosity (Pa s), z is
the gravitational vector, 7 is the tortuosity, M is the molecular weight
(kgmol/kg), D is the diffusion-dispersion coefficient (m2/s), y is the mole
fraction, m is the mass source rate (kg/s), the subscripts /, g, and i indicate
aqueous, gas, and ice phase, respectively, and the superscripts w and a indicate
water and air mass, respectively. The conservation equation for thermal energy
equates the time rate of change of thermal energy within the control volume with
the heat flux crossing the control volume surfaces as
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where u is internal energy (i/kg), ny is the total porosity, k is the enthalpy
(J/kg), V is the Darcy flow velocity (m3/m? s), k, is the equivalent thermal

conductivity (W/m K), ¢ is the thermal energy source (W), and the subscript s
indicates the solid phase. Constitutive functions relate the primary unknowns
of the governing equations to the secondary variables. Closure on the system
of equations for the Two-Phase Nonisothermal operational mode requires three
primary variables (unknowns). The STOMP simulator uses a primary variable
switching scheme for phase transitions. For total water saturations less than one
- the primary unknowns are aqueous pressure, gas pressure, and temperature;
and for total water saturations equal to one the primary unknowns are aqueous
pressure, air partial pressure, and temperature.

NUMERICAL APPLICATION

The STOMP simulator with the constitutive relations for freezing conditions
described above was applied to a problem similar to the laboratory experiments
“of Jame [1977]. These experiments involved imposing different temperature
gradients across a radially insulated horizontal lucite tube (0.3 m in length and
0.1 m in diameter) filled with partially saturated porous media. Both ends of
the tube were sealed to prevent water flow across these boundaries. Gas
pressures were maintained at atmospheric conditions. The porous medium was
a silica flour (dry bulk density of 1.335 g/cm3) of which 72% passed a #325
sieve (0.044 mm). Initial conditions for the experiments were uniform
temperatures and saturations along the tube length. Each experiment was
initiated by lowering the temperature of the cool end below the freezing point
and maintaining the temperature of the warm end at the initial temperature.
During the course of the experiments, which each lasted 72 hr, constant
temperature conditions were maintained at both ends of the tube.




To numerically simulate these laboratory experiments, Jame and Norum [1980]
used experimentally determined data to relate liquid-gater content as a function

of temperature for freezing conditions. For the present investigation, van
Genuchten moisture retention function parameters were estimated from grain
size distribution data reported by Jame [1977] for the silica flour according to
the technique by Mishra et al. [1989]. The determined parameters were
& =0.279 m-1, n = 1.64, np =0.496, and s, = 0.0. These parameters were

then used in Equations (3), (4), and (9), for totally saturated conditions, to
compute the unfrozen water content as a function of temperature for freezing
conditions. The resulting function and associated van Genuchten parameters
are compared against the experimental data of Jame [1977] in Figure 3. The
method of Mishra et al. was additionally used to estimate a saturated soil
hydraulic conductivity of 3.07x10-5 m/s, which compared well with the value
of 3.45x10-5 m/s, extracted from the diffusivity data reported by Jame [1977].
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Figure 3. Unfrozen Water Content versus Temperature
@=0.279 m™, n=164, m=1-1/n, 5, =10, s, =0.0, np=0.496

The effective thefmal conductivity was computed following the method of de
Vries [1963] from estimated physical properties of the soil matrix, aqueous
phase, gas phase, and ice according to the expression

Z wn np Sy k / 2 W, Bp Sy, (20) |
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where w is the phase-component weighting factor and % is the phase-
component thermal conductivity (W/m K). Weighting factors typically depend
on the ratio of the average temperature gradient in the component to the average
temperature gradient in the equivalent medium. For the present analysis
weighting factors were set equal to 1.0. Soil particle thermal conductivity and




specific heat values of 2.3 W/m K and 837.0 J/kg K were determined from the
reported data [Jame and Norum 1980]. -3

To demonstrate the application of the proposed capillary head scaling approach
for computing saturations under variably saturated freezing conditions, two
freezing-induced redistribution simulations were performed, which generally
followed the experiments of Jame and Norum [1980]. In both simulations a
horizontal tube of soil at uniform liquid water content (15.6% dry weight) and
temperature (+20 C) was cooled on one end to -10 C and held at that
temperature while the other end remained at +20 C. Both simulations were
executed over a 72-hr period using 233 nonuniform time steps. The first
simulation used a saturated hydraulic conductivity of 256 cm/day; whereas, the
second used a reduced value of 25.6 cm/day. Total moisture content (by % dry
weight) and temperature profiles are shown for the simulations with the higher
hydraulic conductivity soil in Figures 4 and 5. Total moisture contents include
the weights of both the frozen water and unfrozen liquid water. The results
demonstrate the experimentally observed phenomena of freezing-induced
redistribution of soil moisture. The zone of ireezing acts as a strong sink for
liquid water by effectively reducing the aqueous pressure, which induces liquid
water to flow into the zone of freezing. Water vapor diffusion through the gas
~ phase also occurs, but the quantities of redistributed water greatly exceed that
which can be accounted for by water vapor diffusion. At each point in time, the
freezing point isotherm (0 C) occurs in distance between the two points that
bracket the abrupt change in total moisture content.

Total moisture content and temperature profiles for the simulation with the soil
of lower hydraulic conductivity are shown in Figures 6 and 7. These results
differ markedly in the total moisture content profiles. The lower hydraulic
conductivity of the soil inhibits the freezing-induced flow of liquid water to the
freezing zone thus yielding lower total moisture contents near the cold end.
Near the tube midpoint, however, the total moisture contents are greater than
those for the higher permeability soil, thus producing a U-shaped profile.
These U-shaped profiles have been observed experimentally [Dirksen and
Miller 1966] and occur as the temperature profile approaches steady-state and
the freezing front slows to a halt. As with the simulation results for higher
- permeability soil, the freezing point isotherm occurs within the sharp
discontinuity in total moisture content.

. CONCLUSIONS

A general formulation to predict phase saturations for variably saturated,
freezing conditions as a function of phase pressure, temperature, and solute
concentrations has been developed for nonheaving conditions. The approach
relates the scaled air-water capillary head to the ratio of “free” aqueous
saturation to the normalized “free” pore volume and the scaled ice-water
capillary head to the unfrozen fraction of liquid water. This approach allows
equilibrium saturations as a function of temperature, phase pressure, and solute
concentration for different soils to be computed through conventional soil-
moisture retention functions (e.g., van Genuchten and Brooks and Corey).

Aqueous-phase relative permeability functions were derived for variably
saturated, freezing conditions using inverse van Genuchten and Brooks and
Corey moisture retention functions in conjunction with the Mualem and Burdine
models for predicting the relative permeability from knowledge of the soil-
moisture retention curve. The developed functions were demonstrated through
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the simulation of two freezing-induced moisture redistribution problems. The
formulations were demonstrated to capture the essgntial features of moisture
redistribution and ice formation observed experimentally. Comparisons of
unfrozen water fractions with experimental measurements for silica flour show
close agreement. Further studies will be required, however, to determine
whether the freezing-induced capillary draw forces predicted by the proposed
formulations agree with experimental measurements for a variety of soils.
Given the appropriateness of the proposed functions, the numerical simulations
revealed that affective cryogenic barrier formation will be dependent on soil
thermal and moisture-soil retention properties in addition to cooling rates and
freezing front migration rates.
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