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Abstract

The interaction between a lower hybrid wave and a fusion alpha particle displaces the

alpha particle simultaneously in space and energy. This results in coupled diffusion.

Diffusion of alphas down the density gradient could lead to their transferring energy to the

wave. This could, in turn, put energy into current drive. An initial analytic study was done

by Fisch and Rax. Here we calculate numerical solutions for the alpha energy transfer and

study a range of conditions that are favorable for wave amplification from alpha energy. We

find that it is possible for fusion alpha particles to transfer a large fraction of their energy to

the lower hybrid wave. The numerical calculation shows that the net energy transfer is not

sensitive to the value of the diffusion coefficient over a wide range of practical values. An

extension of this idea, the use of a lossy boundary to enhance the energy transfer, is

investigated. This technique is shown to offer a large potential benefit.



I. Introduction

Lower hybrid current drive has been an attractive alternative to inductive current
I

drive, but for reactors there has been concern that fusion alpha particles would be a strong

absorber of lower hybrid power[I,2]. Recently, however, it has been pointed out[3] that

under the right conditions the alpha population can actually amplify the wave, thereby

harnessing some of the energy of the alpha population for the current drive. The necessary

conditions require that there be a density gradient of fast alphas, and that k0 of the wave be in

the correct direction. The process utilizes the fact that transfer of energy between wave and

particle is accompanied by a change in the particle's gyrocenter. Thus, diffusion in energy is

coupled directionally with diffusion in space, and, with the correct choice of direction, a

population of alphas diffusing in space under the influence of the wave will, on the average,

transfer energy to the wave.

This possibility was discussed in a paper by Fisch and Rax[3], where they estimated

the amount of energy transfer in the limiting case of infinite diffusion coefficient. In this

paper we describe a finite-difference calculation used to solve the differential equation that

models the process for finite diffusion coefficient. We simulate the limiting case (by taking a

large value for the diffusion coefficient) to verify the analytic results of Ref. [3]. Small

errors in the equations have been corrected. Then the energy transfer is calculated for a

range of practical values and is found to be considerable. Finally, we modify the boundary

conditions to introduce particle losses that enhance the energy transfer from particles to

wave. The effect appears to be very promising.



2. The Process

The process by which the energy and space diffusion are coupled has been described

. in Ref. [3]. It is summarized here. An example of the interaction is shown in Fig. I, in

which an alpha particle is encountered by a wave traveling in the y-direction. As long as the

velocity of the alpha, v_k, in the plane is greater than or equal to the wave phase velocity,

tO/ky, the two interact, and the alpha receives an increment of velocity, Avy (positive or

negative). As a result, the gyrocenter of the particle is shifted by an amount AXgc. The

momentum change is maAvy, and the energy change is metvyAvy. The gyrocenter shift is

equal to AVy/_a, where f_a = 2eB/ma. Therefore, Axgc = AE (ky/met_ot_), showing the

coupling between energy transfer and spatial shift. The guiding-center shift is inversely

proportional to the wave phase velocity. We would choose a value like 60/ky---6 x (ion

thermal velocity), in order to avoid wave interaction with the thermal ions. For the case of

total alpha energy transfer equal to the production energy, Ea0 = 3.5 MeV = mavct02/2, the

guiding-center would move by L = v_02ky/2O3f2_ ~ 20 cm in a 5-T field. Note that, for a

given density gradient, more energy is extractable by making L long, that is, making the

phase velocity low (so long as L < a, where a is the minor radius, which is generally

satisfied anyway).

The differential equation describing the alpha density as a function of energy,

position, and time, under the influences of this "quasi-linear" diffusion, slowing down on

electrons, and a source is [3]

Oa: ae _ _ +_" 0 + S(£,X,a:). (1)

This equation is in terms of dimensionless quantities:

, E= V_l_2/Veto2

X = Xgc/L



x = 2vt, where v is the slowing-down rate of alphas on electrons

13w = (0.)/kyvot0)2, the kinetic energy below which the alpha is not in resonance with the

wave

19is the alpha density

S is the alpha source

The boundary conditions are determined from following: D = 0 for e < ew, since there is no

wave-alpha resonance there, and the wave exists only in a beam extending laterally from X =

0 to X = A --outside that range D = 0.

3. Analytic Treatment

The analysis of the behavior of a population of alphas is, again, summarized from

Ref. [3]. The process takes place in a space shown in Fig. 2. It will be convenient to

introduce a transformation given by u = E + X and v = e - X. The boundary conditions on

the diffusion imply that _p/_u = 0 on the top and bottom boundaries. Since nothing can take

panicles across the right boundary, we can take 19=0there. Only slowing down (and not

diffusion) takes particles across the left, e=ew, boundary, so one can write the flux at that

boundary as -E19;equivalently one takes the boundary condition _p/_u = 0. The diagram of

the region of wave-particle interaction in this paper differs from that in Ref. [3], because here

we draw the diagonal along which diffusion occurs at 45° to the right, a line of constant v.

This is consistent with the form of the diffusion operator in Eq. (1). This difference does not

affect the conclusions, since it is merely equivalent to a replacement of X by (A - X). One

should think of X = A being closer to the center of the plasma, where the alpha particle

density would presumably be higher, so that the overall net energy transfer is from the

particles to the wave. This is, of course, always possible by making the proper choice of k0. 0



Consider a short pulse of alphas produced at (e 0, X0), i. e., a k-function source.

• Consider the case in which D ---)oo. Initially the population diffuses along the 45 ° diagonal

specified by P0 = e0 " X0, and the density immediately becomes uniform along that line.

The energy exchanged, wave to alpha, is given simply by

W0(X0,E0) = ½(Emax+Emin) - 8,0 (2)

where the flu'st term is the final average kinetic energy. Along the diagonal, Emax = % - X0+

A, and emin is given by

P0, if P0 is in region (b)emin= _w, if P0 is in region (a) (3)

(see Fig. 2). Substituting into Eq. (2), we obtain

A/2- X0, if P0 is in region (b) (4)W0(X0,e0) = (A-X0)/2 - (EO-ew)/2, if P0 is in region (a).

This instantaneous energy exchange can be positive or negative; for X0 near A, it is negative.

The subsequent slowing clown and diffusion are considered as a repeating alternation

of slowing down for a short At, followed by diffusion for an equal At. Each slowing down

takes the alpha population from a diagonal P to a left-shifted line tilted slightly toward the

vertical. The diffusion then spreads the density uniformly along a band around the average

45° diagonal. As shown in Ref. [3], in region (b) the energy exchange vanishes.

In region (a) the energy exchange is no longer zero. The starting value of P depends
p:

on whether the alphas were produced in region (b) or (a). In the former case, the starting

• value is P0a = _:w;in the latter, P0a = P0 " E0 - X0. Modifying the derivation in Ref. [3] for



X --+ A - X and correcting minor errorst we have for the exchange subsequent to the initial

exchange

ew L(eX/2-1) + s(e_/2-1) } (5)
WL(P0a,'_) - (1.S) 1- Z- S"

where s -2_:w/(P0a+A+Ew). All the particles are gone by the time X=Xmax, where

Xmax=21n(1/s); see Ref. [3]. Therefore, if the rf power is on continuously, the ultimate value

of WL is

WL(P0a,'l:max)- 13w {21n(s) + l/s- S}. (6)(l-s)

The total energy exchanged from wave to alpha is W = W0 + W L. In deriving Eqs. (5) and

(6), certain approximations were made, in addition to taking the limit D ---)oo. There is no

limit in which these approximations are rigorous, but, what we show [through numerical

solution of Eq. (1)1 in the following sections is that these analytic expressions for WE are

very nearly correct for D --+ oo.

Note that WL is always positive. If X0 is chosen so that W 0 is negative, meaning that

the alphas give energy to the wave, then when they are in region (a), the wave "gives back"

energy to the alphas. For this reason, a scenario with only short pulses of rf appears

advantageous.

4. Maximum Energy Transfer

The quantity cO,the initial perpendicular energy, is given by the alpha production: the

pitch angle determines an e0 < 1.0. The distribution in e0 is uniform. To maximize the



number of alphas diffusing to lower energy, we need X0 to be near the top of the region. In

the practical situation k0 would be chosen so that X0 is toward the center of the plasma with

• X = 0 toward the periphery. The quantity Ew is the lowest perpendicular kinetic energy,

relative to the total kinetic energy at production, of an alpha that is resonant with the wave.

For putting the alpha energy into electrons, choose _:wwell above ion thermal energies, for

example o3/k0~6VT_,to avoid ion damping. This corresponds to .- 500 keV and ew = 0.15.

Using the an_ytic expression (6), we did a scan of the three parameters, e0' ew, and A,

to locate the regions with the most energy exchange from alphas to wave. The energy

exchange "saturates" at around A=I. Figure 3 shows the variation with e0 and ew for A=I

and X0 = 0.95. The initial energy exchanged is plotted, as well as the net taking into

account the "give back" during the alpha slowing down. Note that for a normal population

of alphas, isotropic in velocity space, one would need to integrate over e0 to get the total

energy transfer.

For the short-pulse rf scenario, clearly, the lower the value of _:w,the more energy

from alpha to wave; however, with continuous rf there is a broad maximum in the

neighborhood of ew ~ 0.2. This is an additional reason for choosing E:w in the vicinity of

(but above) 0.15 mentioned above.

5. Comparison to Numerical Solution

The analytic study described above has been supplemented by a finite-difference

solution of Eq. (1). This calculation allows us to model the effects of finite values of the

diffusion coefficient, D, and altered boundary conditions intended to enhance energy

exchange. This finite-difference solution can be used in the future to model other scenarios,

such as applying the wave power in short pulses, also for the purpose of enhancing the

fraction of the particle energy delivered to the wave.

• We begin with the transformation u = E+ X and v = e - X. While it does no good to

transform the whole equation, it does simplify writing the diffusion term, since it implies



O/3e + 3/_X = 2 O/Ou • Figure 4 shows the grid that is used, along with the locations of

diagonals and the points used in the central differences. For the diffusion term we choose

the finite difference form to be space centered and use the Crank-Nicholson method [4]; for

the slowing-down term we take the upwind difference. The difference equation is then

pi+l i _'I;L[Ej+I i , i ]j,k Pj,k + - EjPj,kj= _ Pj+l,k
A¢

+ (1-fimp)_ [Kj+I/2 (Pi+l,k+l- Pl,k) -Kj-,/2 (Pl,k" Pi-l,k-1)]
(au) 2

4__2 [ r_i+l _i+l, ¢_i+1 _i+l ]+ fimp l_j+l/2 _,Pj+l,k+l - Pj,k) " I£j-1/2 _,Pj,k " Pj-l,k-1) (7)
(au)

i
+ A'I; Sj, k

where K:j= D / "_j-ew, and limp is normally set = 0.5. To make the method second-order in

time, we take a half step, with fimp = 1.0, to get half-step values for the slowing-down term.

The boundary conditions are p = 0 on the right (diagonal) and 3p/3u = 0 on the left, top, and

bottom. First-order differences are used in implementing the boundary conditions. The sets

of simultaneous equations generated by the implicit differences are solved by the method of

Richtmyer and Morton [5]. We step through the diagonals, one by one; on each there is a

system of equations for the pi+l; Ref. [5] gives a simple recursion method for solving the

system subject to the boundary conditions.

The method and the computer program that implements it were tested by using a test

function for the density, p. The function was chosen to satisfy the boundary conditions on

all four boundaries. The function, p, was substituted into Eq. (1) to determine the

corresponding source function, S(¢,X,'_). That source was used in the finite-difference

program to calculate p(E:,X,a:)numerically. The results were compared with the assumed p

to verify the method and to test the rate of convergence. The function chosen is the product

of four polynomials. Substitution into the PDE leads to a large amount of manipulation,

which, fortunately, is easily performed with the Macsyma symbolic manipulation system [6].

The Fortran code for the source function was also produced by Macsyma.



Figure 5 shows the results of the testing, monitored at two representative points. For

the testing we used D = 0.3, _:w-- +0.1, and A = 0.5. The test function looks like a smooth

• hill, with the edges = 0 at the boundaries, and the peak at the center of the space. The

function was multiplied by an exponentially decaying factor, with time constant qSdecay=

• 0.0844. The errors plotted are at time q; = 0.15. The errors displayed are at points near the

left-hand boundary, where the error is largest. The error varies more slowly than the first

power of step size, apparently because of the factor _/ej-ew in the denominator.

Nevertheless, the error is clearly converging on zero with decreasing step size, indicating the

correctness of the method.

The goal of the calculation is to obtain the energy exchanged between fast alpha

particles and the wave. To calculate this, once we have the alpha density, p(e,X,'_), we

multiply the PDE through by _:and integ-rateover all E:and X'

e_uu_:_edX + eSdedX. (8)

This represents

_-%f (or stored energy)dEdX = f (power from electron drag)ctedX
f f

+ J (power from the wave)dedX + J (o_
source power)dedX

where positive quantities represent power flowing to the alpha particles. The second term on

the right is the power we are interested in. Under some conditions, in particular when the

majority of alpha diffusion in space is accompanied by a lowering of alpha kinetic energy,

the second term is negative, implying a net transfer of energy from alphas to the wave.

For comparison between the analytic and the finite-difference calculations, we select

two cases. Case I has A = 1., E:w = 0.15, CO- 1.0, X0 = 0.95, which locates the source in
a

region (a), and Case II is in region (b), with A = 0.5, ew = 0.10, E0 = 1.0, X0 = 0.4. The

latter case will demonstrate all the features of the predicted time evolution of the energy



exchange, namely, a rapid initial exchange, followed by no exchange fox"the rest of tile time
I

in region (b), followed by a gradual return of a portion of the energy while iraregion (a).

To illustrate tile behavior of the energy exchange as a function of time, we first plot,

in Fig. 6, alpha-to-wave energy exchange for Case II mentioned above (source in region

(b)). As above in the analytic calculation, the source was taken to be a 5-function in E:,X,

and t. (Thus, the result here can be considered to be a Green's function for the energy

exchange.) In this plot we have inverted the sign of the energy exchange so that alpha-to-

wave is plotted as a positive quantity. Figure 6 is the result from the finite-difference

calculation, integrated as described above. As expected from the analytic analysis, the

energy exchange begins with an immediate transfer to the wave, after which the exchange

during the rest of the time in region (b) is zero. When the alphas are in region (a), the wave

"pays back" some of the energy, but, by the time all of the alphas have slowed down below

ew (in this case a:/'ts= 3.), there is still a net amount of energy that has been transferred to the

wave. For this case the analytic analysis gives W0 = 15 % lusing Eq. (4)] for the initial

transfer from alpha particles to wave. Using Eq. (5) for the return of energy from wave to

alpha particles gives the curve in Fig. 6 labeled "Eq. 5". The agreement is very good,

verifying the analytic formula.

The convergence of the energies as a function of step size is very satisfactory. As the

E (and X) step was varied from 0.03 and 0.003, the energy unaccounted !br at the end of the

calculations went down from 12% to 1.3% and extrapolates to a value extremely close to

zero for step size equal to zero. Also, 'the energy exchanged from alphas to wave

extrapolates, as a function of step size, to the same value as the analytic calculation within

~0.1%; the difference tbr the step size used for the results below (0.003) is 0.25%.

6. Optimal Energy.Transfer Case o

10



We now examine in detail Case I, namely, A = 1., Ew = 0.15, e0 = 1.0, X0 = 0.95.

Although a slightly higher energy transfer to the wave could be obtained with ew ~ 0.3, as

' may be seen in Fig. 3, the value chosen is more nearly suited to the average value of e:0 and

is more practical, since it would employ the lowest frequency wave source consistent with

the 6VTirequirement. In this case the source is in region (a), so there is no period of zero

exchanged power. Results from the analytic formulas are as follows:

W0 = 40:0 % (initial transfer)

WE = -19.5 % (later transfer)

W = 20.5 % (net transfer).

The analytic formulas are for D --+oo ; the finite-difference calculation shows that the process

saturates for D = 10 and above, where the analytic approximation, again, is numerically

' verified.

Figure 7 shows the energy transferred as a function of time for this case. When

D = 10, as we have taken above, the behavior is as expected for a source in region (a), that

is, after the initial, immediate transfer, the "give back" begins immediately. Interestingly, we

find that, as the strength of D is reduced, its value has much more effect on the early energy

exchange than on the net amount. Likely values of D would probably be in the range 3 > D

> 0.3 [7], over which the net energy exchange varies o_tly slightly. This has the fortunate

implication that the strength of the wave can vary over a wide range while still effecting

nearly optimal energy exchange.

7. Enhancing the Energy Transfer to the Wave

Particles near the boundary e = ew can only take energy from the wave as they diffuse

up along the diagonal; therefore, it would be advantageous to get rid of them. It would be

possible to introduce perturbations into the plasma to cause particles to cross that boundary in

' excess of the collisional slowing down. To model the effect of such a particle loss, we have

investigated changing the boundary condition on the left boundary, _:= ew, from Op/c_)u= 0

11



to Op/Ou+,_u=O, where _. is an adjustable "leakage" parameter. The result is that a

relatively small value of 2,.produces a large beneficial effect. This is shown in Fig. 8, where,

as before, the energy exchanged as a function of time for a &function source is plotted. D =

0.3. The coefficient 2,.is in effect the fractional variation of the particle density per unit

distance in u at the boundary. Starting from the net energy exchange of 19% for the case of

no leakage, we find that 2,,= 0.3% increases the energy exchange to 26%, while _ = 3%

takes it up to 51%. The strong value of 2,.= 50% yields 74% exchange. The possibility of

enhancing the energy transfer to the wave, if such a means can be found, appears very

promising.

8. Further Applications of the Program

Certainly, other scenarios can be modeled. One example would be using short pulses

of rf, rather than continuous power, to derive the maximum benefit from the initial energy

exchange (this would be an alternative to the lossy boundary). Another example would be

allowing a general variation of D as a function of X, representing a more realistic localization

of the wave in space.

9. Discussion

To look at the actual magnitude of the diffusion constant, D, and the power available

from the alphas, consider ITER. It needs on the order of 90 MW for Lower Hybrid Current

Drive. This would give D -- 0.3 to D ~ 3. [2, 71. As shown above, this is in a range that

produces practical energy exchange from the alpha population to the wave. The amount

would be approximately the fusion power of 1000 MW, times a fraction of 20% that goes to

the alphas, times a fraction of 40% that is transferred from the alphas to the wave. The result

is 80 MW from alphas to wave, or just about the amount needed to keep the current drive

going.

12



If the rate of normal collisional diffusion were to exceed the quasi-linear diffusion

considered in this paper, then the effect of the latter would be diluted. To make the

. comparison we can convert the dimensionless D used here to SI units. Recalling that our

time is in units of (2v) "1, and that length is in units of L, we have that the SI value is DSI =

" 2v L2D. For the mean value D = 1., with v -1 = 0.4 s, and L = 20 cm, DSI = (0.2 m)2 x 1. /

0.2 s = 0.2 m2/s. One of the smallest values of D we have comfidered is D ~ 0.1, or DSI ~

0.02 m2/s. This is of the same order of magnitude as possible fast-alpha coilisional diffusion

[8]. In that case one would expect the energy exchange from alpha to wave to be diluted by

the collisional diffusion. That puts a lower bound on the necessary wave intensity for an

effective energy exchange.

10. Summary

We have provided numerical justification to the treatment of Ref. [3] for the D --->oo

limit, we have shown numerically how that limit is approached for finite D, and we have

numerically investigated the useful effect of leakage of particles out of the resonant region in

optimizing the transfer of alpha-particle energy to waves.

11. Acknowledgments

This work was supported by U. S. Department of Energy contract No. DE-AC02-76-

CHO3073. We would like to thank the following people for helpful conversations: D. Ignat,

H. K. Park, G. Taylor, J. Stevens, W. W. Lee, and K. L. Wong.

13



Notes

*Permanent address" Commissariat a L'Energie Atomique, Centre D'Etudes de Saclay,

91191 Gif sur Yvette, Cedex, France.

t In Eq. (14) of Ref. [3], the sign in the denominator should be reversed, so that it would

read

• _IN _ ew N('_).
d'_ P(x) - Ew

!

Nevertheless, Eq. (15) is correct. In Eq. (16) we have corrected the constant factors in front

of the f'trst and third terms in the brackets. As a result, each term has a factor of 4. A factor

of 1/4 in front cancels these factors, giving finally Eq. (5) in this paper.
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Figure captions

g

I

1. Schematic diagram of the coupling between the absorption of energy from the wave by an

alpha particle and the shift of its gyrocenter.

2. The e,_fects of diffusion and Slowing down on alpha particle energy and location. The

coordinates are dimensionless [see text]. The source is at (e0, X0).

3. Energy exchange from alpha particles to wave as a function of the minimum resonance

kinetic energy.

4. (a) Grid for the finite-difference calculation of alpha particle energy and location. On the

top, bottom, and left boundaries cgp/tgu= 0, except in the case with leakage [see text]. Note

1" iteration continues through the upper left comer. (b) Points used in differencing.

5. Difference between finite-difference solution and test function vs. spatial (and energy)

step size. Test function has amplitude of 3.

6. Time-integrated energy transfer from alpha particles to wave for Case II--source in region

(b).

7. Time-integrated energy transfer from alpha particles to wave for Case I--source in region

(a)--for a range of values of D, the diffusion coefficient.

, 8. Time-integrated energy transfer from alpha particles to wave for Case I--source in region

(a)--for a range of values of the leakage coefficient, _,. D = 0.3.

15



0
:>m_iii

c-

O ;>"oJ >ox • _
•-- _ > II

<3

0 II
i iiii,> • E
o _ ..c: >,
• c >, ,,_.

o • E _-
_j 0 0 .-- t-

o _

o _ ._
m

x

N

16



I 'ql-- X 'uo!]rEoo7 I 17



il ii I I J ....... d
I ' " ' ' I ' " ' I " ' ' ' I ' ' "

c-' 0o (.)
X
m X "-- d
c_ (D
:_ II II._1

•_ /I

"- / / _,
/ / m o" " d ._

I / / co _:
I / / d _;
I / / It

/ / C
/ r '-'-' e,,I

" / Ill" d

II l/__ i II I

II II iii _-" I I " d
I I

, . , , I , ,. . . I . . , . I , . , , I . , • . {_)

_ CO @4 ,- 0
d d d d d

uo!l.oeJ.._4e6ueqoxq/_6Jauq

18



_, 0 E"
Q. c"

m_::

._ "0

• 0

0

\ T"

.% \
tL I

....., , ) -_
%

%

' _0"

, J

j _ X 'UO!},BO07 J
19



, , ,, I, ,, , I , , I , I , , J I I,, ,, f, , , , I , , , ,
O ,

0 0 0 0
CO 0,,I 'r- 0
d d d d

dv
2O





s

L

--_ I _ I '_ _ I o
0 0

,_6jeu3 eoJnos eqdlV _ouo!_,oeJ.-!
22





EXTERNAL DISTRIBUTION IN ADDITION TO UC-420

Dr. F. Paoton(,Univ.of Wolk)ngong,AUSTRALIA Prof. I. Kawakami,HiroshimaUniv., JAPAN

Prof.M.H. Brennan,Univ.of Sydney,AUSTRALIA Prof. K.Nishlkawa,HiroshimaUniv., .JAPAN
¢.

Plasma ResearchLab., Austri=m Nat Univ.,AUSTRALIA Director,JapanAtomicEnergyResearchInsL, JAPAN

Prof. I.R. Jones, FlindersUniv,AUSTRALIA Prof.S. Itoh,KyushuUniv.,JAPAN

Prof.F. Cap, Inst for Theomtic_ Physics, AUSTRIA ResearchInk).Cir., Nal_r,d InstJt.for FusionScience,JAPAN

Prof.M Hek'cller,InslitutfOr_lische Physik,AUSTRIA Prof.S. Tanaka, KyotoUniv.,JAPAN

Prof. M. Goossen=,Astronomischinslituut,BELGIUM LitxKy, KyotoUniv.,JAPAN

Ecofe F)oyaleMilitaire,lab. de Phy.Plasmas, BELGIUM Prof.N. Inoue, Univ. of Tokyo,JAPAN

CommiMion-Ewopeam,DG XII-FusionProg., BELGIUM Secretary;Plasma Section,Elect'otechnicalLab., JAPAN "

Prof.R. Boudq_, RijksuniversiteitGe_L BELGIUM S. Mad,TechnicelAdvie_r,JAERI, JAPAN

Dr. P.H. Slkanaka, Ir_lituto _, BRAZIL Dr. O. M#ami, KumamaeoInst.of Technology,JAPAN

Inst#ulo National De PeKlUlmS Eet:edal=,-INPE,BRAZIL J. Hyeon-Sook,KoreaAtomicEnergy Research InsL, KOREA

Dooument=OfrK_,AtomicEnergyof _ Ltd.,CANADA D.I. Choi,The KoreeAdv. Inst.of Sd. & Tech., KOREA

Dr. M._. Bachyndd,MPB Technologies,Inc., CANADA Prof.B.S. Uley, Univ.of Waikato,NEW ZEALAND

Dr. H.M. Skate, Univ. of Slskalchewan, CANADA Inst of Phytics, ChineseAc,ad Scl PEOPLE'S REP. OF CHINA

Prof.J. Teichmann, Univ. of Montreal,CANADA Library,InsLof Plasma Physics,PEOPLE'S REP. OF CHINA

Prof,S.R Sreenivuan, Univ.of Calgary,CANADA TslnghuaUniv.Ubrary,PEOPLE'S REPUBLICOF CHINA

Prof.T.W. Johnston,INRS-Energie,CANADA Z. U, S.W. Inst PhyCcs, PEOPLE'S REPUBLICOF CHINA

Dr. R. Bo#ton,Centre canaclende fusionmagndlk:lue,CANADA Prof.J.A.C. Cabral, InstitutoSuperior Tecnico,PORTUGAL

Dr. C.R. James,, Univ.of AJbefta,CANADA Dr. O. Pelrus, AL I CUZA Univ., ROMANIA

Dr. P. Luld¢, Komensk6tmUniverszita,CZECHOSLOVAKIA Dr. J. de Villiem,Fusion Studieu,AEC, S. AFRICA

The Ubrwkm, CultmmLaboratory, ENGLAND Prof.MA. Helberg, Univ. ofNatal, S. AFRICA

Library,1:t61,Rulherk)rdAppletonLaboratory,ENGLAND Prof.D.E. K)m,PohangInst.of Sci. & Tech.,SO. KOREA

Mrs. S.A Hutchinson,JET Library,ENGLAND Prof.C.I.E,M.A.T, FusionDivisionLibrary,SPAIN

Dr. S.C. Sha'ml, Univ.of South Pacific,FIJI ISLANDS Dr. L Stenflo,Univ.of UMEA, SWEDEN

P. _, Univ.o#Helsinki,FINLAND Library,RoyalInst. ofTechnology,SWEDEN

Prof.M.N. Bus=as,Eoole Polytechnique,,FRANCE Prof. H. W'dhelmmon,ChalmersUniv. ofTesh., SWEDEN

C. Mouttet,Lab. de Physiquedes MilieuxIonis_l, FRANCE Centre Phys.Des Plasmas,Eoole Pofytesh,SWITZERLAND

J, RadeL CEN/CADARACHE - Bat506, FRANCE Bildio_teek, Inst. Voor Ptasma-Fyt_=a,THE NETHERLANDS

Prof.E. Eoonomou,Univ. of Crete, GREECE Asst.Prof. Dr.S. C,akk, MiddleEast Tech. Univ., TURKEY

Ms. C. Rinni, Univ.of Ioennina, GREECE Dr. V.A. Glukhikh,Sci.Res. Inst.Eiectrophys.IApparatus,USSR

Dr. T. Mual,Academy BibliographicSer., HONG KONG Dr. D,D. Ryutov,SiberianBranchof Academyo#Sd., USSR

PreprintLibrary,Hungatin Academyof Sci., HUNGARY Dr. G.A. Eliseev,I.V. KurchatovInsL, USSR

Dr. B. DasGupte, Sahl InsLof Nudear Physics,INDIA L.ilxuian, The Ukr.SSRAcademyof Sciences, USSR
k

Dr. P. Kaw, Inst. for Plasma Research, INDIA Dr. LM. Kowizhnykh,Inst. of General Physics,USSR

Dr. P. _, Im Inst. ofTechnology, ISRAEL Kemforschung_mlageGmbH, Zentralbibtiolhek,W. GERMANY

Litxadan, Internllional Center for Theo Physics,ITALY Bibtiothek,IrulLFOrPiesmak)r=¢hung,W. GERMANY

Miss C. De PIdo, Auociazione EURATOM-ENEA, ITALY Prof.K. Schindler,Ruhr-UnivessittltBochum,W. GERMANY

Dr.G. GroMo, Islitutodi Fimdcldei Plasma, ITALY Dr. F. Wagner, (ASDEX), Max-Pllmck-lnstitut,W. GERMANY

Prof.G. Rostangni,IslitutoGas Ionizzd Del Cnr, ITALY Librarian,Mix-Ptllck-lrtstilut, W. GERMANY

Dr. H. Ywnato, Toshiba Flies& Dev_ Center,JAPAN Prof.R.K. Jamw, Inst o4Physics,YUGOSLAVIA



I




