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ABSTRACT

The idea of “locality” is a deep rooted concept. It does not have to be aban-
doned even if “loophole free” EPR experiments are performed and confirm the
predictions of quantum theory. To satisfy locality, ore can imagine that influences
at a distance are exerted via mechanisms involving an ether and effects propagat-
ing in that ether at a velocity V > ¢. Such model of physical phenomena is not
Lorentz invariant but, with V large enough, the model can be made to reproduce
the results of all experiments where quantum mechanics and Lorentz invariance
have been verified.
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1 A Historical Precedent

It is the contention of this paper that loophole free EPR experiments [1] would
not rule out all forms of “locality per say,” i.e. would not necessarily imply that
influences can be exerted at a distance instantaneously without the mediation
of an ether. The argument is inspired by a historical precedent, from Newton’s
times, when the principle of locality was threatened already. In Newton’s theory of
gravitation, celestial bodies exert attractive forces on each other, instantaneously
at a distance and through vacuum, i.e. without an apparent material support to
mediate that action at a distance. However, in a letter, Newton expressed himself
in the following terms [2] :

...That gravity should be innate, inherent, and essential to matter, so
that one body may act upon another at a distance through a vacuum,
without the mediation of anything else, by and through which their ac-
tion and force may be conveyed from on: to another, is to me so great
an absurdity that I believe no man who has in philosophical matters a
competent faculty of thinking can ever fall into it. ..

That quote shows that, in Newton’s times, the existence of “something” to mediate
actions at a distance was not an idea that could be disposed of easily, even though
the theory of gravity at the time seemed to point in another direction. Today,
because predictions of quantum theory concerning the EPR-paradox [3] have been
shown to imply instantaneous actions at a distance [4], that locality principle is
.in jeopardy again, but, now as in Newton’s time, it is natural that one look for
possibilities to hang on to that principle.

There was a remarkable development of gravitation theory, long after Newton’s
letter, when that theory was modified and did not involve instantaneous actions at
a distance anymore. In “general relativity” indeed, gravitational effects propagate
in gravitational waves at the finite velocity c. General relativity is in agreement
with experimental results of today, but it is also compatible with astronomical
observations that justified Newton’s gravitation theory, because the latter obser-
vations had measurement errors which made the difference between instantaneous
and finite-speed actions at a distance unnoticeable.

In this paper, it is suggested that the same circumstances may apply again to
the present interpretation of EPR experiments [5] against locality and that this
can be true even if and when a loophole free EPR experiment [1] is performed, if
and when it demonstrates the existence of actions propagating faster than c. Then



experiments that have confirmed Lorentz invariance and restricted relativity can
be reinterpreted in order for the theory to cope with those superluminal velocities.
To demonstrate this point, it is sufficient to construct one model that accounts for
all experimental data to date and is local. Such a model exists [6]. It is not claimed
to yield the correct description of phenomena in nature but it is an example to
prove the argument.

2 The Local Model

2.1 Description of Reality

The model uses operators in Fock space. Let v ..., be any set of vectors in
Fock’s space. The 3’s are not necessarily normalized to 1. The model uses
operators in Fock space of the same mathematical form as density matrices of
quantum mechanics

M =3l (1)
k
Tr{M}=1. (2)

At each point of space of coordinates z and at time ¢, there is an operator called
the “quantum-state matrix,” Q(x,t), of the form of M of Eq. (1) and satisfying
Eq. (2). It describes reality at the point of coordinates z at time t and contains
all the information that is available there. Q(z,t) is a local quantity. It does not
depend on the origin of coordinates of space and time.

As in quantum mechanics, an observable is associated with a set of projec-
tion operators. The probability p; of observing outcome #j of a measurement
performed at z and ¢ is given by a trace

p; = TT{E.]‘ _Q_(:Cvt)} ’ (3)

where the II; are projection operators which depend on the kind of measurement
performed but not on z and ¢. The projection operator II; is related to its counter-

part ﬁj, in the Heisenberg representation of quantum mechanics, by the relation
—iHt_iPzctr —iPz iH
_Iljze 1 te xHje 1 rez t’ (4)

where P is the total momentum and H the Hamiltonian operators as they are
defined in quantum field theory. Equation (4) makes II; an operator independent

of translations of the origin of space and time coordinates, unlike ﬁj.
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Let us define the operator

~

Q (x,t) — e:’Hte—iPrQ(x,t)ein-e—th . (5)

@ (z,t) is a mathematical quantity that is useful to compare the predictions of
the model with those of quantum mechanics. It cannot be used to describe a local
reality at r and t because, unlike (Q(z,1), it does depend on the origin of coordinates
of space and time. o

Egs. (3) and (4) show that the probability p; of outcome #j is the same in the

model and in quantum mechanics if the density matrix in Heisenberg representation
is [7] :

p=é(£3t)’ (6)

z and t being the space coordinates and the time of the measurement.

2.2 Evolution of Q(z,t)

Q(z,t) evolves in times as the result of two effects, the “Schroedinger evolution”
and the “collapse phenomenon.” Most of the time, Q(z,t) evolves according to
the equation

0Q(z,1)

= = —i(HQ(z,1) - Q=) H) . )

This is the “Schroedinger evolution.” Since P and H commute, it follows that,
as long as the evolution is of the Schroedinger type between two times ¢, and ¢,

Q@ (z,t) is constant in time and, if Eq. (6) is satisfied for some z at some initial
time 1o, it is also satisfied at time t. Then. for a measurement made at point z at
time t, Eq. (3) yields the same predictions as quantum mechanics [7].

From time to time, Q(z,t) evolves according to a “collapse” scenario. This
happens when a measurement is performed, but it can be made to occur more
often if the model is asked to reproduce the results of other models of quantum
mechanics where there are spontaneous wave-function collapses without the pres-
ence of observers [8]. In any case there is a point m with space coordinates z,
where the collapse first occurs at a time t,, and there are projection operators
I,.; . If the collapse is initiated by a measurement, m and t,, are the point and
the time at which the measurement occurs and [, ; is the projection operato:
associated with the measurement outcome. The collapse mechanism first affects



Q(zm,tm) at point m

__Q_(xmatm + 6) = ('p'}") ..Ilm,i _Q(I:m,tm - C) Hm,i ) (8)
where
Pm,;i = Tr{ﬂm,i _Q_(.’Cm,tm - 6)} . (9)

After the time tm, there is a propagation of the collapse in space at a velocity V,
which is a parameter yet of unknown value in the model, but which may be larger

than c¢. At each point of space coordinates z, there is a time t.(z), (tc(a:) > tm>,
at which a collapse occurs following the measurement at m

|$—$ml

Vv

Local (differential) equations can be written for Q(z,t) and the propagation of the
collapse phenomenon, [6], in such a way that, for all z’s and in extremely good
approximation,

t.(z) = tm + (10)

~

3 (wae) +) = (5 ) fins @ (o) =) flns s (a1)

where

mi = Tr{lln; G (2,t(2) ~ €}, (12
which are the same rules as those given for the evolution of density matrices during
a measurement [7]. Therefore, if @ (z,t) satisfies Eq. (6) during the Schroedinger

evolution that preceded t.(z), @ (z,t) satisfies it also during the Schroedinger
evolution that follows ¢.(z).

3 Comparison with Quantum Mechanics

3.1 Quasi-Equivalence

If, in the model, one sets the parameter V at oo, collapses everywhere occur at
time t.(z) = t,,, i.e. at the same time as in quantum mechanics. If, in addition,
Eq. (6) is verified at all z’s at an initial time ¢, Eq. (6) will be satisfied every time
later. Then Eq. (3) will yield the same probabilities as quantum mechanics.
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Actually the condition of Eq. (6) for all z’s at the initial time ¢, can be removed.!
In quantum mechanics, all experiments first require a “preparation” of the quan-
tum system under study. This preparation consists of preliminary observations
which determine the initial conditions well enough to make the predictions mean-
ingful. In mathematical terms, this means that the density matrix po before the
preliminary observations is in principle unknown, but the preparation induces col-
lapses of that density matrix py into another, p, where the ambiguities caused by
our uncertainties about py can be neglected. The matrix p is the one involved
in the measur~ments later on. All that is predicted by quantum mechanics are
correlations between the observations made during the “preparation” and those
made during the “measurements.”

In the model with V = oo, consider a preparation at time ¢y involving a mea-
surement at a point of coordmates zo and a second measurement at time ¢ at a

point of coordinates z. Assume Q (z,to — €) to be different from Q (zo,t0 — €).
According to the procedure described above, the probability pg, of outcome #¢ in

the “preparation” and the subsequent conditional probability ;o_(jl) of outcome #j
in the “measurement” will be

Poe = Tr{ﬁoe é (zo,to —€)} , (13)
pﬁl) ( ) TT{HJ Hoe Q (z,t0 —€) Ho,l} (14)
qo.¢

where ﬁo‘g is the projection operator associated with outcome #/{ during prepara-
tion, and

Joe = T’"{ﬁo,z é (z,t0—€)} . (15)

These probabilities are the same as those computed in quantum mechanics, if,
before preparation, the unknown density-matrix po was assumed to be

po=_ (Poz) Toe Q(‘ﬂ to — €) Hoe- (16)

I3 do¢

Thus the same correlations py) between preparation and measurements will be
predicted by the model and by quantum theory.

If V is not co but measurements are spaced in time by intervals larger than
+ times the distance between the points at which the subsequent measurements

1This had not been noticed at the time Ref [6] was written.
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occur, the delay Jz—},ﬂ"—[ in Eq. (10) becomes irrelevant. Consider two measurements,
first one in z,, at t,,, then cue at z at time ¢. The quantum state matrix Q(z,1),

thus é (z,t), will have been subjected to the collapse of the type of Eq. (11)
initiated by the measurement at z,, and t,, beforc the measurement at z and t

takes place. Since Q (z,t) is constant between collapses, Q (z,t) will have the
same value at time t as if the collapse had occurred at time t,, instead of t.(z).
Therefore all predictions will be the same as if V = oo, i.e. as in quantum theory.

3.2 Differences with Quantum Theory

From what is said above, it follows that the only circumstances where the model
leads to different predictions than quantum mechanics are ones where there is one
measurement at point z at time t after another at point z,, at time t,,, and they
are spaced in time such that
-z

|t——tm|<—|—-——v—rf‘—l. (17)
Then the probabilities p, for the second measurement are computed using Eq. (3)
with a matrix Q(z,t) that has not been subjected to the collapse generated by. the
first measurement. In the model, the probability p; ; of observing outcomes #: at
the measurement at point (z,, tm) and #j at point (z, 't) is

;= Tr{Hm, (xm, tm)} X Tr{Hm, (z,t)}, (18)

which, in general, will be different than the predictions of quantum mechanics.

These probabilities may be also different from those made by other local models
where collapses propagate at a finite velocity V. However, in all those local models,
Bell’s inequalities must be holding when Ineq. (17) holds, while they do not always
hold for the predictions of quantum theory. Therefore if V is not too large, there is
a possibility to detect a failure of orthodox quantum theory in future experiments
and our model could account for certain kinds of these violations. The cases where
Ineq. (17) is satisfied have been studied in more detail in Ref. [6].

In any event, V is a free parameter of the model and can be assumed to be as
large as necessary to make the difference with V = oo negligible in the data of all
the experiments where quantum mechanics has been verified. Therefore the model
is compatible with any tested prediction of quantum theory and the model cannot
be ruled out by any past or future experiment where the predictions of quantum
theory are verified. The experiment can only set a lower limit for V.
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4 Lorentz invariance

In relativistic quantum mechanics, if probabilities p; have been computed using
a given space-time restframe, the same results will be obtained using the same
computation rules in another restframe. For relativistic quantum theory, there is
no fundamental property that distinguishes one restframe from another. In this
sense, relativistic quantum mechanics is Lorentz invariant.

For the model referred to in this paper, if V = oo, the computation of the
probabilities p; can also be carried out using the same rules in all restframes. This
is obvious since, in all restframes, the predictions will be the same as in quantum
mechanics. However the model does not only provide a procedure to compute
the p,’s, it is also supposed to describe reality at each point of coordinates z at
time ¢ by the quantity Q(z,t). The collapse of Q(z,t) at the same time t,, for all z’s
is not Lorentz covariant. The description of reality by the model needs a special
Lorentz restframe where collapses occur at the same time for all z’s. This restframe
can be considered to be the restframe of an ether and, in this sense, the model is
not Lorentz invariant. However, since the probabilities of observable quantities are
invariant, there is no experiment that can tell what the ether restframe is. As in
quantum mechanics, any restframe can be used to make the predictions.

If V is finite but larger than ¢, the model is also not Lorentz invariant and one
can define the restframe of the ether as the restframe in which collapses propagate
with the same velocity V in all directions. If, in the ether restframe, measurements
are spaced in time by an interval so large that Ineq. (17) is never satisfied, the
probabilities p; are the same as for V = oo, therefore it is not possible to identify

"the ether restframe. All restframes can be used equally to compute the predictions.

If V < oo and condition (17) applies to two measurements, then the predictions
for the second measurement are different from what they are for V = oo, therefore
from those of quan.um mechanics. These differences exist only if condition (17)
is fullfilled in the ether restframe and, for V > ¢, condition (17) is not Lorentz
invariant. One can study experimentally the space-time conditions under which
the correlations between two observables measured at two different locations are
different from those predicted by quantum mechanics, and determine what the
ether restframe is. This would be the best way to illustrate the violation of Lorentz
invariance in nature if the predictions of the model are correct. However this
restframe cannot be identified if condition (17) is never fulfilled in a way that can
be seen in the data of an experiment.

In conclusion, the model provides a frame work to test both quantum mechanics



and Lorentz invariance. In addition, before any violation is found, the model can
be used by anyone agreeing with Newton’s above quoted statement and wanting
to justify his belief in “locality.”
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