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Temperature anisotropy in a cyclotron resonance
heated tokamak plasma and the generation of
poloidal electric field

W. Choe, C.S. Chang*, and M. Ono
Princeton Plasma Physics Laboratory, Princeton University
P.O. Box 451, Princeton, NJ 08543
*Courant Institute of Mathematical Sciences
New York University, 251 Mercer Street, New York
New York 10012

The temperature anisotropy generated by cyclotron resonance heating of tokamak
plasmas is calculated and the poloidal equilibrium electric field due to the anisotropy
is studied. For the calculation of anisotropic temperatures, bounce-averaged Fokker-
Planck equation with a bi-Maxwellian distribution function of heated particles is
solved, assuming a moderate wave power and a constant quasilinear cyclotron reso-
nance diffusion coefficient. The poloidal electrostatic potential variation is found to
be proportional to the particle density and the degree of temperature anisotropy of

warm species created by cyclotron resonance heating.

i@%&%@% %

e et b ey ey . v .~ ~am v Ty~ Ay =y . o et S TRy ———— = <5 N LY e ———m—— N—— - g o



1. INTRODUCTION

Ion or electron cyclotron resonance heating is known to preferentially increase the
perpendicular energy of resonant particles so that the distribution function of the
heated particles is no longer isotropic. Thg increase of the perpendicular energy leads
to more banana trapping at the outboard side of a tokamak where the magnetic field
strength is weak. This will cause an imbalance of spatial charge on a magnetic flux
surface. In order to maintain charge neutrality, an electrostatic potential with an
in-out poloidal asymmetry is created. Under certain circumstances, the magnitude
of this potential variation can be significant.

The equilibrium poloidal electric field in a tokamak plasma was usually neglected
in the early neoclassical theories [1, 2] based on the fact that any space charge on
a magnetic surface can be short-circuited by fast moving electrons. Leaving alone
the case of cyclotron resonance heating, the existence of poloidal electric fields has
been suggested to arise in the presence of high-Z impurity species in ohmically heated
plasmas [3, 4], or due to the high collisionality in the plasma edge region [5]. Both
parallel and perpendicular neutral beam injection [6] were also suggested to give rise

to these potentials.

In this paper, we calculate the anisotropic temperatures of cyclotron resonance
heated particles with a bi-Maxwellian model of warm particle distribution, and we
discuss the generation of poloidal electrostatic potential variation due to temperature
anisotropy. In the case of electron cyclotron resonance heating, an excessive number
of electrons are trapped at the outboard bound of toroidal plasma. Thus, the electro-
static potential will be lower at the outside than the inside. On the other hand, ion
cyclotron resonance heating can lead to higher electrostatic potential at the outside.

Similar calculations of the poloidal potential variation by electron cyclotron res-

onance heating can be found elsewhere [7-9]. Hsu et al. [7] assumed zero parallel
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wavenumber, non-relativistic, and a large aspect ratio, and they included only pitch
angle scattering for the Coulomb collision term in the low collisionality regime. They
showed an e-dependence of the potential. Chan et al. [§] included Doppler effect in
the quasilinear term and calculated the poloidal electric field by an adjoint method.
They concluded that the ratio of the potential energy to the kinetic energy is propor-
tional to € but its magnitude is much smaller than ¢ in a collision dominated plasma.
Taguchi et al. [9] also used the adjoint method along with an eigenfu-mction technique

in the banana regime. They assumed low-beta tokamak with circular cross-section

VRF
Vee

and weak wave power ( < 1), and included Doppler effect and relativistic cor-

rection to the resonance condition. They showed that the magnitude of the potential
VRF

is proportional to . Their linearized Fokker-Planck collision operator has a pitch-

%
angle term and the j;rag term but no diffusion term.

In the present paper, similar assumptions as Hsu et al. [7] are used except that
a more complete form of linearized Coulomb collision operator has been used. The
resulting poloidal potential variation is expressed explicitly in terms of temperature
anisotropy due to cyclotron resonance heating.

The consequence of this poloidal potential variation can appear in various ways.
The most immediate consequence is a significant enhancement in the neoclassical
transport coefficients [10~16]. It has also been reported that the poloidal potential
variation may affect the plasma stability [17].

For the sake of simplicity, we confine the present analysis to the cases where the
inverse aspect ratio, € = r/Ry, is small, equilibrium magnetic flux surfaces have a
circular cross-section, and background particles (electrons, ions, and single species
impurity ions) have the same temperature. Furthermore we assume a zero parallel
wave number so that we neglect the Doppler shift effect in the wave-particle interac-

tion.

In Section 2, the anisotropic perpendicular and parallel temperatures are calcu-



lated using a bi-Maxwellian model of resonant particle distribution. The electric
field along a magnetic field line as a function of temperature anisotropy is derived in

Section 3. In Section 4, a summary is presented.



2. KINETIC CALCULATION OF TEMPERATURE AN-
ISOTROPY

In order to estimate the temperature anisotropy driven by cyclotron resonance
heatings, a simple model is considered in this paper. We assume that the background
particles obey the Maxwellian distribution; and that the density of the warm particles
is small compared to those of the background particles. We will neglect Coulomb
self-collisions between the warm species when compared to the collisions of the warm
particles against background species. Plasma. particles are divided into four different
species, background cold electrons (e) and ions (i), cold impurity species (I), and
warm electrons or ions (w) depending on the type of input waves.

The v} and v} moments of warm species Fokker-Planck equation yield

V.q= % /d3vmv_2,_ (%’;—), (1)
1 L (9

Voaq=; / v mv] (‘é%) (2)
af _
U _om+am,

where C and Q represent Coulomb collision operator and the quasilinear scatter-
ing operator, respectively, and the equilibrium mass flow of warm species has been
assumed to be small.

The Coulomb collision operator for a warm particle is expressed as [18]

C(f) = Ce(f) + C(),

where
Clf) = 3" e (1= ) 5 /. (3
e @) .
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¢a(u) = Erf(u) — —=ue™, (8)

1 42rny Z Z2 e lnA
Tep  3y/my (KT})3/2

(9)

Here, w and b denote warm and background particles (b = e,4,1); C¢ and C.
are pitch angle and energy scattering (drag + diffusion) operators; v, is the thermal
velocity of the background particles; T}, is the background particle temperature; Z,
and Z; are the charge number of warm and background particles; m,, and m; are mass
of warm and background particles respectively; £ = v /v; and 7., is the Coulomb
collision time at background temperature. The functions, ¢;(u) and ¢,(u) become

unity when u > 1, and their asymptotics for v < 1 are

4
o1(u) & ——u,
37
da(u) = ﬁu:{

For the quasilinear operator Q(f), we use the homogeneous magnetic field version

of Kennel and Engelmann [19].

10 _of
Q(f) = o E}:ULD For’ (11)
nZ2e? 9 19
D =3 =Bl Ty (kip) 8(w — oy — 190), (12)
l w

where E, (E_) represents left-handed (right-handed) circularly polarized electric field,
w is the wave frequency, D the quasilinear velocity-space particle diffusion coefficient

driven by cyclotron waves at the resonant location, J4; the Bessel function of the first



kind of order [+1, k; the wave vector perpendicular to the equilibrium magnetic field,
and p is the gyroradius. The delta function in D requires that the particles should be
resonant somewhere along its orbits to have a nonvanishing D, and its relation to the
absorbed wave power will be shown later in this paper. In Eq. (12), we will assume
that the Doppler shift effect is small, &y < w.

If we define A as

B

A==
B v

It

N|l—ck°

then ) is a constant of motion. We use (v, A) coordinates for particle velocity. Here,
B,, is the magnetic field at the minimum Mod-B point (outside midplane). The

Jacobian in these velocity coordinates is calculated to be

[ & —Z/IU—MFdAdv,

where o = v)/|y)| and the range of the integral is [0, 0o] for v and [0, 1] for A.

In the flux coordinates, the flux surface average of a physical quantity g can be

written as
(o) = Jd0T g
and the bounce average is defined as
1 rIJB
gt=— | —dbg, 13
lo} = Forl (13)
JBdf
T = ) 14
b for] (14)

The bounce integral is taken between —m < 8 < 7 for passing particles and ~8; < 8 <
0, for trapped particles where 8, is the poloidal angle of banana tips. The Jacobian

for the flux coordinates (1,0, () is expressed as

J = (Vi x V- V()™
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By changing the order of integration and using the definitions for flux surface average
and bounce average, flux surface average over a velocity integration of a quantity g in
a strong B field can be reduced to a velocity integral if the bounce-averaged quantity

of g is known [20]:

</ d3vg> BmedG /d/\ dv v 7, {g}. (15)

Furthermore, since the integrand for bounce time is proportional to 1/v), 7 = v is
independent of v, but dependent on .
For the estimation of the anisotropic temperatures, a bi-Maxwellian distribution

function (which is constant along field lines) is used for the warm particles.

_? ( A +1-,\) h () 22
=2 T ble=A)
f=1In(ad.af) -e T/ =fne b, (16)
where
s—1 S o2 T
b= -, c= , s = ——% ==
o [vf s—1 o T

Here kT, (= mya? /2) and kT)(= mwa-ﬁ /2) are effective temperatures perpendicular
and paralle] to magnetic field lines and fy is the normalization factor. With this
form of the distribution function, a?, a'ﬁ can be determined from the perpendicular

and parallel energy moment Egs. (1) and (2),

</ Pov? [Ce+ C. + Q) (f)> =0, (17)
</ dPvof [Ce + C] (f)> = 0. (18)

Here it is assumed that the (V - q) term, which represents the radial heat transport,
is small. Most of the energy deposited by wave heating is transferred to background
species by collisions.

Since we assume a small Doppler shift effect in @), the particle heating is in the

perpendicular direction only and, thus, there is no direct resonance wave heating

S



term in the parallel equation [19]. The above two equations (17) and (18) show
the appropriate path of energy flow from the input wave to the resonant particles.
The v2 Q(f) term in Egq. (17) represents the wave heating term and it is positive
definite. The Coulomb energy scattering terms then represent energy transfer to
the background species and redistribution within the warm species. The pitch angle
scattering operator pictures the change of the direction of the particle velocity on
an equi-energy surface. Since v} and vﬁ are multiplied to the operator, the terms
v2 Ce(f), 'v|2| Ce(f) should show transfer of perpendicular energy which is increased
by quasilinear wave heating to the parallel direction. This means the two terms have
the same magnitudes but opposite signs.

Using Eq. (15), Egs. (17) and (18) can be expressed as
1 oo
_/(; d)\/o dvv2v7b[{viC§}+{viC¢}](f) +H, =0, (19)

/01 d)\ /Ooodv Vo [{vﬁ C&} + {vﬁ CE}] (f) =0, (20)

where

H, = (—Bm—fﬂjﬁ)_l </ d®v U?LQ(f)> . (21)

The bounce time (transit time for passing particles) is calculated to be

V1+2zK(z) (z<1)

2

(22)

Al 3|

f)
1+2e K (—1—) (z > 1),
T

where K () is the complete elliptic integral of the first kind with modulus z, and the

T

variable z is defined as

A (23)

z =1 describes the boundary between trapped and passing particles, with = >1
describing the trapped particles. For numerical evaluations in this work, we choose

e=1/5.
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As can seen in F'izg. 1(a), 7 has a singularity at the trapped-passing boundary. In
order to avoid numerical problems associated with this singularity, we replace 7, with
a well behaved function Vj;(A). The smoothed function, V;;(\) is obtained by fitting
75 based on polynomials of A and is plotted with dotted line.

Notice here that the operation C,(f) can be taken out of the bounce integral since

it 1s only a function of v and, thus, constant of motion,
{vi C} = {v1} C,,
2 _ .2
{vfCe} = {of} Ce.

The functions {v? } and {’bﬁ} are calculated and approximated again in order to avoid

(24)

singularities:
2 1
-—-—E'(:c) (z < 1),
7, ) T+1 4+ 22
v? 2 x E1 ) 1 [,1 ]
A EG) -(0-2)F ()] @b
%‘/tl(/\)’
1
A \/1 + 2z K(z) — \/_IT——.? E(z) (x < 1),
7 )= 2 M+2z . (1\ 2 [z 1 i 1 (26)
SRR G) A mm () - (-2) < (B)] e
T T z T\ 1422 z T z
= Vip(A),

where E(z) is the complete elliptic integral of the second kind.

By the chain rule, the pitch angle scattering operator, Fq. (3), can be expressed

in terms of the new coordinates, (v, A)

%,

Cg = E\',

~V£B§ A

/ B
where £ = oy/1 — B—/\ and the 90° Coulomb collision frequency v¢ is a function of v

only.
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Using the relations,

2 2
U_op__By v_,_p_8,
2=¢=1 B z =1 §—Bm,

we obtain bounce average of v} C¢(f) and vj C’g(f)
190 g .0 10
A {u Gt} =200t |- Azt ) (o Bt @D

a{sfoan} =2ueo [ 3{ 5} 7" ;; i (a5 + 553)) @

A

. 75 [ Bm . . . B,
By a similar procedure, —g— {?vﬁ} can be obtained, using an e-expansion of 5
v
up to the first order in ¢,

2 1 iy 13
Bn 2 o [P - foen (-3.3:2) <th
.UZ{B”} 2 p El B 1__1- I'l w1 7 1331 (@>1 #9)
7w\ 142z 2 z) M \Z 40227\ 222 z>1),

~ 1/tb(A)s

where F is the hypergeometric function. Since the bounce time, 7 diverges at the

B,
—gvﬁ} approach 0 as expected.

The bounce-averaged quantities, Egs. (22), (25), (26), and (29), are depicted in

trapped-passing boundary, {vﬁ} and {

Fig. 1 with solid lines. Their fitted functions of the form with constants co, c1, ¢,

and cz,
Vi, Vi hp,hb—co-i-clz\+cz/\2+03/\3 (30)

are also plotted with dotted lines.

In the present model (kv ~ 0), perpendicular heatings occur at the resonance
layer. Due to the conservation of the magnetic moment along the guiding center
motion in a toroidal system, however, the perpendicular heating at the resonance
location appears differently along the magnetic field line, resulting in a varying degree
of the temperature anisotropy along the magnetic field line. In the present work we

calculate the amount of anisotropy at the resonance point for the sake of simplicity.

11
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In order to manipulate the delta function in D, we expand [21] the resonance

condition [ — w = 0 near the resonance layer whose poloidal angle is given by g,

lQ—w:l% (0 —0r)=G - (0 —0R),

0=0pg

where the frequency, G incorporated with geometrical factor is,

sinfbr
G =we 1 —ecosflR’
By . .

and B=———— is used. If we write D =Dy §(w— kyv—IQ) and assume that

1+ e€cosf

. o . wZ2e* . .
the quasilinear diffusion coefficient, Dy | = S |E+|® assuming k1p < 1 | is con-

m‘w

stant [22] with respect to v and A, the velocity integral of v2 Q(f) becomes

4D
J @i == [ €0 flocey:

Finally, the heating term, Fq. (21), is given as

4D .
</ d*v 'L’iQ(f)> = GO I frjdﬁ /d/\dv v, f|9=93‘ (31)

In summary, the two simultaneous equations (19) and (20) are to be solved in order
to obtain the anisotropic temperatures. The necessary bounce-averaged quantities are
approximated in the form of Eq. (30). The heating term is derived in Eq. (21) and
Eq. (31).

Depending on the type of resonant particles, i.e., electrons with ECRH and ions
with ICRH, different approximations apply to the Coulomb collision operators, so we

consider ion and electron cyclotron wave heatings separately.

2.1. Ion Cyclotron Resonance Heating

For ICRH, the pitch angle scattering of the warm ions is by collisions between

warm ions and background ions (including single species impurity ions) rather than

12



with cold electrons, i.e.,

wfe

v e @ L1

e _ e 15 )<<1,
E"/’ n;Z; ¢1(u, > 1)

and ¢;(u) is in the range of 0.6 < ¢ (u) < 1 for u =§ > 1, where v; is the background
ion thermal velocity. We will assume T; = T, = T for simplicity. The characteristic

frequency for pitch angle scattering is, thus,

w nZ2 wfi
vem i+l (H’nl.zé) 75

(28 ()

m; \ 2 ’I’L[ZI2 3V/7 1
a=ro (7)) 02 =
1 42mn; ZF Z2 e InA

n o 3ymi (KL

In the energy operator, however, collisions with background electrons cannot be

where

neglected, and the Coulomb energy operator can be shown to be

1 /»T,' 1190 i 1 i kT. 1 10
Ce(f) = va — = 9 [4"'(“) (f p— v_fia_i) + (%) Z¢2 (:—eu> (f+7777?;6_1{)]’

1

where

_ m; m; nyZ? 1 _( ne (m,-) nyZt
va = o (mw) [1 + (m;) (n,Z?)l ’ Ze (n,-Z,?) / [l + mp/) \n; 22 )|’

v
U=—
Vi

Then, from Egs. (24) - (28)
{02 Ce(n) = 2% g (a) M3 3 ey (Fagk 4350 @
# {wf Ce(1)} = 2”“ % i) [ Vah) 25 g{; i (g2 8], o)

7 {od CUN} = v?u? VN CL ), (39)
7 {of Ce(N)} = o2 0 Va(M) CLf)-  (35)
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Because of the functions ¢,(u) and ¢o(u), it is not straightforward to evaluate the

integrals in Egs. (19) and (20) by hand. Instead, we use the mathematical software,

Mathematica™ by Wolfram Research, Inc. [23] which has the capability of doing

symbolic differentiation and integration. Inserting Egs. (32) - (35) into Egs. (19) and

(20) with the assumed bi-Maxwellian warm particle distribution function, Eq. (16),

we get two simultaneous equations for the temperature ratio, s, and the perpendicular

energy, my,a3 /2:

= Ty 72 (=T + Tipe) + 5 (=T + Ti.) +Hi =0,

N T + ( Thvi+ TJ}JJ) T ( Th.+ Th e) =0,

where

2
Hl_d Ht (S, ) fN,
4D0 1
—_— 5

G yyv;

0'2 1 o0 )
Hi | s _; = / dA V;t(/\)/ duy? etV ,
v} o

T-L : — TII i Tl2>

pa,t

d; =

Y;LIaz Ty — T,
1
T, =2 / A\ Vip(N) / duw () |,
0 0
1 oo
Thi=2 [ Vo) (=) [ dunau) 1,
8]
Tj;e—~/ VoY) [~ duad .
Td§e=3/ A\ Vi /\/ duu? f,
dri—~/ dA V(A / duu ¢o(u) f,
T}',,.=2b/ A Vi (N) ( c—A/ duw do(u) f,

dre—.,/ d\ Vy /ooduzt4f,

dje—3/ dA Vi( /\)/ du® f,
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1 oo a
Ty =/0 d/\/\Vtt(/\)/O duu¢1(u)8_§,
J . 0f 16f>

1 oo
= /, =L L
Ty 2/0 CD\/“HO\)/() duu ¢y (u) (3)\ EJY + 2 9N

1 o 0 af
=92 i W
Tn=2 [ dA\Va) [~ duudr(wzz A5y,
Toy = Tho,
s—1 S
b—m, C-—S_l_, (51)

_ m; 2 nIZ?
n= () [+ (2]
_(m mi\ (niZi
"= (nzw) ll + <m1) (n,Z,Z)] ’

4 (me>1/2(m,~) Ne
=3/ \m my/ \ni22)"

The first subscripts, pa,dr, and df indicate pitch angle, drag, and diffusion, respec-

tively, and the second subscript after a comma denotes the species of background

particles with which warm ions collide. One can notice that Eq. (41) - Eq. (50) are

all positive definite since b, ¢ > 1. The density ratios in 71,72,7s can be expressed in

terms of Z.g, Z;, Z1 by the definition of Z.g and the quasineutrality condition,

nyZ? . E_I_ Zegg — Zi
n;Z,-2 - Z,' Z] — Zeﬂ"
Ne 1 Z[ — Z,'

niZ2  Zi Zr— Zeg

(52)

From Egs. (36) and (37), one can see that the pitch angle term becomes bigger

with a larger fraction of impurity species since the coefficient v, increases with Z.g5,

which results in less anisotropy in temperatures. In addition, 72,3 are also increasing

functions of Z.g and it turns out that (—Td‘t + ij) < (—T}L + T,E») < 0. It means

that the wave heating can become less effective with larger Z.5 since Coulomb energy

scattering makes warm ion energy flow to the background more easily.

If we consider that the warm particle density is given by

nu; = (n(f)) = </d3vf>,

15
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the absorbed wave power can be derived by Eq. (31),

1 My, 4D
(PL) = 5 M </ d®v v? Q(f)> =5 -Fonw. (53)
Therefore, the parameter, d; which is a function of the wave power and warm particle

density is expressed as

g = P (2. ' (54)

Ny kT vg \1y,

Figure 2 to Figure are obtained by solving Eq. (36) and Eq. (37) in the case of
main ion heating, i.e. m,,=m;. Figures 2 and 3 depict the perpendicular and parallel
temperatures and their ratio as a function of d; with various Z.g values in a hydrogen
and a deuterium plasma (e¢=1/5 is used). For the impurity species, carbon is used.
As shown in the figures, beyond a certain value of d;, no solution can be obtained,
which suggest that there exists a critical wave power below which our bi-Maxwellian
picture holds. In order to extend the present analysis above this critical power, self-
collisions between the warm particles and/or a better description of the distribution
for warm species may be necessary.

Figures 4 and 5 show the perpendicular and the parallel temperatures, and the
temperature ratio of warm ions, respectively. From these figures, one can notice
several effects of impurity ion contribution through Z.4 and the ion mass.

First, the greater the impurity level in a plasma (larger Z.g), the higher the
Ty (and lower T, ), and thus less anisotropy is obtained. This is because the pitch
angle scattering term (-y;,) increases with Z.y more rapidly than the energy scattering
terms (-1, 72) resulting in a more effective spread of warm ion energy to the parallel
direction.

Second, as depicted in Fig. 4(b), the parallel temperature reaches a maximum

value and decreases with d;. This is because when the wave power is large, the

16



transferred power from the perpendicular to the parallel direction decreases:

1
VETL’

Pll””ak(TL—Tn)fx

where v is proportional to 1/v°.

Third, since a deuterium ion loses less energy to the background electrons than
a hydrogen ion due to the heavier mass, one can expect more efficient heating of a
deuterium plasma than a hydrogen plasma at the same wave power. Furthermore,
the relation v¢ o« 1/,/m, gives higher temperature anisotropy for deuterium ions as

seen in Fig. 5 at a fixed d;.

Finally, the parameter d; is

d o (PL) vVmikT;
T, o

so that higher anisotropy can be expected with higher background temperature, heav-

ier ion mass, or smaller background density.

2.2. Electron Cyclotron Resonance Heating

When the resonant particles are electrons, the pitch angle scattering of the warm
electrons by background electrons is comparable to that by cold ions unless Z.g is

very large:
wfe

Ve N 1 8 ( v ) 1
T ~ 1 — ~ 5
l/éu/z + I/;U/I Zeﬁ' Ve Zeﬁ

where v, is the background electron thermal velocity. Thus, the two contributions
should be equally considered in pitch angle scattering. For the energy scattering
operator, the contribution from the background electrons is dominant over that from

the cold ions by the ion-electron mass ratio,
1/:”/ € 1 (m;) v

- — ol — ] > 1.
w2l Zeg \m, 2 Ve

17

e e o e mm e e i m—— e gan e vy T v gy e A —y—— vy, ——p W+ . v e " e r———— = p—



Thus, the ion term can be ignored in the warm electron energy scattering operator.

Therefore, the pitch angle scattering and the energy scattering characteristic fre-

quencies can be simplified to be

1
ve = vo = (Zeg + d1(u)),

where

3w 1 1 _ 427 n, et lnA
4 7T, Te 3y/me (KT.)3/?"

(55)

The first term in v (which has Z.g) is from the scattering between warm electrons

and background ions, and the second term is from that with background electrons.

Then, Egs. (24) - (28) become

2 10 g .0 1
(o] Geln)) = ““<ag+m(»A[ 355 + ) (A g3 )| . 60
#{ Celn} = 22 (2 + 61t [Vl 5 g{ o (gasg+3 2], 6n

% {11 G} = v V) g ) (1450 9L), (59)
1

Ty {vﬁ Cc(f)} = v v Vu()) a—au $a(u) (f o —'5) . (59)

As for the ion case, inserting Fgs. (56) - (59) into Egs. (19) and (20) will give

two simultaneous equations to solve,

—(Tho+ Zeg TE,) + (~Ti.+Th.) + Hs =0, (60)
(V. + Zeg T) + (-TH .+ TY.) =0, (61)
where
. of
Hf =d. - Hi (s, | Iv, (62)

18



4D, 1 _ (P.)
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T,;t e = T — Tha,
Tt = Tis— T,
T, . = To1 — Tz,
T,l,lai = To3 — T,

Tho=2 [ dVph) [ duuds(a) 1,
T;,e=9b/1dmp A) (c— A) /ooduu¢2(zt)f,
th.=2 [ Vet [ dunga) £,
d,e_oz)/ A V() (e — A / du o )f,

Tu=/0 cmvtt(x)/o du () oL
Tm=2/01d)\)\V,1(/\)/ooduu¢l(u) (—@ ﬂ+1?—f>,

29X T 29
af

e L g

1 g .0 10
Tiu=2 [ V) [ duu (5 af\t ,,5%)
)
Tm_uf dAM,,(,\/ duu ¢y “)a,\ af\t
Ty = Tho,
T23—~/ AAVa(Y) [ duuaaA §§
T24=T14’

s—1 S
T fTiT

(63)

(64)

Shown in Fig. 6 is the solution of Eg¢s. (60) and (61). One important observation

to point out here is that the warm electron temperatures run-away at d. ~ 0.61. This

run-away effect is expected be originated from the fact that the warm particle density,

nw, is kept constant with respect to the wave power. We should remember here

that the electron energy scattering rate decreases with increasing energy (v, < v=2).
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However, we used a Maxwellian assumption for the resonant species with no cooling
mechanisms other than collisions with the background electrons. Hence, for wave
power above the run-away power, the validity of the Maxwellian assumption is in
doubt.

In the case when there is a strong loss mechanism for the tail electrons, an ex-
cessively strong tail formation can be avoided and the Maxwellian treatment may be

extended to higher wave power range.



3. GENERATION OF EQUILIBRIUM ELECTROSTATIC
POTENTIAL PARALLEL TO MAGNETIC FIELD

In this section, fluid equations are used to evaluate the electrostatic potential
variation on a flux surface. Since the warm particles are not in thermal equilibrium,
their pressure may be significantly anisotrbpic.

The steady-state force balance equation for warm particles assuming no plasma

flow is written as
V-P—nu,q.E=0, (65)

where P = n,kT is the pressure tensor, ¢,(= Z,e) the electrical charge of the warm
species, T the warm particle temperature, E=—V®, and the collisional friction force
is assumed to be weak for the warm resonant particles. Using the assumption that

the pressure tensor is diagonal [24],

P= (I—BB)]JJ_—FBB])",

where b = B/B. The parallel component of Eg. (65) in (,6,() coordinates where

1,0, ¢ are radial, poloidal, and toroidal coordinates, respectively, yields

Opy  pL—m 9B _ _ 00
90 B 00 vl g

(66)

Using the equilibrium magnetic field, with circular cross-sectional flux surfaces, ex-

pressed as

Bo

B=—"0° _
1+ €cosb’

we expand pressure, density, and electrostatic potential in e,



with the ordering

g ek 1
kT ’

Ty
—_— ~

Ny

h-TRh-1

where (7, §, ®) is the f-averaged part of (1, p,®) and (7, p, ®) is the f-varying,

first order, part in e. Then, the first order terms of Eq. (66) yields

P 0%

S+ (7L~ P esind = —ug, 5. (67)
The 6- integration of Eq. (67) gives, using the relation g =~ nwkT)), P = 7ukTj), and
pL =~ 7, kT, based on the assumption that the temperature is almost constant along

a magnetic field line due to large parallel heat conduction [25] (k) /kL ~ (wT)? > 1),

'ﬁu. T_L qu
—c|=— 0= ——.
e € (T” 1) cos i (68)

To eliminate 7., we use the familiar Boltzmann relation for the isotropic back-
ground particles 7. /1, = e@/kTe, n;/n; = —Z,-eé/kT,-, nr/n; = —ZIe@/kTI , and
the quasineutrality condition ¢, 7., = e (6. — Zyi; — Zpif). After some straightforward

algebra, we get the equilibrium poloidal electrostatic potential variation as

ed _ o1 Te T @R i) quie (To
kT, [1 +2 e T; + 2 neTr e n. Tj ¢

Finally, using Fq. (52),

b [, p0=Zaf ZZa-LHT\T,  &auT]”
kT, B ' YARA Z: 21— Zeﬂ Tr) T; e? 7, T”
_ (69)
€ q—wnTw (-IZ:J—' — 1) cosb.
e fe \Tj
- . . . o Qu 7T"w T.L
From Eq. (69), a few interesting points can be observed. First, if —— T 1} ~1
e . \Tj

the poloidal potential variation can be of order € as in Ref. [15], and is a function
of temperature anisotropy. Second, the poloidal variation of electrostatic potential &

is of cosf - type, originated from B. Third, the sign of the potential is different for
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electron and ion cyclotron resonance heatings. For the ICRF heating case, ¢, >0 and
T./Ty > 1; and Egq. (69) yields e > 0. For ECRH, ¢, <0 and, ed < 0. This can
be easily understood physically by the fact that the perpendicular heating of the ions
(electrons) by ICRH (ECRH) traps excessive amount of positive (negative) charges at
the smaller B locations, thus the potential'inside the magnetic well should be positive
(negative).

Assuming %Z—w (-TT-,J—' — 1) ~1, it can be observed that it is the 1.:herma,l energy of
colder background especiljas that determines the potential depth. In the case of ECRH,
the depth of the potential well is of the order of background ion thermal energy, if it
is smaller than that of electrons. In the case of ICRH, the magnitude of e® variation
may be roughly given by the electron thermal energy, if it is less than that of ions.
In the case of mixed ECRH and ICRH, the sign of the potential variation will be
determined by the dominance of the temperature anisotropy between the two species.

Equation (69) indicates that the poloidal potential is linearly dependent on the
warm species density, and the calculation of the potential requires the knowledge of
the density. In the case of minority ion heating, the minority ion density is given
experimentally. Fig. 7 is the plot of the poloidal electrostatic potential generated by
helium-3 minority heating in a deuterium plasma assuming the density of helium-3
is 10% of the electron density. As seen in the figure, the potential becomes no longer
negligible in low Z.g plasmas when 72,,/72. > 0.1.

If the warm species is indistinguishable with one of the cold species, however, it is
not easy to determine the density of warm species. In this case, the density of warm
species can be estimated either by experimental observations or by kinetic solution
of the distribution function in the presence of cyclotron resonance heating. In ELMO
Bumpy Torus [26], ECRH was used to produce a warm electron component and the

density of warm electrons was measured to be < 0.4 of that of the cold electrons by

soft x-ray diagnostics. Using a measured value of 7,,/7, = 0.3 and an assumed value




of Z.y = 4, then the normalized electric potential energy is approximately the inverse

aspect ratio, €.



4. SUMMARY

Temperature anisotropy of cyclotron resonance heated plasma species is studied
and the resulting poloidal electrostatic potential variation is discussed. In order to es-
timate anisotropic temperatures, we so]ved perpendicular and parallel heat transport
equations assuming negligible heat transport in the radial direction. A bi-Maxwellian
distribution function is used for the warm particles and a full form of Coulomb col-
lision operator is used to treat both ICRH and ECRH cases. In order to avoid
numerical problems associated with singularity in bounce-averaged quantities at the
trapped-passing boundary, analytic fitted forms are used as in Eq. (30).

By solving two simultaneous equations (36) and (37), it is found that for the ion
cyclotron resonance case, the temperature anisotropy of the warm species can be as
large as 15, as shown in Figure 5. With larger Z.g, less temperature anisotropy was
obtained since larger pitch angle scattering yields more effective spread of ion energy
from the perpendicular to the parallel direction. Higher temperature anisotropy is
seen with heavier mass ions. This is due to the mass effect in the drag term. More
efficient tail heating can be expected with heavier mass for the same reason. In
addition, either higher background temperature or smaller background density can
produce higher anisotropy. For electron cyclotron resonance case, however, there
exists a warm electron temperature run-away at d. > 0.61 as shown in Figure 6.

The poloidal electrostatic potential variation, Eq. (69), generated by the temper-
ature anisotropy is calculated to be proportional to the inverse aspect ratio, ratio of
warm and background densities, and temperature anisotropy. Since the temperature
anisotropy can be as large as 15, the electrostatic potential becomes non-negligible
when the density of warm species is more than 10% of that of the cold background
species. If this is the case, it is important to include this potential in the transport

and stability theory.
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In the future, we will extend the problem to higher wave power including, finite
parallel wave number, hot resonant particles, relativistic correction in the quasilinear

diffusion term, and loss mechanisms for the tail electrons.
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Figure 1: Solid lines show the bounced-averaged quantities in Eqs. (22)(25)(26)(29),
which are to be integrated over A. In order to avoid the divergence at z = 1, the
functions are fitted by polynomials of A.
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Figure 2: Anisotropic temperatures in the presence of ion cyclotron resonance heating
in a hydrogen plasma with various Z.g. For the calculation, a single impurity species
(carbon) is included. T; is the background ion temperature and d; is the normalized
input wave power. The preferential perpendicular heating of resonant ions by ICRF

is shown.
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Figure 3: Anisotropic temperatures in the presence of ion cyclotron resonance heating
in a deuterium plasma.
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parallel temperature reaches a maximum value and decreases with the input wave
power.
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Figure 6: Temperature anisotropy by electron cyclotron resonance heating. Temper-
atures increase very rapidly at d. 2~ 0.61 indicating runaway. Z.g = 1.
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Figure 7: Poloidal electrostatic potential generated by helium-3 minority heating in
a deuterium plasma. Density of helium-3 is assumed to be 10% of electron density.
The background electron, ion, and carbon impurity temperature are assumed to be
equal for simplicity.
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