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Simulating the Euclidean Time Schrodinger Equation

using an Intel iPSC/860 HyJ)ercube: .
Application to the t — J model of High-T. Superconductivity

M.D.Kovarik and T.Barnes

Physics Division and Center for Computationally Intensive Physics
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373

and

Department of Physics, University of Tennessee
Knoxville, TN 37996-1200

Abstract. We describe a Monte Carlo simulation of a dynamical fermion problem in two spatial
dimensions on an Intel iPSC/860 hypercube. The problem studied is the determination of the
dispersion relation of a dynamical hole in the t-J model of the high temperature superconductors.
Since this problem involves the motion of many fermions in more than one spatial dimensions, it
is representative of the class of systems that suffer from the “minus sign problem” of dynamjcal
fermions which has made Monte Carlo simulation very difficult. We demonstrate that for small
values of the hole hopping parameter one can extract the entire hole dispersion relation using the
GRW Monte Carlo algorithm, which is a simulation of the Euclidean time Schrédinger equation,
and present results on 4 X 4 and 6 x 6 lattices. Generalization to physical hopping parameter
values will only require use of an improved trial wavefunction for importance sampling,

1. Introduction

Monte Carlo studies of dynamical fermion problems in more than one spatial dimension, such
as the t-J model of the high temperature superconductors, are complicated by the “minus-sign
problem” encountered in multifermion systems in more than one space dimension. For a general
discussion of the minus sign problem see the paper of Loh et al [1]. This problem arises from
the fact that off-diagonal matrix elements of the type

(n'|(I = Hrhr)ln) (1)

can have either sign in these systems. These matrix elements are encountered for example in
evolving an initial distribution of configurations to a ground-state distribution using the operator

e—HT - Jim, Y ne)(nel(X = Hhe)ingoa)(noo]. .
nehr=r {71}
oo ra) (| (1 = H hr)ino)(no (2)

or in evaluating the partition function, which is the trace of this operator. The phases of these
matrix elements may be assigned to weight factors associated with configurations generated by
the algorithm, and these weights evidently can have either sign depending on the path S(r) the
configuration follows in Hilbert space. The weights are then used in averages in the calculation of




matrix elements, which will have considerably larger statistical errors if weights occur with both
signs in comparable numbers. In measuring dispersion relations using Monte Carlo techniques
one encounters a related difficulty, which is that the matrix elements (1) between momentum
eigenstates are in general complex. so the “minus sign problem” generalizes to a “complex phase
problem™. Despite these difficulties recent Monte Carlo studies have found it possible to extract
useful results for several systems which have minus-sign problems. These include the energy
of the one-hole ground state in the t-J model [2] (which requires negative weights) and the
dispersion relation of the spin-one Heisenberg chain [3] (which requires complex weights).

The t-J model [4.5], which is the two-dimensional Heisenberg antiferromagnet on a square
lattice with a hopping term. has attracted considerable interest as a candidate model of high
temperature superconductivity, This model. defined by the Hamiltonian

1
H==t 3 (el +he)+] 3 (Si-S, - qmm). (3)

<iy>.0 <ij>

incorporates the large antiferromagnetic interaction present in the copper-oxygen planes and
allows hole hopping if vacancies are present.

In this paper [6] we show that the problem of determining t-J model dispersion relations using
a Monte Carlo technique can be solved formally using complex weights. Although cancellations
between weights do lead to a considerable increase in the statistical noise relative to Heisenberg
model simulations in practice, one may nonetheless obtain interesting results for one-hole band
structure using currently available computing facilities.

2. Method

For our simulations we employ the “guided random walk” (GRW) algorithm, which was intro-
duced by Barnes, Daniell and Storey [7] as a method for Hamiltonian lattice gauge theory, and
has since been generalized to discrete degrees of freedom [8,9] and has been applied to U(1)
lattice gauge theory [10], multiquark systems in the nonrelativistic quark model [11], and to the
Heisenberg antiferromagnet [8.9,12-14] and t-J, model [15]. In this method, the Euclidean time

Schrédinger equation

—%iw(rw: Hlyp(r) > ()

generalizes to a diffusion equation with absorbers
-gr-p(r-tb -kV?p(z,t) + a(z)p(x. 1) (5)

when L2
H =~ + V(z). (6)

The diffusion equation is easily simulated using a random walk algorithm in which the probabiity
of absorption is replaced by a weight factor.

The GRW algorithm is unlike GFMC in that it does not use a fluctuating population of “walk-
ers”, but instead generates a single unbranched random walk and associates a path-dependent
weight factor with that walk. The weights of many such walks are then used in averages to deter-
mine energies, as we shall discuss. The weights can also be used in a straightforward manner to
give unbiased |yo|?-weighted ground state matrix elements [16], which is a difficult problem for
some algorithms. (See Barnes [16] and Manousakis [17] for reviews of this and other algorithms
used in studies of the Heisenberg model.)



In the GRW algorithm one generates a random walk in Hilbert space, in which the path
followed by the configuration is parametrised by the Euclidean time 7. One begins the random
walk at 7 = 0 with a chosen initial configuration (which in our case is a hole at (0.0) in a Néel
state), and increments the Euclidean time in steps of h,. After each time step the walk has the
option of making a transition from the current configuration S(7) to a new configuration &'(r)
with probability

PSS — 8 = rss hy (V)
where the stepping-rate matrix rgg is

vg(s) |

rss = |- (S'|H[|S ;

after the S — &’ transition is attempted, the Euclidean time is incremented to 7 + /., and the
process is repeated. In these formulas H; is the off-diagonal part of the Hamiltonian, Hy is the
diagonal part, here the “Ising energy™ J ;5 (5757 — ninj/4 ), and W§(S) is an approximate
ground-state wavefunction which is used by the algorithm for importance sampling: the definition
of rgs (8) implies that the walks preferentially explore regions where |03 is large. One calculates
a weight factor associated with each walk, which is

w(7) = exp(io) - exp{ - /DT1 (HQ(S(T)) - Z rssf)dr} , (9)
SI

This weight factor is a function of the path S(r) followed by the walk. and in general has an
overall phase exp(i®). When averaged over random walks the weight asymptotically approaches
an exponential in the ground state energy,

Tl_i{r}\O < w(r)>= cexp(—FEpr) . (10)
One may therefore determine energies from the average weight at two Euclidean times.

ES&'™ = lim 1n(< w(T1)>/<w(T2)>)/(7'2“TI)' (11)

T 2%

In practice there are biases due to the use of a finite sample of walks. a finite Euclidean step
size h» and finite measurement times 7; and 7, and one must be careful to establish that these
systematic errors are within required limits.

The weight phase exp(io) is the phase of the product of (—H;) matrix elements encountered
in all transitions executed by the walk;

—(S'|H1|S)
Lol 12
jl,]—@MHA&’ 2

transitions

exp(ig) =

In problems such as the determination of the ground state energy of the Heisenberg antiferro-
magnet we minimise statistical errors by choosing our basis {|S)} so this phase is always +1,
which requires that all nonzero off-diagonal Hamiltonian matrix elements be negative. In the
t-J model with a Z-diagonal spin basis this is not possible in general, and in any case we must
introduce complex basis phases to extract dispersion relations.

To motivate our choice of basis phases. first consider a zeroth-order set of one-hole basis states
{IS)o} defined by applying a site-ordered string of fermion operators c},,, to the vacuum. For
example, our initial Néel-and-hole state on the 4 x 4 lattice, with the hole at site 1. &, = (0.0),

18
N(0.0))0=ch_chyel el . els, 10y, (13)



(Our sites are labelled as in Figure | of Dagotto, Joynt. Moreo, Bacci and Gagliano [18].) The
phases of this basis are inappropriate for Monte ('arlo simulations of the Heisenberg antiferro-
magnet, since every spin fip has a positive f{; matrix element and hence induces a change in
sign of the weight factor. The solution of this problem is well known. and is to introduce a new
basis set {|S);} with overall phases of (=1)¥+/, where N, is the number of spin-flips required to
reach the basis state starting from a reference Néel state. In our one-hole problem this specifies
the relative phases within each subset of one-hole basis states {|S,F5)} that share the same hole
location . Note however that we are still free to specify the overall phase of each of these basis
subsets. It is this freedom that allows us to extract the dispersion relation for the hole. since
this relative phase is determined by the total momentum of the state.

Momentum elgenstatos are defined by their behavior under translations; a translation of a
state of momentum & by @ returns the same state with a k- dependent phase,

T(@) k) = e *9 LY . (14)

We use this property of momentum eigenstates to choose our basis phases so that all states with
momenta other than a specified & are projected out in the sum over final hole sites. this sum
being implicit in the calculation of the average weight < w > in (10). Specifically, we use as our
basis states translations of states with the hole at the origin. with a multiplicative phase factor
of exp{+z'1:: - @}. For example. to extract k = (0.0) energies, the basis state corresponding to a

Néel-and-hole state with the hole at T = (1.0) is taken to be the pure translated state T'|.\")y,
T(&n = 2)|V(0.0))o = cl_elpel_cb_ ... ey 10)
= (-1)-el_elelyely o elen]0) = (=1 V(L 0)o (15)
Similarly, the k= (0.0) Néel-and-hole basis state with hole location (ny,ny) is
T(ned + ny ) V(0.0))o = (=1)** |V (nzyny))o - (16)

(The factor of (—=1)"* in (15) and (16) is induced by the ordering convention (13) used to define
the {|.V)o} basis.) In contrast, to extract general k states we use basis states with plane-wave
phases, so that all states with K # k are eliminated in the average over final hole locations
because 3_ 7 exp{i( (K= K)- £x)} vanishes unless & = k. The required Néel-and-hole basis states

with general k and hole location (ng, ny) are

-

exp(+ik - F) T(nzd + ny§) |N(0.0))o

= exp(+i(keny + kyny )(=1)"|N(nz, ny))o . (17)

Previously we specified the relative phases within each fixed-hole-location subbasis {|S,Z4)} by
the Heisenberg-model (—1)Vss rule. As we have now specified the relative phases of specific
basis states from each of these subbases by (17), the relative phases of all basis states are now
determined.

The weight-factor phase (12) equals the phase of the product of — Hj,, matrix elements (1)
between the basis states (17), where the product runs over all hole hops which the random walk
has allowed. (We have chosen our phases so spin flips do not change the phase (12); only hole
hops remain as nontrivial —H; terms in (12).) Inspection of (13) and (17) shows that fermion
operator ordering introduces an additional factor of (=1) in the matrix element of (—Hy) for
each hole hop in the +§ directions. This factor combined with the phase multiplying (17) gives
the total weight-factor phase exp(/o) we use in (9) and (11) to determine the hole dispersion

relation,




As this definition of phases is somewhat complicated, it may be useful to specify the resulting
rule for the weight-factor phase exp(io) in (9) operationally: (i) spin flips have no effect on the
phase, (i) under a hole hop the phase of the weight changes by a factor of

A0 (=1)- (\—tE‘A.i’h , (_UAN,/ . (18)

The overall (=1)is the product of the intrinsic (~ 1) in (16) encountered in translating the “zeroth
order” basis states such as (13) by & times the operator-ordering phase (-1) encountered for
hole hops along % g; their combined effect is a (= 1) for every hole hop. The second factor is due
to the exp(z'l;:~ L) present in a momentum eigenstate. The third factor ig the Heisenberg minus
sign which insures that spin flips never change the sign of the weight. All these may simply be
evaluated as an overall phase factor of

eiw(‘:) = (El)fvhnpl ,G—if"(r"n(f)-l’h(*’)) . (_UAN,; ’ (19)

at the end of each walk (at 7 or ); note that the first two phase factors on the rhs depend
only on the initial and final configurations. not on the path followed. The average weight and
resulting energy for each momentum can then be calculated using (9), (11) and (19) for each
k. Note that the energies for all momenta are determined concurrently by evaluating average
weights with different end-point factors of exp(z’a‘)(l?)).

3. Perturbation Theory

At the present time. the large hopping parameters of high temperature superconductivity are
inaccessible to the GRW because of the minus sign problem. One way to study this regime is
to fit the small ¢/J regime where simulations can be done with a perturbative form which may
then be used to extrapolate to larger values of the hopping parameter.

Although no numerical results have previously appeared for the t-J model bandwidth on
lattices larger than 20 sites. there are theoretical arguments that the one-hole band structure at
small ¢/J should depend strongly on the lattice size [19-21]. Perturbation theory in the hopping
parameter [18,20.21] finds that the small-t/J dispersion relation is

-

en(k.t) = en(t = 0) + Zy, - 2t [cos(kz) + cos(ky)] + o(t?/J), (20)

where Z,, is a bandwidth renormalization; the small-¢/J bandwidth is W = Z,,-8¢. Z, = +1 for
a free fermion on the lattice, and for the hole it is a function of both S,; and L. and involves an
overlap of initial and final spin-wavefunctions [21]. It has been suggested that this bandwidth
renormalization is actually zero in the bulk limit [19]. although probably only for low-spin states
[21] (Siot/L* — 0), because the staggered-magnetized spin background reduces the overlap
between one-hop initial and final spin states to zero. This effect has also been attributed to a
dimerization of the lattice by the staggered magnetization in the bulk limit [19], which reduces
the size of the effective Brillouin zone and leads to degeneracies between levels with momenta
that differ by (7, x). This implies Z,, = 0, so the bulk-limit bandwidth at leading order in the
hopping parameter expansion is O(t?/J). At large but finite L. simple arguments involving the
spin-wave gap (which vanishes x 1/L?) and degeneracies expected at the supersymmetric point
[21-23] (¢/J = 1/2) lead one to expect that Z,, for the low-spin states should approach zero as
E/LZ. .

One-hole band structure at second order in the hopping parameter has been discussed by
Dagotto, Joynt. Moreo, Bacci and Gagliano [18], who obtained a general three-parameter form

ot}



for the O(t?/J) one-hole dispersion relation, Their equation (20) is equivalent to the form

en(R. 1)) J = vy + vy [cos(kz) + cos(hy)] - (jf)

+ {1'3 [cos® (k) + cos®(ky)] + rq [cos(k;) cos(k,)] + us} . (Ll) . (21)

There is a relation between the coeflicients {v;} in O(¢2/J) perturbation theory, which is implicit
in their definition in terms of the {a;} of Dagotto et al,

vy =22, = 209, (22)
- 2 p
. L. (23)
«
g)“:_w s (24)
a
PRY
by = 2l a2) (25)
o
where 3 9
a5;2-§00+201+02v (26)

In our fits to numerical results we do not impose the constraint but instead treat all five coeffi-
cients {v;} as free parameters.

4. Implementation on the iPSC/860 hypercube

To implement the GRW on the Intel IPSC/860 we subdivided the total number of random walks
in each sample into blocks of 4 million walks which were then divided among 32 nodes. The
host program performed the /O, reading the input parameters and the output, and handled the
communication with the nodes. The random number generator was initialized with a different
seed on each node on which independent sets of random walks were then generated. At the
end, the results from the independent runs were sent back to the host where they were averaged
to give energy estimates for the 4 million walk blocks which were themselves averaged to give
estimates for all walks in the sample., No communication between nodes was required because
the GRW algorithm requires only a single configuration, so the memory requirements were very
small and each node was used as an independent processor during the simulation. Each of these
4 million walk blocks took approximately 3 and 6 hours per node on the 4x4 and 6x6 lattices
respectively at 7 = 6.0

5. Results and Discussion

In our simulations we studied the spectrum of single-hole states on 4 x 4 and 6 x 6 lattices.
Lanczos results are known for the 4 x 4 lattice, which served as a test case. For our initial
configuration we used a Néel state with a hole at the origin. First, to confirm that the algorithm
gives correct results we generated { x 1 energies for the six independent momenta at small
t/J values of 0.0,0.025,0.05,0.075 and 0.10. For importance sampling we used a simple trial

wavefunction of the form .
(8] = cem¢HlS)

—
ro
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Figure 1. Lanczos and Monte Carlo results
for the Sm-l /2o0ne-hole band on the 4x4 lattice.

and an optimum parameter value of £ ~ 0.56 was found by minimizing the variance of weight-
factor moduli. (This is slightly larger than the value used in previous static-hole simulations
[12].) After some numerical tests we chose to set 7 = 6.0, /, = 7.0 and h, = 0.025/L? (the
Euclidean times and h, are given in units of J~!), and we generated samples of 2?2 random walks
for each value of t/J. The average weights < w(7) > and < w(r;) > are in general complex
numbers, but as only the overall time dependence is relevant to the energy we used the modulus
of the average weight | < w(7) > | in (9). The resulting one-hole band is shown together with
Lanczos results in Table 1 and Figure 1; evidently the results are numerically consistent.

We have added (7, 7) to all the momenta before displaying the energies in the figure and
table, to change the definition of momentum to that of references [5] and [20], and will use their
convention in our subsequent discussion. The weight phases described in the text correspond
to the momentum conventions of [24] and [25]. Our results are also consistent with the known
degeneracy of the (7/2.7/2) and (7,0) multiplets, which is due to a higher symmetry of the
4 x 4 lattice and is not trivially realized in the Monte Carlo simulation.

Inspection of the weight-factor variance shows that the energy errors increase by about a
factor of three with each step of A(t/J) = 0.05, given these parameters and the simple trial
wavefunction (27). Since the errors decrease as 1/v/Nyy, to maintain the small statistical errors
in Table I we must increase the sample of walks by about a factor of 23 for each step of
A(t/J) = 0.05. This is illustrated by the t/J = 0.15 points, which are averages of 225 walks
and in consequence have errors comparable to the ¢/J = 0.10 points with .V,,, = 2?2, For the
final measurements at t/J = 0.20 we again generated 2% walks, and the anticipated increase in
error by approximately a factor of three relative to t/J = 0.15 is evident. For most levels the
error is still relatively small. £0.005 to 0.012, but for the worst case of & = (0.0) we find a
large error of about +0.05. We emphasize that the rapid growth of statistical errors with ¢/.J
is due to the large Euclidean measurement time 7 used in these simulations. This large =, is
required to remove excited-state contributions from the very simple trial wavefunction (27) used
in this initial study. Improved Heisenberg-model wavefunctions with long-range correlations
have been described in the literature (see for example section IILE. of the review by Manousakis



Table 1: Lanczos and \Ionte Carlo results for the lowest-lying S, = 1/2 one-hole band on the

4 x 4 lattice; we display ex(k)/J = (En(K) = Ey)/J at each independent momentum versus t/.J.

t/] = 0.025 0.050 0.075 0.100 0.150 0.200

k=(00) |2.36331 2.37779 2.39200 2.40693 2.43291 2.45864
2.3631(8)  2.3754(19)  2.3058(40)  2.4064(11)  2.4397(109) 2.5291(531)

(7/2,0) 2.35456 2.35765 2,35780 2.35602 2.34077 2.31538
2.3543(6) 2.3566(18) 2,3573(18)  2.3517(49)  2.3402(54)  2.3030(118)

(m.0) 2.34670 2.34112 2.33189 2.31911 2.28341 2.23529
2.3463(6)  2.3412(15)  2.3300(34)  2.3195(21)  2.2895(31)  2.2436(100)

(m/2,m/2) | 2.34670 2.34112 2.33189 2.31911 2.28341 2.23529
2.3468(6)  2.3418(6)  2.3300(14)  2.3214(22)  2.2863(36)  2.2302(62)

(m,m/2) 2.33970 2.32804 2.31367 2.20670 2.25540 2.20513
2.3393(4)  2.3206(12)  2.3111(15)  2.2046(29)  2.2590(32)  2.2030(49)

(m,m) 2.33355 2.31829 2.30277 2.28700 2.25472 2.22145
2.3331(7)  2.3187(12)  2.3007(21)  2.2850(50)  2.2576(23)  2.2232(86)

(17] and papers by Liang, Doucot and Anderson [26] and Dagotto and Schrieffer (27]), and by
incorporating such an improved wavefunction we anticipate that a much shorter evolution in
Euclidean time will give comparably accurate results. As these will experience fewer hole hops,
and hence smaller rotations of the weight phase, the “minus sign problem” will be considerably

reduced.

On the 4 x 4 lattice. the values of the coefficients v; are found from Lanczos data to be

vy = 2.3486 | (28)
vy = 0.2976 , (29)
vy = 0.6950 , (30)
vy = 1.390 , (31)
vs = —2.990 ., (32)

Note in particular the linear-t bandwidth narrowing relative to the free-fermion value,
Zw(d x 1) = vy/2 = .1488 (33)

and the exact relation on the 4 x 4 lattice

203 = vy, (34)



Table 2: Monte Carlo results for the lowest-lying Sie = 1/2 one-hole band on the 6 x 6 lattice:
we display en(k)/J at each independent momentum versus t/J. The quoted errors are statistical
only: there is an overall systematic uncertainty of about £0.005 (see text for discussion).

77 = | 0025 0.050 0.075 0.100
F=(0.0) | —23.179(2) -23.171(4) -23.162(5)  -23.150(18)
(r/3.0) ~23.182(2) -23.177(3) -23.178(3)  -23.181(11)
(27/3.0) ~23.186(1) —23.185(2) —23.196(3) -23.212(5)
(r.0) -23.187(1) -23.186(3) -23.197(3) ~23.215(8)
(7/3.7/3) | -23.184(2) =~23.184(3) =—23.100(3)  —23.199(7)

(27/3,7/3) | —-23.188(1) ~23.190(3) ~-23.203(4) —~23.213(5)

(n,7/3) ~23.188(1) ~23.101(3) =-23.205(3)  —23.216(3)
(27/3.27/3) | —23.100(1) ~23.105(3) —23.211(4)  —23.222(4)
(m.2r/3) | -23.190(1) =—23.195(3) ~-23.200(4)  —23.221(3)
(m.7) ~23.190(2) ~23.194(3) -23.210(5)  —23.203(5) |

which is a result of the degeneracy hetween (7,0) and (7 /2.7/2) levels on this lattice, since to
o(t2)J)

2
en(m.0) —en(m/2,m/2) = (203 — vy) - (%;) : (35)

In figure 2a, we plot the one-hole band up to t/J = 0.5 using the above fitted coefficients,
and compare to previous Lanczos results in Figure 2b, The qualitative agreement between the
two plots is evident.

To study one-hole band structure on the 6x6 lattice, for which no numerical results previously
had been reported, we generated Monte Carlo energies for the 10 independent momentum levels
using the same parameters and trial wavefunction as in the 4 x 4 simulation. We measured
energies at t/J = 0.0,0.025,0.050,0.075 and 0.10, with 2%° walks at each ¢/J value. The 6 x 6
Heisenberg model ground-state energy with the same Monte Carlo parameters was found to be
Eq = ~24.4406 £ 0.0010, which is consistent with our previous Monte Carlo result [12] and
with the recent Lanczos result of Schulz and Ziman [28], E; = -24,4394. In the 6 x 6 one-hole
systems however we found somewhat slower convergence of Monte Carlo energies with Euclidean
time, and in the static-hole case we estimate the resulting bias due to running at 7, = 6. to
be AE ~ +0.023. We have added this systematic correction to our measured energies, and the
resulting final estimates are given with statistical errors only in Table 2, and shown in Figure 3.

The uncertainty in this bias is about +£0.005, which is somewhat larger than the statistical
errors of most of the 6 x 6 one-hole energies. Thus, our errors are dominantly systematic rather
than statistical.

To provide a parametrization of the 6 x 6 band and to extrapolate to larger t/J we carried
out a least-squares fit of the 6 x 6 data to the O(t%/J) hopping parameter expansion (21). The
4 x 4 (Figure 1) and 6 x 6 (Figure 3) bands are plotted on the same scale; comparison of these
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-23.4

figures clearly shows evidence for band narrowing on the larger lattice. To avoid confusion in
Figure 3 we show Monte Carlo results only for three representative levels, which in order of
increasing energy are (2r/3,2r/3), (r/3,7/3) and (0,0); the latter generally has the largest
statistical errors. We also show the fitted band energies (21) for all levels. The fitted coefficients
{v,} are

v = ~23.185 (36)
vg = 0,122, (37)
vy = 1,23, (38)
vg = 1.21, (39)
vg = —3.54 . (40)

(We have not subtracted the imprecisely-known 6 x 6 static hole energy Eop from vy in this case.)
It is difficult to estimate the total error in these coefficients, since {E(k)} values determined
from a single set of walks are highly correlated. As noted above, the t/J = 0 intercept v, has
a systematic uncertainty of about +0.005. We have attempted to estimate the uncertainty in
the remaining coefficients both by modifying the details of the fit and by compaing with the
4 x 4 case; this suggests that the small-t/J bandwidth coefficients vp is uncertain by about
40,01, The second-order coefficients vz, v4 and vs are much less well determined because they
are weighted by the small quantity (t/J )?; these have estimated uncertainties of ~ 20%.

The linear-t bandwidth coefficient v, (37) has evidently decreased to about 0.4 of its value
on the 4 x 4 lattice (29). In comparison, the arguments that it approaches zero as x/L? lead us
to expect a value about 4/9 as large as the 4 x 4 coefficient, which is consistent with our Monte

Carlo results at present accuracy.
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To summarize, bandwidth renormalization indicates band narrowing:

1, free fermion whooshing around
0.150(5), 4x 4
Z, = { 0.061(5), 6x6 (41)
0.065, v X 6 from supersym. arguments
0, static hole

This numerical result clearly supports the conjecture that the linear-t component of the
one-hole bandwidth vanishes in the bulk limit.

Assuming that the fitted higher-order coefficients are approximately corract, we see that the
effect of increased lattice size is primarily to increase the coefficient v3. This Lifts the degeneracy
of (r,0) and (7/2,7/2) levels found on the 4 x 4 lattice, and (r/2,7/2) becomes the lower level.
(Of course the 6 < 6 lattice has no (7/2,7/2) state; this conclusion applies to 4n x 4n lattices.)

We find that the hopping-parameter expansion (21) with numerically determined coefficients
(28-32) gives a qualitatively correct picture of the 4 x 4 band to t/J ~ 0.5. It may therefore
be of interest to present our extrapolated results for the 6 x 6 band for comparison with future
Monte Carlo studies. Our result (21) with fitted coefficients (36-40) is shown in Figure 4 for
the range 0 < t/J < 0.5. Since the small-t/J behavior is not evident in this figure we shall
briefly summarize the sequence of ground-state levels. The (r, 7) level is the 6 x 6 ground state -
for 0.0 < t/J < 0.04; near t/J = 0.04 the (27/3,7) and (27/3,2n/3) levels cross the (mw,7),
and (2r/3, ) may be the lowest level for a short interval near t/J = 0.04. The (27/3, 27 /3) is
the 6 x 6 ground state for 0.05 < t/J £ 0.20, where it crosses (2r/3,7/3), which presumably
remains the ground state until large t/J values are reached and the transition to the Nagaoka
state begins. This (27 /3,7/3) level is expected to be the 6 X 6 ground state at moderate t/J
because it is closest in energy to the (m/2, 7/2) minimum of the O(t?/J) terms in (21).

As a result of the simple importance sampling (27) used here, we cannot at present resolve
band structure at appreciably larger values of t/J, but we anticipate that this will be pos-
sible given an improved trial wavefunction. This has been demonstrated by Boninsegni and
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Manousakis [2], who used a trial wavefunction with long-range correlations in a similar Monte
Carlo algorithm and were able to follow the (7/2, 7/2) one-hole level to t/J = 5 on large lattices.
The advantage of using a more accurate spin wavefunction is that convergence to the ground
state to a specified accuracy occurs at a smaller Euclidean time, in which fewer hole hops take
place. In consequence one may carry out Monte Carlo measurements at appreciably larger val-
ues of t/J. In future we plan to extend our Monte Carlo study of band structure in the t-J
model to values relevant to the superconductors through the incorporation of similar improved
importance sampling.
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