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Simulating the Euclidean Time Schr6dinger Equation
using an intel iPSC/860 Hypercube:
AppIication to the t- J model of High-To Superconductivity

M.D.Kovarik and T.Barnes

Physics Division and Center for Computationally Intensive Physics
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373

and

Department of Physics, University of Tennessee
Knoxville, TN 37996-1200

Abstract. We describe a Monte Carlo simulation of a dynamical fermion problem in two spatial

dimensions on an Intel iPSC/860 hypercube. The problem studied is the determination of the

dispersion relation of a dynamical hole in the t-J model of the high temperature superconductors.
Since this problem involves the motion of many fermions in more than one spatial dimensions, it
is representative of the class of systems that suffer from the "minus sign problem" of dynamical

fermions which has made Monte Carlo simulation very difficult. We demonstrate that for small

values of the hole hopping parameter one can extract the entire hole dispersion relation using the

GRW Monte Carlo algorithm, which is a simulation of the Euclidean time Schr6dinger equation,
and present results on 4 x 4 and 6 × 6 lattices. Generalization to physical hopping parameter

values will only require use of an improved trial wavefunction for importance sampling.

I. Introduction

Monte Carlo studies of dynamical fermion problems in more than one spatial dimension, such

as the t-J model of the high temperature superconductors, are complicated by the "minus-sign
problem" encountered in multifermion systems in more than one space dimension. For a general

discussion of the minus sign problem see the paper of Loh et al [1]. This problem arises from
the fact that off-diagonal matrix elements of the type

(n'l(I- Hlh_.)ln) (1)

can have either sign in these systems. These matrix elements are encountered for example in
evolving an initial distribution of configurations to a ground-state distribution using the operator

hr --0

nrhr=r {n}

... In_)(n,lfs- Hh_)ln0)(n01 (2)

or in evaluating the partition function, which is the trace of this operator. The phases of these

matrix elements may be assigned to weight factors associated with configurations generated by

the algorithm, and these weights evidently can have either sign depending on the path S(r) the
configuration follows in Hilbert space. The weights are then used in averages in the calculation of
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matrix elements, which will have considerably larger statistical errors if weights (:)ccur with both

signs in comparable numl)ers. In measuring dispersion relations using Monte C,arlo techniques
one encounters a related difficulty, which is that tile matrix elements (1) between momentum

eigenstates are in general complex, so tile "minus sign problem" generalizes to a '*complex phase
problem". Despite these difficulties recent _lonte Carlo studies have found it possible to extract

useful results for several systoms which have minus-sign problems. These include the energy

of the one-hole ground stale in the l-J model [2] (which requires negative weights) and tile
disporsion relation of the spin-one tteisenberg chain [3] (which requires complex weights).

The t-a model [4,5], which is the two-dimensional Heisenberg antiferromagn(,t on a, square

lattice with a hopping term. has attracted considerable interest as a candidate model of high
temperature superconductivity. This too(tel, defined by tile tlamiltonian

1

=-t Z (a/
<ia>,_r <i j>

incorporates the large antiferromagnetic interaction present in the copper-oxygen planes and
allows hole hopping if vacancies are present.

In this paper [6] we show that the problem of determining t-J model dispersion relations using
a Monte Carlo technique can be solved formally using complex weights. :Mthough cancellations

between weights do lead to a considerable increase in the statistical noise relative to Heisenberg
model simulations in practice, one may nonetheless obtain interesting results for one-hole band

structure using currently available computing facilities.

2. Method

For our simulations we employ the "guided random walk" (GRW) Mgorithm, which was intro-

duced by Barnes, Daniell and Storey [7] as a method for Hamiltonian lattice gauge theory, and
has since been generalized to discrete degrees of freedom [8,9] and has been applied to U(1)

lattice gauge theory [10], multiquark systems in the nonrelativistic quark model [11], and to the
Heisenberg antiferromagnet [8,9,12-14] and t-J.. model [15]. In this method, the Euclidean time
Schr6dinger equation

.c3

- _rl_'(r)>= Hlv)(r)> (4)

generalizes to a diffusion equation with absorbers

0
OrP(X, t) = -nV2p(x, t) + a(x)p(x, t) (5)

when
1 0 2

H = 2rnOz_ + V(z,t). (6)

The diffusion equation is easily simulated using a random walk algorithm in which the probabilty
of absorption is replaced by a weight factor.

The GRW algorithm is unlike GFMC in that it does not use a fluctuating population of "walk-

ers", but instead generates a single unbranched random walk and associates a path-dependent
weight factor with that walk. The weights of many such walks are then used in averages to deter-

mine energies, as we shall discuss. The weights can also be used in a straightforward manner to

give unbiased [¢,0[:-weighted ground state matrix elements [16], which is a difficult problem for

some algorithms. (See Barnes [16] and Manousakis [17] for reviews of this and other algorithms
used in studies of the Heisenberg model.)



In the GRW algorithm one generates a random walk in ttilbert space, in which the path

followed by the configuration is parametrised by the Euclidean time r. One begins the r;mdom
walk at r = 0 with a chosen initial configuration (which in our case is a hole at (0,0)in a N6el
state), and increments tile Euclidean time in steps of hr, After each time step tile walk has tile

option of making a transition from the current configuration 8(r) to a new configuration St(r)

with probability

P(8- 8')= rss, hr , (7)

where the stepping-rate matrix rss, is

ss, = - Is' HIS) ; (s)

after the ,5 _ St transition is attempted, the Euclidean time is incremented to r + hr, and the

process is repeated. In these formulas HI is the off-diagonal part of tile tlamiltonian, H0 is tile

diagonal part, here the "Ising energy" .1_<ij>(5'._5'_ - ninj/4 ), and _(S)is an appro_mate
ground-state wavefunction which is used by the algorithm for importance sampling: the definition

of rss, (8)implies that the walks preferentially explore regions where I gl is large. One calculates
a weight factor associated with each walk, which is

o p/,0/o.{-/0 8t

This weight factor is a function of the path `5(r) followed by the walk. and in general has an

overall phase exp(i0). When averaged over random walks the weight asymptotically approaches
an exponential in the ground state energy,

lim < w(r)>= cexp(-Eor). (10)'r .'-* ,X)

One may therefore determine energies from the average weight at two Euclidean times,

E_stm _m In
rl, r2 _'-':_

In practice there are biases due to the use of a finite sample of walks, a finite Euclidean step
size h_. and finite measurement times rl and r_, and one must be careful to establish that these

systematic errors are within required limits.

The weight phase exp(iO) is the phase of the product of (-HI) matrix elements encountered
in all transitions executed by the walk;

-(8'[Hzl8)
exp(i¢) = H " (12)

In problems such as the determination of the ground state energy of the Heisenberg antiferro-
magnet we minimise statistical errors by choosing our basis {18)} so this phase is always +1,

which requires that all nonzero off-diagonal tIamiltonian matrix elements be negative. In the
t-J model with a _,-diagonal spin basis this is not possible in general, and in any case we must
introduce complex basis phases to extract dispersion relations.

To motivate our choice of basis phases, first consider a zeroth-order set of one-hole basis states

{[8)0} defined by applying a site-ordered string of fermion operators ct to the vacuum. ForTlo_z

example, our initial N_el-and-hole state on the 4 x 4 lattice, with the hole at site l. Zh = (0.0),
is

:}

i i



(Our sites are labelled as in Figure l of Dap;ot{o, Joynt. Moreo. Bacci and Gagliano [18].) 'File

phases of this basis are inappropriate for Monte (' rio simulations of tile Heisenberg antiferro-
magnet, since every spin Hip has a positive HI matrix element and hence induces a change in

sign ,_f the weight factor, The solution of Ibis problem is well known, and is to introduce _t new

basis set {iS>I} with overall phases of(-1)'\"1, where NsS is the number ofspin-f|ips required to
reach the basis state starting from a reference Nbel state. In our one-hole problenl this specifies

the r'elatirc phases within _.achsub.s_:tof one-hole basis states {{S,Yh>} that share tim same hole
location ._,h. Note however i hat we are still free to specify the overall phase of each of these basis

subsets, it is this freedom that allows us to extract the dispersion relation for the hole, since
this r,qative phase is determined by the total momentum of the state.

Momentum eigen_tates are defined by their behavior under translations; a translation of a
state of momentum k by/i returns the same state with a k-dependent phase,

) If'>-- Ig'>. (t.l)

We use this l)roperty of ,nomeiLtumeigenstates to choose our basis phases so that all states with
momenta other than a specified f: are projected out in the sum over final hole sites, this sum

being implicit in the calculation of the average weight < u, > in (10). Specifically, we use as our

basis states translations of states with the hole at the origin, with a multipllcative phase factor

of exp{+ik. (7}. For example, to extract k = (0.0)energies. the basis state corresponding to a
Ndel-and-hole state with the hole at 2'h = (1,0)is taken to be the pure translated state T,V>o,

= o,01>o:4-d+ 4.... 1o>

= 4+ ..  I_I0>= (,51
Similarly,thek"= (0.0)Ndel-and-holebasisstatewithholelocation(n_.,ny)is

T(n_fi" + n_D)IA/'(O,O)>o= (-1)":l.;V(n_, n_)>o. (16)

(The factor of (-1) TM in (15) and (16)is induced by the ordering convention (13) used to define

the {iX>0} basis.) In contrast, to extract general k' states we use basis states with plane-wave
phases, so that all states with I_ # k" are eliminated in the average over final hole locations

because _z_, exp{i(f; - I_). _?h}vanishes unless I[* :=/_. The required N_el-and-hole basis states

with general k and hole location (n_, ny) are

exp( + i_'..r,-') T( nxS: + n_/)) [,_'(0, 0 )>0

= exp(+i(kxn, + (17)

Previously we specified the relative phases within each fixed-hole-location subbasis {iS, aTh>} by
the Heisenberg-model (-1)N's rule. As we have now specified the relative phases of specific

basis states from each of these subbases by (17), the relative phases of all basis states are now
determined.

The weight-factor phase (12) equals the phase of the product of -Hhop matrix elements (i)
between the basis states (17), where the product runs over all hole hops which the random walk
has allowed. (We have chosen our phases so spin flips do not change the phase (12); only hole

hops remain as nontrivial -HI terms in (12).) Inspection of (13) and (17) shows that fermion

operator ordering introduces an additional factor of (-1) in the matrix element of (-HI) for
each hole hop in the +_) directions. This factor combined with the phase multiplying (17) gives
the total weight-factor phase exp(io) we use in (9) and (11) to determine the hole dispersioi,
relalion.
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As this definition of phases is somewhat colnplicated, it may be useflll to specify the resulting

rule for the weight-factor phase exp(io)in (9)operationally: (i) spin flips have no effect oil the

phase. (it)under a hole llop the phase of the weight changes by a factor of

_,,x,,.,= (-I). e-';'m_h . (-I) "x:'''r . (18)

The overall (- i ) is the product of the intrinsic (- I) in (16) ertcountered in translating the "zeroth

order" basis states such as (13) by =t:./:times the operator-ordering phase (-1) _'ncountered for

hole hops along =t:_0;their combilmd effect is a (- 1) for every hole hop. The secoll(t factor is due
to the exp(ik. Zh) present in a momentum eigenstate. The third factor i_ithe tleisenberg minus
sign which insures that spin flips never change the sign of the weight. All these may simply be
evaluated as an overall phase factor of

ei¢(_7)= (-1),vhop,. e-ik.(_,(.t')-2'h(i)) . (_ 1)_N,/ , (1,0)

at the end of each walk (at r I or r,2); aote that the first two phase factors on the rhs depend

only on the initial and final configurations, not on the path followed. The average weight and

resulting energy for each momentum can then be calculated using (9), (11) and (19) for each
L'. Note that the energies for all momenta are (letermined concurrently by evaluating average

weights with different end-point factors of exp(io(f¢)).

3. Perturbation Theory

At the present time. the large hopping parameters of high temperature superconductivity are
inaccessible to the GRW because of the minus sign problem. One way to study this regime is

to fit the small l/J regime where simulations can be done with a perturbative form whictl may
then be used to extrapolate to larger values of the hopping parameter.

Mthough no aumerical results have previously appeared for the t-J model bandwidth on
lattices larger than 20 sites, there are theoretical arguments that the one-hole baHd structure at

small t/J should depend strongly on the lattice size [19-21]. Perturbation theory in the hopping

parameter [18,20.21] finds that the small-t/J dispersion relation is

eh(k'.t) = eh(t = O) + Z,, . 2t [cos(k_,) + cos(kv) ] + O(t2/d) , (20)

where Zu, is a bandwidth renormafization: the small-t/J bandwidth is W = Z,, .St. Zu.. = +1 for

a free fermion on the lattice, and for the hole it is a function of both Stot and L. and involves an

overlap of initial and final spin-wavefunctions [21]. It has been suggested that this bandwidth

renormallzation is actually zero in the bulk limit [19]_although probably only for low-spin states

[21] (Stot/L '2 --. 0), because the staggered-magnetized spin background reduces the overlap
between one-hop initial and final spin states to zero. This effect has also been attributed to a

dimerization of the lattice by the staggered magnetization in the bulk limit [19], which reduces
the size of the effective Brillouin zone and leads to degeneracies between levels with momenta

that differ by (Tr, n'). This implies Z,_, = 0, so the bulk-limit bandwidth at leading order in the

hopping parameter expansion is O(t2/J). At large but finite L. simple arguments involving the

spin-wave gap (which vanislles _x 1/L 2) and degeneracies expected at the supersymmetric point
[21-23] (t/J = 1/2)lead one to expect that Zw for the low-spin states should approach zero as
_/L 2.

One-hole band structure at second order in the hopping parameter has been discussed by
Dagotto, Joynt. Moreo, Bacci and Gagliano [181, who obtained a general three-parameter form



for tile O((2/J)one-hole dl perslon relation Their equation (20)is equivalent to the form

(')eh(/:'.t)/J = ,,_+ ,,_[cos(k,)+ cos(G)] . 7

+ {_,a[,:os'(_,x)+ ,:o._-(_._)1+ ,,_[co_(k_)co_(k_)]+ _ }. 7 . (21)

There is a relation between the coefIicients {vi } in O(t 2/J) perturbation theory, which is implicit
in their definition in terms of the {cti} of Dagotto et al,

. f

v._= 2Z,L, = -2oo, (22)

8(n_+ c_2)
va = - , (23)

16_a'l(1 + c_2)
v4 = - , (24)a

4(1 -c_2) 2
t,_ = - , (25)

where 3 9

o__ _ - _c_o + 2at + _2 . (26)

In our fits to numerical results we do not impose the constraint but instead treat all five coeffi-

cients {t,i} as free parameters.

4. Implementation on the iPSC/860 hypercube

To implement the GRW on the Intel IPSC/860 we subdivided the total number of random wMks

in each sample into blocks of 4 million walks which were then divided among 32 nodes. The

host program performed the I/O, reading the input parameters and the output, and handled the
communication with the nodes. The random number generator was initialized with a different

seed on each node on which independent sets of random walks were then generated. At the

end. the results from the independent runs were sent back to the host where they were averaged

to give energy estimates for the 4 million walk blocks which were themselves averaged to give
estimates for all walks in the sample. No communication between nodes was required because

the GRW algorithm requires only a single configuration, so the memory requirements were very
small and each node was used as an independent processor during the simulation. Each of these
4 million walk blocks took appro.,dmately 3 and 6 hours per node on the 4x4 and 6x6 lattices

respectively at r = 6.0

5. Results and Discussion

In our simulations we studied the spectrum of single-hole states on 4 x 4 and 6 x 6 lattices.
Lanczos results are known for the 4 x 4 lattice, which served as a test case. For our initial

configuration we used a N6el state with a hole at the origin. First, to confirm that the algorithm

gives correct results we generated 4 x 4 energies for the six independent momenta at small
t/J values of 0.0,0.025,0.05,0.075 and 0.10. For importance sampling we used a simple trial
wavefunction of the form

I_'0qs)l= ce-_m(s) , (2";)

-- i III III
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Figure 1, Lanczosand Monte Carlo results
for the Sto_,l/Zone-holebandonthe 4x4 lattice.

and an optimum parameter value of ( _ 0.56 was found by minimizing the variance of weight-

factor moduli. (This is slightly larger than the value used in previous static-hole simulations

[12].) After some numerical tests we chose to set rl = 6.0, r2 = 7.0 and hr --- 0.025/L _ (the
Euclidean times and hr are given in units of j-l ), and we generated samples of 22_ random walks

for each value of t/J. The average weights < w(rl) > and < w(r2) > are in general complex
numbers, but as only the overall time dependence is relevant to the energy we used the modulus

of the average weight I < w(r) > ] in (9). The resulting one-hole band is shown together with
Lanczos results in Table I and Figure [; evidently the results are numerically consistent.

We have added (_', _') to all the momenta before displaying the energies in the figure and

table, to change the definition of momentum to that of references [5] and [20], and will use their
convention in our subsequent discussion. The weight phases described in the text correspond

to the momentum conventions of [24] and [25], Our results are also consistent with the known
degeneracy of the (_r/2._'/2)and (_',0) multiplets, which is due to a higher symmetry of the
4 × J lattice and is not trivially realized in the Monte Carlo simulation.

Inspection of the weight-factor variance shows that the energy errors increase by abol2t a

factor of three with each step of _(t/J) = 0,05, given these parameters and the simple trial
wavefunction (27), Since the errors decrease as 1/v/'j_rw, to maintain the small statistical errors

in Table i we must increase the sample of walks by about a factor of 2a for each step of
_(t/J) = 0.05. This is illustrated by the t/J = 0.15 points, which are averages of 225 walks

and in consequence have errors comparable to the t/J = 0.10 points with N,.,, = 2_2. For the
final measurements at t/J = 0.20 we again generated 225 walks, and the anticipated increase in

error by approximately a factor of three relative to t/J = 0.15 is evident. For most levels the
error is still relatively small. =t:0.005 to =t=0.012, but for the worst case of k = (0, 0) we find a

large error of about :t:0.05. We emphasize that the rapid growth of statistical errors with t/J
is due to the large Euclidean measurement time rl used in these simulations, This large rl is
required to remove excited-state contributions from the very simple trial wavefunction (27) used

in this initial study. Improved Heisenberg-model wavefunctions with long-range correlations
have been described in the literature (see for example section III.E. of the review t)y Manousakis



OTable i: Lanczos and :vlonte (_arl results for the lowest.lying 3'tot = I/2 one-hole band on tile
4 x .i lattice; we display eh{_')/J = (Eh([¢)- Eo)/J _t each independent momentum versus t/J,

_ o_.o5o 0,o75...........o,ioo ............o.15o ...... -o.200

_"= (0, 0) 2.36331 2.37779 2,39200 2.40593 2.43291 2,45864
2.3631(8) 2.3754(19) 2,3958(40) 2,4064(11) 2.4397(109) 2,5291(531)

(w[2, 0) 2.35456 2,35765 2,35780 2.35502 2.34077 2,31538
2.3543(6) 2,3566(18) 2.3573(18) 2.3517(49) 2,3402(54) 2,3030(118)

(Tr,0) 2.34670 2,34112 2.33189 2.31911 2,28341 2,23529
2.3463(6) 2,3412(15) 2.3300(34) 2.3195(21) 2.2895(31) 2.2436(100)

(_'/2, _'/2) 2.34670 2.34112 2.33189 2.31911 2,28341 2.23529
2.3468(6) 2.3418(6) 2.3309(14) 2.3214(22) 2,2863(36) 2.2302(62)

(_r, ,T/2) 2,33970 2,32804 2.31367 2.29670 2.25540 2.20513
2.3393(4) 2,3296(12) 2.31ii(15) 2.2946(29) 2.2590(32) 2.2030(49)

(Tr,7r) 2,33355 2.31829 2.30277 2.28700 2.25472 2.22145
_ 2.3331(7) 2.3187(!2) ' 2.3007(2,1) 2.2859(50) 2.2576(23) 2_.2232(85)

[17] and papers by Liang, Doucot and Anderson [26] and Dagotto and Schrieffer [27]), and by
incorporating such an improved wavefunction we anticipate that a much shorter evolution in

Euclidean time will give comparably accurate results. As these will experience fewer hole hops,
and hence smaller rotations of the weight phase, the "minus sign problem" will be considerably
reduced.

On the 4 x 4 lattice, the values of the coefficients vi are found from Lanczos data to be

vl = 2.3486 , (28)

v2 = 0.2976 , (29)

v3 = 0.6950, (30)

v4 = 1.390, (31)

v s = -2.990 . (32)

Note in particular the linear-t bandwidth narrowing relative to the free-fermion value,

Z,,,(4 × .t) = v_/2 = 0.1488 (33)

a/td the exact relation on the 4 × 4 lattice

2 t'3 = v4 , (34)



Table 2: Monte Carlo results for the lowest-lying ,b'to¢= 1/2 one-hole band on the 6 x 6 lattice:

we display eh(k)/J at each indep('ndent momeatum versus t/J. The quoted errors are statistical
only: the,re is an overall systematic uncertainty of about :t=0.005 (see text for discussion),

...... 0.025 o.oso..... 0-,075 0,i0
k --=-(0,O) -23.179(2)-23,171(4)-23.162(5) -23.50(I_'"

(w/3, O) -23.182(2) -23.177(3) -23.179(3) -23.181(11)

(27r/3,0) -23.186(i) -23,185(2) -23,196(3) -23,212(5)

(w,O) -23.187(i) -23.186(3) -23.197(3) -23,2!5(8)

(w/3,_'/3) -23.184(2) -23.184(3) -23.190(3) -23,199(7)

(27r/3, ,'r/3) -23,188(i) -23.190(3) -23.203(4) -23,213(5)

(_',,-r/3) -23.188(I) -23.191(3) -23.205(3) -23,216(3)

(2,"r/3,2_/3) -23.190(1) -23.195(3) -23,211(4) -23.222(4)

(w,2_r/3) -23.190(1) -23.i95(3) -23.209(4) -23.221(3)

_{_,,-r) -23.190(2) --23.194(3) -23.210(5 ) -23.203(5)._

which is a result of the degeneracy between (_', O) and (zr/2. ,'r/2)levels on this lattice, since to
O(t_/J)

eh(Tr.O)-eh(Tr/2, Tr/2)=(2v3--v4)'(t_) . (35)

In figure 2a, we plot the one-hole band up to t/d = 0.5 using the above fitted coefficients.
and compare to previous Lanczos results in Figure 2b. The qualitative agreement between the

two plots is evident.

To study one-hole band structure on the 6x6 lattice, for which no numerical results previously
had been reported, we generated Monte Carlo energies for the 10 independent momentum levels
using the same parameters and trial wavefunction as in the 4 × 4 simulation. We measured

energies at t/J = 0.0,0.025,0.050,0.075 and 0.10, with 22s walks at each t/J value. The 6 × 6
Heisenberg model ground-state energy with the same Monte Carlo parameters was found to be

Eo = -24.4406 ± 0.0010, which is consistent with our previous Monte Carlo result [12] and
with the recent Lanczos result of Schulz and Ziman [28], E0 = -24.4394. In the 6 × 6 one-hole
systems however we found somewhat slower convergence of Monte Carlo energies with Euclidean

time, and in the static-hole case we estimate the resulting bias due to running at rl = 6. to
be 5E ,._ +0.023. We have added this systematic correction to our measured energies, and the

resulting final estimates are given with statistical errors only in Table 2, and shown in Figure 3.
The uncertainty in this bias is about :k0.005, which is somewhat larger than the statistical

errors of most of the 6 × 6 one-hole energies. Thus, our errors are dominantly systematic rather
than statistical.

To provide a parametrization of the 6 × 6 band and to extrapolate to larger t/J we carried

out a least-squares fit of the 6 × 6 data to the O(t2/J) hopping parameter expansion (21). The
4 x 4 (Figure 1)and 6 x 6 (Figure 3) bands are plotted on the same scale; comparison of these
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Figure 2a, Extrapolation of 1:heone-hole band to ttJ=O,5 uJtng
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FigureZb.Lanczosresults for the S_o_'1/2one-holeband

10

, ,i i , I, I Ill II I IIII1' IIII11



-|S.;_ (1.o)

(3,3)

(1,1)
(2,OX3,0X3,2)

• all.) s,_)

0 0.05 0.1 t/J 0.15 0.2

Figure $. Monte C|rlo results for three 6x6 levels end fitted curvesfor all levels.

(ni,_) dtmote|mornentum(r_n/3,r_R/3);only(0,0),(1,1)and (2,2)data pointsaredisplayed,

fiK!lresclearlyshows evidenceforband narrowingon thelargerlattice.To avoidconfusionin
Fig,re3 we show Monte Carloresultsonly forthreerepresentativelevels,which in orderof

increasingenergy are(2r/3,2_'/3),{_'/3,7r/3)and (0,0);thelattergenerallyhas the largest
.tati.ticaierrors.We alsoshow thefittedband energies(21)foralllevels.The fittedcoefficients

v1 = -23.185, (36)

v2 = 0.122, (37)

v3 = 1.23, (38)

v4 = 1.21, (39)

v5 = -3.54 . (40)

(We have not subtracted the hnprecisely-known 6 x 6 static hole energy Eoh from v, in this case.)
[t Is dlffcult to estimate the total error in these coefficients, since {E(k')} values determined

from a single set of walks are highly correlated. As noted above, the t/J = 0 intercept vl has

a aystematic uncertainty of about :t:0.005. We have attempted to estimate the uncertainty in
the remaining coefficients both by modifying the details of the fit and by compa.ing with the
4 × 4 case; this suggests that the small-t/J bandwidth coefficients v2 is uncertain by about
:b0,01. The second-order coefficients v3, v4 and vs are much less well determined because they

are weighted by the small quantity (t/J)2; these have estimated uncertainties of _ 20%.
The linear-t bandwidth coefficient v2 (37) has evidently decreased to about 0.4 of its value

on the 4 x 4 lattice (29). In comparison, the arguments that it approaches zero as _/L 2 lead us

to expect a value about 4/9 as large as the 4 x 4 coefficient, which is consistent with our Monte
Carloresultsat presentaccuracy.
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t/J

Figure 4. 6x6 t-J band structure from extrapolated Monte Carlo data.

(n ,n) denotesmomentum(nx/3, ny_/3 ).

To summarize, bandwidth renormalization indicates band narrowing:

1, free fermion whooshing around

0.150(5), 4 x 4

Zw = 0.061(5), 6 x 6 (41)
0.065, _ x 6 from supersym, arguments
0, static hole

This numerical result clearly supports the conjecture that the linear-t component of the
one-hole bandwidth vanishes in the bulk limit.

Assuming that the fitted higher-order coefficients are approximately correct, we see that the
effect of increased lattice size is primarily to increase the coefficient v3. This lifts the degeneracy

of (_r, 0) and (7r/2, lr/2)levels found on the 4 × 4 lattice, and (1r/2, 7t/2) becomes the lower level.

(Of course the 6 × 6 lattice has no (_r/2,_r/2)state; this conclusion applies to 4n x 4n lattices.)
We find that the hopping-parameter expansion (21) with numerically determined coefficients

(28-32) gives a qualitatively correct picture of the 4 × 4 band to t/J ,,, 0.5. It may therefore
be of interest to present our extrapolated results for the 6 × 6 band for comparison with future

Monte Carlo studies. Our result (21) with fitted coefficients (36-40) is shown in Figure 4 for

the range 0 _ t/J <_ 0.5. Since the smaU-t/J behavior is not evident in this figure we shall
briefly summarize the sequence of ground-state levels. The (_, _') level is the 6 × 6 ground state •

for 0.0 < t/J < 0.04; near t/J = 0.04 the (2_'/3,_r) and (2_r/3,2_r/3) levels cross the (_r,_r),
and (27r/3,_r)may be the lowest level for a short interval near t/J = 0.04. The is
the 6 x 6 ground state for 0.05 <_t/J _ 0.20, where it crosses (2_'/3,7r/3), which presumably

remains the ground state until large t/J values are reached and the transition to the Nagaoka
state begins. This (27r/3, r¢/3) level is expected to be the 6 x 6 ground state at moderate t/J

because it is closest in energy to the (7r/2, _r/2) minimum of the O(t2/J) terms in (21).
As a result of the simple importance sampling (27) used here, we cannot at present resolve

band structure at appreciably larger values of t/J, but we anticipate that this will be pos-

sible given an improved trial wavefunction. This has been demonstrated by Boninsegni and
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Manousakis [2], who used a trial wavefunction with long-range correlations in a similar Monte

Carlo algorithm and were able to follow the (Tr/2, 7r/2) one-hole level to t/J = 5 on large lattices.
The advantage of using a more accurate spin wavefunction is that convergence to the ground
state to a specified accuracy occurs at a smaller Euclidean time, in which fewer hole hops take

place. In consequence one may carry out Monte Carlo measurements at appreciably larger val-

ues of t/J. In future we plan to extend our Monte Carlo study of band structure in the t-J
model to values relevant to the superconductors through the incorporation of similar improved
importance sampling.
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