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Abstract

The interaction between a lower hybrid wave and a fusion alpha particle displaces the
alpha particle simultaneously in space and energy. This results in coupled diffusion.
Diffusion of alphas down the density gradient could lead to their transferring energy to the
wave. This could, in turn, put energy into current drive. An initial analytic study was done
by Fisch and Rax. Here we calculate numerical solutions for the alpha energy transfer and
study a range of conditions that are favorable for wave amplification from alpha energy. We
find that it is possible for fusion alpha particles to transfer a large fraction of their energy to
the lower hybrid wave. The numerical calculation shows that the net energy transfer is not
sensitive to the value of the diffusion coefficient over a wide range of practical values. An
extension of this idea, the use of a lossy boundary to enhance the energy transfer, is

investigated. This technique is shown to offer a large potential benefit.




1. Introduction

Lower hybrid current drive has been an attractive alternative to inductive current
drive, but for reactors there has been concern that fusion alpha particles would be a strong
absorber of lower hybrid power[1,2]. Recently, however, it has been pointed out[3] that
under the right conditions the alpha population can actually amplify the wave, thereby
harnessing some of the energy of the alpha population for the current drive. The necessary
conditions require that there be a density gradient of fast alphas, and that kg of the wave be in
the correct direction. The process utilizes the fact that transfer of energy between wave and
particle is accompanied by a change in the particle’s gyrocenter. Thus, diffusion in energy is
coupled directionally with diffusion in space, and, with the correct choice of direction, a
population of alphas diffusing in space under the influence of the wave will, on the average,

transfer energy to the wave.

This possibility was discussed in a paper by Fisch and Rax[3], where they estimated
the amount of energy transfer in the limiting case of infinite diffusion coefficient. In this
paper we describe a finite-difference calculation used to solve the differential equation that
models the process for finite diffusion coefficient. We simulate the limiting case (by taking a
large value for the diffusion coefficient) to verify the analytic results of Ref. [3]. Small
errors in the equations have been corrected. Then the energy transfer is calculated for a
range of practical values and is found to be considerable. Finally, we modify the boundary
conditions to introduce particle losses that enhance the energy transfer from particles to

wave. The effect appears to be very promising.



2. The Process

The process by which the energy and space diffusion are coupled has been described
in Ref. [3]. It is summarized here. An example of the interaction is shown in Fig. I, in

which an alpha particle is encountered by a wave traveling in the y-direction. As long as the

velocity of the alpha, v, in the plane is greater than or equal to the wave phase velocity,
w/ky, the two interact, and the alpha receives an increment of velocity, Avy (positive or
negative). As a result, the gyrocenter of the particle is shifted by an amount Axgc. The
momentum change is maAvy, and the energy change is mgvyAvy. The gyrocenter shift is
equal to Avy/Qg, where Qg = 2eB/my. Therefore, Axy. = AE (ky/mQ2,), showing the
coupling between energy transfer and spatial shift. The guiding-center shift is inversely
proportional to the wave phase velocity. We would choose a value like w/ky ~ 6 X (ion
thermal velocity), in order to avoid wave interaction with the thermal ions. For the case of
total alpha energy transfer equal to the production energy, Eqp = 3.5 MeV = myvy?/2, the
guiding-center would move by L = vm02ky/2coQOl ~20 cmin a 5-T field. Note that, for a
given density gradient, more energy is extractable by making L long, that is, making the
phase velocity low (so long as L < a, where a is the minor radius, which is generally

satisfied anyway).

The differential equation describing the alpha density as a function of energy,
position, and time, under the influences of this “quasi-linear” diffusion, slowing down on
electrons, and a source is [3]

ap 0 0,0\ p (9 20
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This equation is in terms of dimensionless quantities:

E£E= V.L2/v(102
X= ng/L



T = 2vt, where Vv is the slowing-down rate of alphas on electrons

Ey = ((D/kyvao)2, the kinetic energy below which the alpha is not in resonance with the
wave

p is the alpha density

S is the alpha source

The boundary conditions are determined from following: D = 0 for € < €y, since there is no
wave-alpha resonance there, and the wave exists only in a beam extending laterally from X =

0to X = A --outside that range D = 0.

3. Analytic Treatment

The analysis of the behavior of a population of alphas is, again, summarized from
Ref. [3]. The process takes place in a space shown in Fig. 2. It will be convenient to
introduce a transformation given by u =€ + X and v = € - X. The boundary conditions on
the diffusion imply that dp/ou = 0 on the top and bottom boundaries. Since nothing can take
particles across the right boundary, we can take p=0 there. Only slowing down (and not
diffusion) takes particles across the left, e=¢,,, boundary, so one can write the flux at that
boundary as -€p; equivalently one takes the boundary condition dp/du = 0. The diagram of
the region of wave-particle interaction in this paper differs from that in Ref. [3], because here
we draw the diagonal along which diffusion occurs at 45° to the right, a line of constant v.
This is consistent with the form of the diffusion operator in Eq. (1). This difference does not
affect the conclusions, since it is merely equivalent to a replacement of X by (A - X). One
should think of X = A being closer to the center of the plasma, where the alpha particie
density would presumably be higher, so that the overall net energy transfer is from the

particles to the wave. This is, of course, always possible by making the proper choice of kg.




Consider a short pulse of alphas produced at (gg, Xp), i. e., a 8-function source.
Consider the case in which D — oo . Initially the population diffuses along the 45° diagonal

specified by Py = €; - Xg , and the density immediately becomes uniform along that line.

The energy exchanged, wave to alpha, is given simply by

Wo(Xo,€0) = ;—(Emax*'gm'm) - & )
where the first term is the final average kinetic energy. Along the diagonal, €, = € - X+

A, and g, is given by

£ = Po, if Py is in region (b) 3)
min ~ Ews if Py is in region (a)

(see Fig. 2). Substituting into Eq. (2), we obtain

A/2 - Xo, if Py is in region (b)

Wo(Xo,€0) = { (A-X0)/2 - (e0-€w)/2,  if Py is in region (a). @

This instantaneous energy exchange can be positive or negative; for Xg near A, it is negative.

The subsequent slowing down and diffusion are considered as a repeating alternation
of slowing down for a short At, followed by diffusion for an equal At. Each slowing down
takes the alpha population from a diagonal P to a left-shifted line tilted slightly toward the
vertical. The diffusion then spreads the density uniformly along a band around the average

45° diagonal. As shown in Ref. [3], in region (b) the energy exchange vanishes.

In region (a) the energy exchange is no longer zero. The starting value of P depends
on whether the alphas were produced in region (b) or (a). In the former case, the starting

value is Py, = € in the latter, Po, = Py = €y - Xp. Modifying the derivation in Ref. [3] for



X — A - X and correcting minor errorst we have for the exchange subsequent to the initial
exchange

WLPOWD) = 2 (- T- e ¥2-1) + (€72 1) &)

where s = 2g,,/(Pg,+A+€y). All the particles are gone by the time t=17,,,5, where
Tmax=2In(1/s); see Ref. [3]. Therefore, if the rf power is on continuously, the ultimate value
of Wy is

WL(Pow, Tmax) = Z’% {2In(s) + 1/s - s}. (6)

The total energy exchanged from wave to alpha is W = Wy + W. In deriving Egs. (5) and
(6), certain approximations were made, in addition to taking the limit D — oo . There is no
limit in which these approximations are rigorous, but, what we show [through numerical
solution of Eq. (1)] in the following sections is that these analytic expressions for W|_ are

very nearly correct for D — oo,

Note that Wy is always positive. If Xy is chosen so that Wy is negative, meaning that
the alphas give energy to the wave, then when they are in region (a), the wave “gives back”
energy to the alphas. For this reason, a scenario with only short pulses of rf appears

advantageous.

4. Maximum Energy Transfer

The quantity g, the initial perpendicular energy, is given by the alpha production: the

pitch angle determines an €y < 1.0. The distribution in € is uniform. To maximize the



number of alphas diffusing to lower energy, we need X, to be near the top of the region. In
the practical situation kg would be chosen so that X is toward the center of the plasma with
X = 0 toward the periphery. The quantity €,, is the lowest perpendicular kinetic energy,
relative to the total kinetic energy at production, of an alpha that is resonant with the wave.
For putting the alpha energy into electrons, choose €, well above ion thermal energies, for
example w/kg~6vT, to avoid ion damping. This corresponds to ~ 500 keV and €, = 0.15.
Using the analytic expression (6), we did a scan of the three parameters, €, €,,, and A,
to locate the regions with the most energy exchange from alphas to wave. The energy
exchange “saturates” at around A=1. Figure 3 shows the variation with g and €,, for A=1
and Xp = 0.95. The initial energy exchanged is plotted, as well as the net taking into
account the “give back” during the alpha slowing down. Note that for a normal population
of alphas, isotropic in velocity space, one would need to integrate over g;to get the total
energy transfer.
For the short-pulse rf scenario, clearly, the lower the value of €, the more energy
from alpha to wave; however, with continuous rf there is a broad maximum in the

neighborhood of €, ~ 0.2. This is an additional reason for choosing €,, in the vicinity of

(but above) 0.15 mentioned above.

5. Comparison to Numerical Solution

The analytic study described above has been supplemented by a finite-difference
solution of Eq. (1). This calculation allows us to model the effects of finite values of the
diffusion coefficient, D, and altered boundary conditions intended to enhance energy
exchange. This finite-difference solution can be used in the future to model other scenarios,
such as applying the wave power in short pulses, also for the purpose of enhancing the
fraction of the particle energy delivered to the wave.

We begin with the transformation u = € + X and v =€ - X. While it does no good to

transform the whole equation, it does simplify writing the diffusion term, since it implies




0/0e + 9/0X =2 9/ou . Figure 4 shows the grid that is used, along with the locations of
diagonals and the points used in the central differences. For the diffusion term we choose
the finite difference form to be space centered and use the Crank-Nicholson method [4]; for
the slowing-down term we take the upwind difference. The difference equation is then

i+l

— Al AT (o, Al \ Al
Pik = Pjk * Z'[ejﬂpjﬂ.k'tjpj,k]
£

+ (1-fimp) ﬂ% [Kj+1/2 (P}+1.k+1 - pij,k) - K112 (pﬂ.k - pﬂ.x.k-O]

(Au)
+f ﬂl[m Ot - Pt Sk () - ot )]
imp 5 LKi+172 Pjs1k+1 = Pik) - XKj-172 Pjk - Pj-1k-1 (7)
(Au)
+ AT Sg.k

where xj =D/ Ygj-€w, and fjp, is normally set = 0.5. To make the method second-order in
time, we take a half step, with fj,, = 1.0, to get ha‘lf-step values for the slowing-down term.
The boundary conditions are p = 0 on the right (diagonal) and dp/du = 0 on the left, top, and
bottom. First-order differences are used in implementing the boundary conditions. The sets
of simultaneous equations generated by the implicit differences are solved by the method of
Richtmyer and Morton [5]. We step through the diagonals, one by one; on each there is a
system of equations for the pi+l; Ref. [5] gives a simple recursion method for solving the
system subject to the boundary conditions.

The method and the computer program that implements it were tested by using a test
function for the density, p. The function was chosen to satisfy the boundary conditions on
all four boundaries. The function, p, was substituted into Eq. (1) to determine the
corresponding source function, S(g,X,t). That source was used in the finite-difference
program to calculate p(g,X,t) numerically. The results were compared with the assumed p
to verify the method and to test the rate of convergence. The function chosen is the product
of four polynomials. Substitution into the PDE leads to a large amount of manipulation,
which, fortunately, is easily performed with the Macsyma symbolic manipulation system [6].

The Fortran code for the source function was also produced by Macsyma.




Figure 5 shows the results of the testing, monitored at two representative points. For
the testing we used D = 0.3, ey = +0.1, and A = 0.5. The test function looks like a smooth
hill, with the edges = O at the boundaries, and the peak at the center of the space. The
function was multiplied by an exponentially decaying factor, with time constant Tgecay =
0.0844 . The errors plotted are at time T =0.15. The errors displayed are at points near the
left-hand boundary, where the error is largest. The error varies more slowly than the first
power of step size, apparently because of the factor \/gj—¢, in the denominator.
Nevertheless, the error is clearly converging on zero with decreasing step size, indicating the
correctness of the method.

The goal of the calculation is to obtain the energy exchanged between fast alpha
particles and the wave. To calculate this, once we have the alpha density, p(e,X,1), we

multiply the PDE through by € and integrate over all € and X:

d B d d _op
&j epdedX = f aég(ep)dadx +4{ E§JK§Jd8dX + f eSdedX. (8)

This represents

ggf (o stored energy)dedX = f (power from electron drag)dedX

+ f (power from the wave)dedX +f (o source power)dedX

where positive quantities represent power flowing to the alpha particles. The second term on
the right is the power we are interested in. Under some conditions, in particular when the
majority of alpha diffusion in space is accompanied by a lowering of alpha kinetic energy,
the second term is negative, implying a net transfer of energy from alphas to the wave.

For comparison between the analytic and the finite-difference calculations, we select
two cases. Case l has A =1., &g, =0.15, g9 = 1.0, Xg = 0.95, which locates the source in
region {a), and Case II is in region (b), with A = 0.5, g,, = 0.10, gy = 1.0, Xy = 0.4. The

latter case will demonstrate all the features of the predicted time evolution of the energy
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exchange, namely, a rapid initial exchange, followed by no exchange for the rest of the time
in region (b), followed by a gradual return of a portion of the energy while in region (a).

To illustrate the behavior of the energy exchange as a function of time, we first plot,
in Fig. 6, alpha-to-wave energy exchange for Case II mentioned above (source in region
(b)). As above in the analytic calculation, the source was taken to be a d-function in g, X,
and t. (Thus, the result here can be considered to be a Green's function for the energy
exchange.) In this plot we have inverted the sign of the energy exchange so that alpha-to-
wave is plotted as a positive quantity. Figure 6 is the result from the finite-difference
calculation, integrated as described above. As expected from the analytic analysis, the
energy exchange begins with an immediate transfer to the wave, after which the exchange
during the rest of the time in region (b) is zero. When the alphas are in region (a), the wave
"pays back" some of the energy, but, by the time all of the alphas have slowed down below
€w (in this case t/15 = 3.), there is still a net amount of energy that has been transferred to the
wave. For this case the analytic analysis gives Wy = 15 % |using Eq. (4)] for the initial
transfer from alpha particles to wave. Using Eq. (5) for the return of energy from wave to
alpha particles gives the curve in Fig. 6 labeled "Eq. 5". The agreement is very good,
verifying the analytic formula.

The convergence of the energies as a function of step size is very satisfactory. As the
€ (and X) step was varied from 0.03 and 0.003, the energy unaccounted for at the end of the
calculations went down from 12% to 1.3% and extrapolates to a value extremely close to
zero for step size equal to zero. Also, the energy exchanged from alphas to wave
extrapolates, as a function of step size, to the same value as the analytic calculation within

~ 0.1%; the difference for the step size used for the results below (0.003) is 0.25%.

6. Optimal Energy-Transfer Case

10



We now examine in detail Case I, namely, A = 1., g, = 0.15, gy = 1.0, Xy = 0.95.
Although a slightly higher energy transfer to the wave could be obtained with gy ~ 0.3, as
may be seen in Fig. 3, the value chosen is more nearly suited to the average value of €p and
is more practical, since it would employ the lowest frequency wave source consistent with
the 6vr, requirement. In this case the source is in region (a), so there is no period of zero

exchanged power. Results from the analytic formulas are as follows:

Wy = 40.0 % " (initial transfer)
W= -195% (later transfer)
W = 205 % (net transfer).

The analytic formulas are for D — oo ; the finite-difference calculation shows that the process
saturates for D = 10 and above, where the analytic approximation, again, is numerically
verified.

Figure 7 shows the energy transferred as a function of time for this case. When
D = 10, as we have taken above, the behavior is as expected for a source in region (a), that
is, after the initial, immediate transfer, the "give back" begins immediately. Interestingly, we
find that, as the strength of D is reduced, its value has much more effect on the early energy
exchange than on the net amount. Likely values of D would probably be in the range 3 >D
> 0.3 [7], over which the net energy exchange varies only slightly. This has the fortunate
implication that the strength of the wave can vary over a wide range while still effecting

nearly optimal energy exchange.

7. Enhancing the Energy Transfer to the Wave

Particles near the boundary € = ey can only take energy from the wave as they diffuse
up along the diagonal; therefore, it would be advantageous to get rid of them. It would be
possible to introduce perturbations into the plasma to cause particles to cross that boundary in
excess of the collisional slowing down. To model the effect of such a particle loss, we have

investigated changing the boundary condition on the left boundary, € = ew, from dp/du=0
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to dp/du+Au=0, where A is an adjustable "leakage" parameter. The result is that a
relatively small value of A produces a large beneficial effect. This is shown in Fig, 8, where,
as before, the energy exchanged as a function of time for a d-function source is plotted. D =
0.3. The coefficient A is in effect the fractional variation of the particle density per unit
distance in u at the boundary. Starting from the net energy exchange of 19% for the case of
no leakage, we find that A = 0.3% increases the energy exchange to 26%, while A = 3%
takes it up to 51%. The strong value of A = 50% yields 74% exchange. The possibility of
enhancing the energy transfer to the wave, if such a means can be found, appears very

promising.

8. Further Applications of the Program

Certainly, other scenarios can be modeled. One example would be using short pulses
of rf, rather than continuous power, to derive the maximum benefit from the initial energy
exchange (this would be an alternative to the lossy boundary). Another example would be
allowing a general variation of D as a function of X, representing a more realistic localization

of the wave in space.

9. Discussion

To look at the actual magnitude of the diffusion constant, D, and the power available
from the alphas, consider ITER. It needs on the order of 90 MW for Lower Hybrid Current
Drive. This would give D ~0.3to D ~ 3. [2, 7]. As shown above, this is in a range that
produces practical energy exchange from the alpha population to the wave. The amount
would be approximately the fusion power of 1000 MW, times a fraction of 20% that goes to
the alphas, times a fraction of 40% that is transferred from the alphas to the wave. The result

is 80 MW from alphas to wave, or just about the amount needed to keep the current drive

going.
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If the rate of normal collisional diffusion were to exceed the quasi-linear diffusion
considered in this paper, then the effect of the latter would be diluted. To make the
comparison we can convert the dimensionless D used here to SI units. Recalling that our
time is in units of (2v)'1, and that length is in units of L, we have that the SI value is Dgj =
2v L2D. For the mean value D = 1., with v-1 = 0.4 s,and L =20 cm, Dg; = (0.2 m)2 x 1./
0.2 s = 0.2 m2/s. One of the smallest values of D we have considered is D ~ 0.1, or Dgy ~
0.02 m?2/s. This is of the same order of magnitude as possible fast-alpha coilisional diffusion
[8]. In that case one would expect the energy exchange from alpha to wave to be diluted by

the collisional diffusion. That puts a lower bound on the necessary wave intensity for an

effective energy exchange.

10. Summary

We have provided numerical justification to the treatment of Ref. [3] for the D — oo
limit, we have shown numerically how that limit is approached for finite D, and we have
numerically investigated the useful effect of leakage of particles out of the resonant region in

optimizing the transfer of alpha-particle energy to waves.
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Notes

*Permanent address: Commissariat a L'Energie Atomique, Centre D'Etudes de Saclay,

91191 Gif sur Yvette, Cedex, France.

TIn Eq. (14) of Ref. [3], the sign in the denominator should be reversed, so that it would

read

dN ____E&w
at =P e N

Nevertheless, Eq. (15) is correct. In Eq. (16) we have corrected the constant factors in front
of the first and third terms in the brackets. As a result, each term has a factor of 4. A factor

of 1/4 in front cancels these factors, giving finally Eq. (5) in this paper.
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Figure captions

1. Schematic diagram of the coupling between the absorption of energy from the wave by an

alpha particle and the shift of its gyrocenter.

' 2. The effects of diffusion and slowing down on alpha particle energy and location. The

coordinates are dimensionless [see text]. The source is at (€0, X(Q).

3. Energy exchange from alpha particles to wave as a function of the minimum resonance

kinetic energy.

4. (a) Grid for the finite-difference calculation of alpha particle energy and location. On the
top, bottom, and left boundaries dp/du =0, except in the case with leakage [see text]. Note

1: iteration continues through the upper left corner. (b) Points used in differencing.

5. Difference between finite-difference solution and test function vs. spatial (and energy)

step size. Test function has amplitude of 3.

6. Time-integrated energy transfer from alpha particles to wave for Case II--source in region

(b).

7. Time-integrated energy transfer from alpha particles to wave for Case I--source in region

(a)--for a range of values of D, the diffusion coefficient.

8. Time-integrated energy transfer from alpha particles to wave for Case I--source in region

(a)--for a range of values of the leakage coefficient,A. D =0.3.
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