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ABSTRACT

Effective use of groundwater monitoring data requires both statistical
and geohydrologic interpretations. At the Hanford Site in south-central
Washington state such interpretations are used for (I) detection monitoring,
assessment monitoring, and/or corrective action at Resource Conservation and
Recovery Act sites; (2) compliance testing for operational groundwater
surveillance; (3) impact assessments at active liquid-waste disposal sites;
and (4) cleanup decisions at Comprehensive Environmental Response Compensation
and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-
sample test are used to test the hypothesis that chemical concentrations from
spatially distinct subsets or populations (e.g., background area versus
contaminated or suspect site) are identical within the uppermost unconfined

" aquifer. Experience at the Hanford Site in applying groundwater background
data indicates that background must be considered as a statistical
distribution of concentrations, rather than a single value or threshold. The
use of a single numerical value as a background-based standard ignores
important information and may result in excessive or unnecessary remediation.
Appropriate statistical evaluation techniques include Wilcoxon rank sum test,
Quantile test, "hot spot" comparisons, and Kolmogorov-Smirnov types of tests.
Application of such tests is illustrated with several case studies derived
from Hanford groundwater monitoring programs. To avoid possible misuse of
such data, an understanding of the limitations is needed. In addition to
statistical test procedures, geochemical, and hydrologic considerations are
integral parts of the decision process. For this purpose a phased approach is
recommended that proceeds from simple to the more complex, and from an
overview to detailed analysis.
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1.0 INTRODUCTION

Groundwater contamination problems at the U.S. Department of Energy
(DOE) Hanford Site, in south-central Washington State, range from local
groundwater contamination associated with the individual waste disposal sites
to the overall impact of a 40-yr period of nuclear materials production and
associated contaminants released to the groundwater beneath the 1,450 km_
site. Statistical analysis has been applied to groundwater contamination
problems, which include (I) determining local backgrounds to ascertain whether
or not an individual disposal site is affecting the quality of groundwater,

L and (2) determining a "pre-Hanford" groundwater background for the Hanford
Site to allow formulation of background-based cleanup standards. From these
studies it is apparent that background for a specific analyte of concern

" should be considered as a statistical distribution, not as a single value or
threshold. Additionally, it is important to distinguish different sources of
variation in the data and to handle them in the proper manner. If due care is
not exercised when determining background distributions there is a high
probability that false determinations of contamination will occur, resulting
in unnecessary remediation and/or cleanup expense.

Effective use of groundwater monitoring data requires an integration of
statistical and geohydrologic approaches. This combination is much more
effective than either approach used in isolation. At the Hanford Site such
interpretations are used for (I) detection monitoring, assessment monitoring,
and/or corrective action at Resource Conservation and Recovery Act (RCRA)
sites (Figure I-I), (2) compliance testing for operational groundwater
surveillance, (3) impact assessments at active liquid waste disposal sites
(Figure I-2), and (4) cleanup decisions at Comprehensive Environmental
Response Compensation and Liability Act (CERCLA)sites.

Statistical tests, such as the Kolmogorov-Smirnov two-sample test, have
been used to test the null hypothesis that chemical concentrations from
spatially distinct subsets or populations (e.g., background area versus
hazardous waste site) are identical within the uppermost unconfined aquifer at
the Hanford Site (WHC1993). The primary purpose of this paper is to
supplement statistical methods discussed in WHC(1993) by (i) demonstrating
how to model spatial, temporal, and analytical variability of background
measurements, (2) showing that the variance estimate sz (that assumes equal
spatial and temporal variability) is biased when multiple upgradient wells
comprise the background wells, (3) illustrating several statistical techniques
that may be used in verifying the attainment of a background-based cleanup
standard (e.g., Wilcoxon rank sum test, quantile test, etc.); and
(4) recommending an approach that represents some of the initial efforts in
establishing statistical guidance for evaluation of groundwater at the Hanford
Site. Three case studies are provided.

2.0 STATISTICALANALYSISTECHNIQUES

w

Groundwaterquality informationis needed by regulatorsand
environmentalmanagers for making decisionson assessingthe impact of a
facility on groundwaterquality and/or the effectivenessof groundwater
remediationefforts. Over 250 RCRA-compliantgroundwatermonitoring wells
have been installedaround various facilitieson the Hanford Site since 1987,



Figure I-I. Locationsof the RCRA GroundwaterMonitoring Projects and
Landmarkson the HanfordSite.
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in addition to numerous older wells. At least 60,000 analytical results are
generated annually for data evaluation and reporting.

From a statistical perspective, the null hypothesis of interest is that
there is no difference in the chemical compositions of groundwater upgradient
(background) and downgradient of a facility. However, the geohydrologic
cond'itions at each site may be different, resulting in groundwater quality
data that are highly site specific. Several statistical analysis techniques
that model the background measurements (multiple upgradient wells, quarterly
sampling events, and quadruplicate analysis results) into factors due to
spatial, temporal, and analytical variabilities are provided. If background

• wells consist of several upgradient wells, the variance estimate s2 (which
assumes equal spatial and temporal variability) will underestimate the true
variance. The formula to calculate this bias is given for each model under

- consideration. Finally, non-parametric test procedures that are useful when
assessing the attainment of a background-based cleanup standard are presented.

2.1 RANDOM EFFECTS MODELS -- VARIANCE COMPONENTS

2.1.1 Crossed Classifications

In studying the variabilitythat is evident in the data, the main
interest is to attributethat variabilityto variousdata classifications.
Classificationsthat identifythe source of each datum are called factors (or
independentvariables). The individualclasses of a factor are called levels
of that factor. A factor is random if its levels consist of a random sample
of levels from a populationof all possiblelevels, otherwise, it is fixed.
In the context of groundwatermonitoring,the backgroundchemical composition
for a particularanalyte of concern is usually obtainedfrom replicate
analysis of samplescollectedfrom multiple (e.g.,quarterly)sampling events
of wells upgradientof the facility. When the locationsof the background
wells and the sampling times are assumedto be random variables,the
backgroundconcentrationcan be modeled by the followinggeneral equation"

Yijk = P + Wi + Tj + WTij + E(ij)k,

i = i, 2, ... a (numberof backgroundwells),
j = i, 2, ... b (numberof samplingtimes),
k = I, 2, ... r (numberof replicateanalyses),

where Yijkdenotes the kTM analysis on the jth samplingtime from the ith
upgradientwell. Terms used in the model are defined as follows"

p : the true mean level for background measurements.

Wi = the true effect of the i th well. Wi is assumed to be a
. random observation from a population with mean 0 and with

variance (_2W.

: the true effect of the jth sampling time. Tj is assumed to
Tj be a random observation from a population wlth zero mean and

with variance a2T.



WTij : the interaction between the i th well and jth sampling time.
WT.. is assumed to be a random observation from a population
wi_;_ mean zero and with variance 02WT.

: the analytical error associated with the kth analysis ofE(tj)k

samples collected from well i at time j E(ij) K is assumed
to be a random observation from a population with mean zero
and with variance O2A.

The above model assumes that all wells are measured at the same time.
Therefore, the two factors (well and time) are referred to as "crossed"

T WTij, and Ecij)k are mutually. factors. It is also assumedthat the Wi, Js from a populationwith mean puncorrelated. Thus, each observationYijk
and with variance

Var(Yijk)= O2w+ 02T + (12WT + CI2A.

The objective is to estimate the variousvariance components,o2w,02
02 .T'.WT,and OA. The followinganalysisof variance (ANOVA)table (Table i) is
glven to provide guidance in computingthe estimatesof these vari_hce
components.

Table I. Analysis of VarianceTable for a Two-Way Crossed
ClassificationWith a Random E:fectsModel.

,,,,

Source Degrees of Sum of Mean
Freedom Squares Squares Expected Mean Squares

df SS MS E(MS)
, , ,,,

WeLL (a-l) SSW MSW a2A + ra2WT + rba2W

T_me (b-l) SST MST a2A + ra2wT + raa2T

We([ x Time (a-1)(b-1) SSwT MSwT a2A + ra2WT

Ana [yticaI ab( r-I) SSA MSA a2A
,,, ,,,

Total abr-1 SSTota I
,,.

Each mean square (MS) is obtained by dividing the sum of squares (SS) with the
respectivedegrees of freedom (df). For example,MSW = SSw/(a-1),and

SSw : brZ:_ (7_.. - 7... )2,

SS T = ar_j (_.j.- _.. )2,

SSwT = r_j(_ij.-.V'-_..-_.j.+7...)2,

SS A = _i_j_,k(Yij k _ y'--j.)2,

. SSTota [ = _i_j_k(Yij k_ _...)2.

Note that the "." used in the above expression denotes the summation over a
- particular subscript. For example, yi.. = _j_k-Tv'ijk and 7i.. = yi../br. Most

commercial statistical software packages will generate the quantities needed
in the above table except for the expressions given in the expected mean
squares column. A set of simple rules to determine these expressions quickly
(without recourse to their derivation) is given in Hicks (1982).



Estimatesof the variancecomponentso2w,o2T, a2_T,and a2Aare obtained
by equating the MS quantitieswith the correspondlngE"<MS)expressions (Table
I) and then solvingthe resultingfour equations. This way of comuting the
variance components is called the method of moments. This yields the
estimators

_A2 = MSA,

^ 2 = (MSwT- MSA)/r,OWT
A

aTz = (MST - MSwT)/ar,

• _w2 = (MSW - MSwT)/br.

2 ^ ^ 2 ^ 2 )wh" Variance of Yijk.[Var(Yijk)]_isestimatedby _w + °T2 + °WT +io_ ichis an unbiased estlmazorof total variance (Millikenand Johnson, 8_$. The

usually computed variance estimate s2 (s2 = _,i_.j_k(yijk-_...)2/(abr_l))
that assumes equal spatial and temporal variabilityis biased becausethe
expectationof s_ [E(s:)]is'

E(s2) = E[SSTota[/(abr-1)]

= E[(SSW + SST + SSwT+ SSA)/(abr-l)]

= [(a-l)E(MSw)+(b-I)E(MST)+(a-I)(b-I)E(MSwT)+ab(r-1)E(MSA)]/(abr-1)

= [(n-br)/(n-1)]O2w+ [(n-ar)/(n-l)]o2T+ [(n-r)/(n-l)]OzWT+ 02A,

where n = abr _the total number of backgroundmeasurements). This equation
reveals that st will underestimatethe true variance of Y..-because the

coefficientsassociatedwith a2w, 02T,and 2WTare all lessIJ_hanI. The amount
of bias is"

Var(Yijk)- E(sz) = [(br-l)/(n-1)]O2w+ [(ar-l)/(n-l)]O2T+ [(r-l)/(n-1)]_2WT.

Additionally,an estimatorfor the backgroundmean p is given by
7...= y.../abr, which is the overall averageof the backgroundobservations.

The variance of 7... is given by

Var(7...) = (broZ_+ aro2T+ rO2WT+ O2A)/abr

= O2w/a+ O2T/b+ oZwT/ab+ a2A/abr,

and is estimatedby %/a + _T_/b+ %T_/ab + oA /abr. Or, it can be calculated
by (MS,+ MST - MSwT)/abr. The first is importantespeciallywhen one needs to
redesign the sampTingplan to obtain a more precise estimate of Var(7 ) (see

Case Study I). Finally, it is importantto know that if r=1, a2Aand o21.
cannot be separatelyestimated;however, it is still possible to estima{e o2w
and 02T.



2.1.2 Nested Classifications

When backgroundwells are sampledat differenttimes, then the time
factor is said to be "nested"within the well Factor. Therefore,the nested
model is appropriateand is given by the followingequation:

Yljk = IJ + Wi + T(i)j + E(lj)k,

i = I, 2, .., a, j = I, 2, ... b, k = I, 2, .,. r,

where p, WI, and e • are as before and T(1)lis the true effect of the ,jthsampling me with(il_)ktheiitwell. This nested model has no interactionterm
• present, as the wells are not crossed with the times. It is also assumed that

the W are uncorrelated,the T i are uncorrelated,and the el areI ( )j ( j)k
. uncorrelated,and there are no correlationsamong the W(, Tci_i,and e(ll)).'

Thus, Y"k is an observationfrom a populationwith mean I_a'n_with vari'a,ce
Var(YliklJ= azw+ aZT+ a2A. The ANOVA table for a nested random effects model
is dis'playedin Table 2.

Table 2 A Nested Random Ef:ectsAnalys s of Variance Table.
i ] _: 41' iii iii iii ii|ll|m r i iii i i ,[ ,1.... ii i 1 iiii i!llllllllllllI i i/lllllll 11111I it i TF _ _

Degreesof Sum of Mean
Source Freedom Squares Squares Expected Mean Squares

df SS MS E(MS)
,. , ,,.,.. i , f, ,, ,,,. i i , ,,. i

Wetl (a-l) SSW MSW o2A + ro2T + rbo2W

Time a(b-1) SST MST o2A + ro2T

Analytical ab(r-I) SSA MSA o2A
... , ,,,.. ,,,,,,, ,, , q ,i ,,,..., JJ

Total abr-1 SSTotat
, ,'"' ' "''IT" : ' , ii,i i i,ii,ii iiHlmm nil i iIL ...... ---

where equations for calculatingSSW, SSA, and SSTotaL are same as before,
except for SST which is given below:

SST = rT, iT_:(7_: ' - y_.,) _.

Estimatesof the variance componentso2,,O2T, and OZAare obtained by
equating the computedMS to their expected vaWluesand then solving the
resultingequations for the unknown variancecomponents. This leads to the
unbiased estimators

^2
a A = MSA,

2
(IT = (MS T - MSA)/r,
^ 2
(Iw = (MS W - MS T)/br.

Variance of Y_k is estimatedby (Iw_ + aT + (IA, which is an unbiased estimator
" of the total varlance (Millikanand Johnson, 1984). Using the method

describedearlier, it can be shown that s_ is biased and underestimatesthe

. variance of Yijk" The amount of bias is'

Var(Yijk)- E(sz) = [(br-l)/(n-l)]aZw+ [(r-l)/(n-l)](IZT,where n=abr.



Just llke the "crossed"case, an estimatorfor the overallbackground
mean p can be obtained by _ = v _br, which is the overall average of the

backgroundobservations. The varianceof _.. is given by

Var(iT.,,) - (bro2w+ r_2T+ O2A)/abr

• a2w/a+ _2T/ab + O_A/abr

and is estimatedby Ow_/a+ _T2/ab+ aA2/abr. Or, it can be estimated by
MSw/abr, This first result is importantespeciallywhen one needs to redesign
the sampllngplan to obtain a more preciseestimate of Var(7...). If spatial

' variabilityis the most dominant factor in the total variance components,the
most effectiveway to reduce the uncertaintyin estimatingthe backgroundmean
is to increasethe number of backgroundwells. That is, to make Var(7...)I

^ 2

smaller, one has to make _w2/asmallerd. To make Ow/a smaller,one has toIncroasethe denominatora (note 'a enotes the number of backgroundwells).
To offset the cost due to samplingof more wells, one can decrease the number
of sampling times and reduce the nulilberof replicateanalyses,especiallywhen
the cost associatedwith each chemical analysis is high.

2.1.3 Impact on GroundwaterMonitoring

Regardless of wheth_,rthe model is a "crossed"or "nested"model, s2 is
a biased estimatorwhen multi.plebackgroundwells exist. In calculating
tolerance intervals,prediction intervals,and/or confidence intervals,

Var(Yljk_should be used rather than s2. Otherwise, the resultingcalculated
intervalswill be smaller. In groundwatermonitoring,an upper (I-a)i00%
tolerancebound, calculated on the basis of backgroundmeasurements,is often
requiredby regulatorsFor use as a thresholdvalue where I-_ denotes the
level of confidence. The thresholdvalue is used to determinethe presence or
absenceof contamination. Without consideringspatial and temporal
variabilitiesin the calculations,the resultingbounds will be too
conservative(i,e., too low). Decisionsbased on such bounds may lead to too
many false positive conclusions,and as a result,unnecessaryor excessive
remediation.

Z.2 ATTAINMENT OF A BACKGROUND-BASEDCLEANUPSTANDARD

After the groundwaterat a RCRA/CERCLAsite has been remediated, it is
necessary to determinewhether the remediationeffort has been successful
(i,e,, verificationof cleanup). This determinationshould be statistically
based, using appropriatestatisticalsamplingdesigns and tests. Appropriate
statisticaltests may include the Wilcoxon Rank Sum (WRS) test and/or the
Quantile test dependingon the type of residualcontaminationscenarios
(Gllbertand Simpson, 1990). If the remedial action has "uniformly"reduced
contaminationlevels (i.e.,the shift alternative),but not to backgrounde

levels, the WRS test should be used because it has greaterpower than the
quantile test. However, if most of the cleanup unit has been remediated to

, background levels and only a few "hot spots" remain (i.e.,the mixture
alternative),the quantile test is preferredbecause it has more power than
the WRS test (Gilbertand Simpson, 1990).



2.2.1 The 14ilcoxon Rank SumTest

The Wilcoxon rank sum test may be used to test for a shift in location
(Figure 2-I) between two independent populations (e.g., chemical concentration
from the background area and waste site). In the case of cleanup
verification, the null hypothesis Ho to be tested is the attainment of the
background-based cleanup standard and the alternative hypothesis H_ is the
non-attainment (i.e., a one-tailed test). The WRStest is performed in the
following steps:

I. Obtain two random samples of sizes m (from background area) and n (from
• waste site). Let N : m + n.

2. Order the N data values as though they were obtained from the same
" population.

3. Assign ranks to the ordered observations. Assign rank I to the smallest
observation and N to the largest. When several data values are exactly
equal to each other (i.e., tied), assign to each the average of the
ranks they would have received had there been no ties.

4. If some of the data values are less-than values, assume these values are
tied at a value less than the smallest detected value in the combined
data set and follow the procedure for handling ties.

5. Total the ranks given to the n samples from the waste site. Denote this
total as Wrs.

6. If m and n are less or equal to i0, compare Wrs to the appropriate
critical value (Tu) in Appendix 18 of Ostle and Malone (1988). Reject
Ho if Wr__>Tu, where Tu is the upper critical value for the selected
one-tailed a value (note, m is the level of significance of the test,
usually a is set to be 0.05 or 5%).

7. If both m and n are larger than I0 and no ties are present, compute the
large sample test statistic

Wrs- n(N+l)/2
Zrs

[ran(iV+Z)/12] z/2

8. If both m and n are larger than I0 and ties are present, compute Zrs
based on the following equation:

Z_ : w_- n(N+z)/22 i/2
{ (rim/12) [(N+I-Zjtj (tj-l)/N(N-I) ] }

whereinthe gjthisgrouthe;umber. of tied groups and tj is the number of tied data

9. Reject Ho and accept HaifZr[distribu->nzI":' where Z1.: is the (i-_)quantile of• the standard normal io .



Figure 2-I. A Shift Case Where the Distributionof Measurementsfor a
Contaminantof Concern in the RemediatedWaste Site is Shifted Two Units to
the Right of the BackgroundDistribution.
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Gilbert and Simpson (1992) give detailed procedures on how to determine
the total number of samples needed (N) for the WRStest. It is calculated
based on specified values of _, B, and the amount of shift (in units of
standard deviation), 8/o, that is important to detect with power I-8. [Note,

denotes the Type I error rate and 8 denotes the Type II error rate, where
Type I error is the error of rejecting a true null hypothesis (false positive)
and Type II error is the error of accepting a false null hypothesis (false
negative)].

2.2.2 The Quantile Test

The nonparametric Quantile test was developed by Johnson et al. (1987)
to detect changes in a small proportion of a treated population. The test is

- simple to use and a locally most powerful test for the mixture alternative
(Figure 2-2). The null hypothesis is attainment of background-based cleanup
standard. The test statistic is merely a count of the number of site
measurements (k) that are among the largest r measurements of the combined
data set. If k is sufficiently large then the test indicates the remediated
waste site has not attained the background-based cleanup standard. Most
importantly, the test statistic has a hypergeometric distribution when the
null hypothesis is true. Hence, its probability can be calculated exactly.
The Quantile test can be performed as follows:

I. Specify the required Type I error rate, a.

2. Assume there are m measurements from the background area and n
measurements from the waste site, and let N : m + n. Choose a value of
q that is greater than 0.5 and less than 1.0, where q is the proportion
of the remediated waste site that has been cleaned to the background
level. Therefore, l-q is the proportion of the remediated waste site
that has not cleaned to the background level. Note when q : 0.5, the
median test (Conover 1980) is obtained.

3. Compute r : N(l-q), where r is the number of largest measurements among
the N combined measurements that must be examined. When less-than
values are present in either data set, assume that their value is less
than the r t"largest measured value in the combined data set. If fewer
than r measurements are greater than the detection limit, then the
Quantile test cannot be performed.

4. Order the combined data set from smallest to the largest. Count the
number, k, of measurements from the waste site that are among the r
largest measurements from the combined data set.

5. If the r th largest measurement (count down from the largest measurement)
is among a group of tied measurements, then increase r to include the
entire set of tied measurements. Also increase k by the same amount.

m

11
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Figure 2=2. A Mixture Case Where 10% of the Distributionof Measurements
for a Contaminantof Concern in the RemediatedWaste Site Has Not Cleaned to
the Background Level.

12



6. If r_< 20, calculate the probability, P, of obtaining a value of k as
large or larger than the observed k, if Ho is true

p: n-i i

(7) '
(;)= a a- l a- l... s

over subscript i is from k, k+l, ..., r.

7. If r > 20, use the following equations to determine P, the probability
of obtaining a value of k as large or larger than the observed k, if Ho
is true

X = r/r
m+n

= mean of the hypergeometricdistribution

SD : [ mnr (m+n-r) ]i/2
(m+n)2 (m+n-l)

= standarddeviationof the hypergeometricdistribution,and

k-O.5-x
Zp = SD , where Zp is a standard normal variable.

Use a standard normal distribution table with the computed value of Zp
to determine the corresponding p value and let P = I - p.

8. Reject Ho and accept H_, if P < specified a. If Ho is rejected,
conclude that the reme_diated waste site has not attained the background
standard and additional remedial effort is needed.

Gilbert and Simpson (1992) gives a detailed description on how to
determine the number of samples based on computer simulations for the case
where the residual contamination is assumed to be distributed at random
throughout the cleanup site and the background and waste site measurements are
assumed to be normally distributed. Look-up tables for conducting the
Quantile test are also provided.

3.0 CASESTUDIES

Three case studies are provided in this section. The first case study
is to demonstrate the variance components analysis techniques described
earlier. The second and the third case studies illustrate the verification of

• cleanup efforts through the use of the WRStest and the Quantile test,
respectively. Unless otherwise specified, the statistical software package
STATGRAPHICS(Version 4.2) (a trademark of Statistical Graphics Corporation)
was used to generate results presented in the ANOVAtables.

13



3.1 CASESTUDY1 - HANFORDS-lO FACILITY

Facility Background--The S-lO Facility is a RCRA-regulated treatment,
storage, and disposal facility located south-southwest of the 200 West Area of
the Hanford Site (see Figure 1-1). The S-10 Facility consists of a pond and a
ditch. In the past, it received waste water that contained dangerous waste
and radioactive materials from the Reduction-Oxidation Plant. The effluent
stream to the S-tO Facility was permanently deactivated in October 1991.
Currently, this facility is operated under the RCRAinterim-status regulations
(EPA 1989).

. VarianceComponents ..A.nal..ysis" Crossed Classification--The monitoring
network has six wells; two upgradient,three downgradient,and one perched
water zone well. Eight quarters of quadruplicate measurements of indicator
parameters (fieldpH, field specific conductance,total organic carbon, and
total organic halogen) have been collected. For illustrative purposes only,
specific conductance data taken from two upgradient wells during March 1992
through December 1992 (four quarters of data) are used. Quadruplicate
measurements are required for this parameter (40 CFR 265.(c)(2)). The input
data is presented in Table 3. The two upgradient wells were sampled about the
same time, therefore, a "crossed" model is used.

Table 3. BackgroundSpecific ConductanceDataa for the S-lO Facility.......

Specific
Background Sample Duplicate Conductance

Welt Date Sample Number (_mho/cm)
' ,,,i ,, ,,,,

2-W26-7 03/12/92 I 262
2 260
3 259
4 258

06/09/92 1 253
2 255
3 254
4 254

09/11/92 I 268
2 261
3 261
4 260

12/18/92 I 256
2 252
3 256
4 255

, , ,, , ,, , , ,,

2-W26-8 03/13/92 I 234
2 236
3 235
4 234

06/09/92 I 242
2 242
3 241
4 241

09/11/92 I 248
2 246
3 244

, 4 242

12/22/92 I 243
2 241
3 241
4 240

_Data used h(_e"is "_or"ill'ustrat"vePurpose only.'
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Applying techniquesdescribed in Section 2.1.1 to the input data, the
followinganalysis variancetable (Table4) is obtained.

Table 4. ANOVA for a Two-Way CrossedClassificationsRandom Effect Model., , _ ,,,.

Source Degrees of Freedom Sumof Squares Mean Squares
, .., , '" .... , ,,,,

WelI I 2,346.125 2,346.125

Time 3 224.375 74.792

WetlxTime 3 193.375 64.458

Analysis . 24 91.000 . .. 3;792
=

Total 3!. 2,854.87S .....

Using formulas given in Section 2.1.1, the following estimates of
variance components and percentages (%) are obtained (note, numbers are
rounded to two decimal places).

Variance Components %
A

aA2 = MSA = 3.79 2.33
^ 2
OwT = (64.4583-3.7917)/4 = 15.17 9.31
^2
oT = (74.7917-64.4583)/8 = 1.29 0.79

_w2 = (2,346.125-64.4583)/16= 142.60 87.57

Total 162.85 100.00

Hence, spatial variability(due to multiple backgroundwell locations)

accounts for more than 87% of the total varianceand analyticalerror accounts
for less than 3% of the total variance. The blased estimators_ is calculated

to be 92.08 (SSTotal/31= 2,854.875/31= 92.09), and the amount of bias is
equal to 70.76 (162.85- 92.09). Hence, the confidenceintervals,prediction
intervals,and/or tolerance intervalscalculatedusing the biased estimators2
will be smaller than they should be had the unbiasedestimatorbeen used.

Variance ComponentsAnal.ys!s'Nested Classification_s--Thenested random
effects model is used when backgroundwells are not sampled at the same time.
To illustratehow to use this model, input data in Table 3 are used except to
change the sample year from 1992 to 1991 for one of the backgroundwell
2-W26-7. The ANOVA table is presentedin Table 5.

Table 5. ANOVA for a Two-Way Nested ClassificationsRandom Effect Model.'ll , : "J_i i _ lll Z i _ T llr _:ii i P i TI II I I111III

I _OU_Ce 'I', Degrees of Freedom 1 Su_n of Squares [ M_an Squares
I'" ",' , ,r,,"_, . " ' ,.,, ,, , , r . ', : '_.,] = ,,.,, 'I ,.},,,

Weti I 2,346.125 2,346.125

• Time 6 417.750 69.625

..... Ana.lysis ........... 24 ..... 91.000 .... 3.792

Total 31 2,854.875
III III II III II II 'I III I{ r i I111, I,'I_i I Iii_ ii I I i l.Ll ., --
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Using formulas given in Section 2.1.2, the following estimates of
variance components and (%) are obtained.

Variance Components %
^

aA2 : MSA : 3.79 2.33
^2
aT = (69.625-3.792)/4 = 16.46 10.13

Ow2: (2,346.125-69.625)/16= 142.28 87.54

Total 162.53 100.00

• Just like the "crossed"case, spatial variabilityaccounts for more than
87% of the total variance and only a small percent (less than 3%) of the total
variabilityis due to analyticalerror. The total unbiased variance of

" backgroundmeasurementsis estimatedto be 162.53 (pmho/cm)2. A background

standard deviation of 12.75 (_mho/cm) (v/16p..53 = ].2.75) should be used when
calculating confidence intervals, prediction intervals, and/or tolerance
intervals.

Let us use the more general "nested" model to show how to use
information gained in the variance components analysis to design a future
sampling plan that will reduce the uncertainty associated with the estimate
for the overall background level. The overall background mean I_ is estimated
by

7...= _,i_,j_,_Y_jk/abr : 7,974/32 : 249 pmho/cm, and

Var(_...) is estimatedby MSw/abr= 2,346.125/32: 73.3 (pmho/cm)2. Or, it
can be estimatedby

¢w2/a ^ 2 ^ 2/ 142.28 + 16.46 + 3.79+ aT /ab + aA abr = -----a ab abr

This expression indicatesthat a more preciseestimate of Var(_...)will be
gained by increasingthe denominator 'a' (the number of backgroundwells)
because spatial variabilityis the most dominant factor in calculatingthe
total variabilityof the data.

3.2 CASE STUDY 2 - WILCOXON RANK TEST USING ARSENIC TEST CASE

To illustratethe WRS test for the purpose of verifyingcleanup, a test
case is provided. The backgrounddata set for this test consists of arsenic
concentrationsfrom 10 wells (m:10) in the RattlesnakeMountain Corridor.
Another 32 (n:32) wells across the HanfordSite that lie outside of known
contaminationplumes are selected to simulate a waste site that has been
remediated. The locationsof these 42 (m+n or N-42) wells are presented in

• Figure 3-I. The raw data (Table6) consists of U.S. GeologicalSurvey results
from various wells sampledat the Hanford Site during 1977 through 1984. The
primary criteria used in the selectionof wells include site geohydrology,

" well characteristics,and distributionof indicatorcontaminantsin the
groundwater (i.e., tritium less than 1,000 pCi/L). The Kolmogorov-Smirnov
two-sample test procedurehas been appliedto this data set in WHC (Igg3).

16



State Highway,24._

Figure 3-1. MonitoringWell LocationsOutsideof KnownContamination
PlumeAreas,Source:WHC (1993).
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Table 6. Arsenic Data From I0 Wells in the RattlesnakeMountain Corridor and
32 Wells Across the HanfordSite.

, _ ,_J ' - ..... = ', - _ ..,,. ....t_' ' !

Regiona J Welt We[[ i Arsenic l Regiona Well I Well ArsenicCode Name (ppb) Code Name (ppb)
_I ' ,'. ,'I . "" " "'

I I 6-S12-3 5.5 2 22 6-45-69 4.0
..., ,, ,, , , -

I 2 6-S8-19 11.0 2 23 6-71-30 6.0.,,, ,,,, , ,.,m ,. , , ,, ,,i

I 3 6-53-25 6.0 2 24 6-51-63 4.0
,, ,=, , , ,, ,,, ,, ,. , i ,,. , .,, ,

I 4 6-2-33 6.5 2 25 6-57-25A 13.5
,, ,, , ,,, , ,..,, , , ,=,..,

I 5 6-11-45A 3.0 2 26 6-37-82A 2.0
" i,,, _i , ,,,,. ,n ,, i,i., ,,, --

I 6 6-14-38 4.0 2 27 6-43-88 0.5
,.., .,,, ,., , , ,,

. .. I 7 6-19-43 3.0 ........2 .... 28 6-48-18 ....... 1.0

I . 8 6-24-46 1.0 2 29 .....6-50-85 ..... 2.0

....1 9 6725.55 3.0 ........ 2 30 ....6-_5-S0c............ 3.0
I 10 6-55-89 1.0 2 31 6-57-83 1.0,,. i , , . . f,. , ,,.

2 11 6-20-E5-0 5.0 2 32 6-62-31 1.0
_ ,,,i ,, ,,,, ,, ,,, ,,,, , " ', --

..... 2 12 6-33-56 .... 4.7 2 33 6-63"25A........ 4.0

2 13 6-35-78 3.0 2 34 6-66-39 1.0
,. i ,,,,, , .. H, , i , --

2 14 6-4-86 7.0 2 35 3-8-4 8.0

2 15 6-49-55 6.6 ...... 2 36 6Z15-15B . 8.0_

2 16 6-48-71 1.0 2 37 ..6-17-5 ..... 3_0 _

_ 2 ...... 17 , 6-63-90 .......... 3.0 2 38 3-3-1 ...... 1,0

-- 2 _ 18 6"50"288 7"0 .... 2 .... 39 6"40"33 .......10.0

.......2 19 6-34-51 6...0 .... 2 40 , 6-39-39 ...... 2.0

2 20 6-55-76 1.3 2 41 6-4?-46 3.0
.,. i, , , i ill ,,, ,,i, ,. ii, i i ,, , --

2 21 6-31-538 6.0 2 42 6-54-34 1.0
,,,,_ ii,,,,," ,,,,, ", _, ,T : , ',, :z u ,,, ' • • '[ , ,,, L

aRegionI = RattlesnakeMountainCorridor,
Region 2 = Hanford Site.
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The combined data set is ordered and ranked from smallestto largest.
Average ranks are assigned to the ties, the result is shown in Table 7 below.
The sum of ranks assigned to the waste cleanup unit is 675.5 (=Wrs).

Since m=10 and n=32, and ties are present,the formulagiven in step 8
of Section 2.2.1 is used to calculateZrs. There are g=7 groups of ties:
i group with tl:9; I group with tj:3; I group with tj:8; 2 groups with tj:4;
and 2 groups wlth tj=2 (see Table 7, column tj). Therefore,

tl Number of Groups tj(tj23-()I) Productof.... (2) ( 2 ) x ( 3 ) _

. 9 I 720 720
3 I 24 24
8 I 504 504

• 4 2 60 120
2 2 6 12

Total : .....1,380

and _j t_(t_-l) = 1,380, and

675.5- 32(42+i)/2
ZpB _"

{(32,10/12) [42+1-1,380/42 (42-1) ]}i/2

-12.5
33.5454

= -0.373

Since Z =-0.373 is less than Zl.e=Zo.gs= 1.645 (obtainedfrom a standard
normal [{istributiontable),we cannot reject the null hypothesisthat
backgroundbased cleanup standard is attainedat this site with _ = 0.05.
Therefore,there is no statisticalevidence that the cleanup unit has not
attained the cleanup standard in this hypotheticalpost-remediationtest case.

3.3 CASESTUDY3 -- QUANTILETEST USING THE ARSENICTEST CASE

The Quantile test described in Section 2.2.2 is illustratedusing the
same set of data as used for case study 2. The followingsteps are performed:

1. Specifya _ 0.05.

2. There are m=10 arsenicmeasurementsfrom the backgroundarea and 32
measurementsfrom the waste site. Let q:O.8.

3. Compute r = N(I-q) = 42*0.2 _ 8.4 : g (round up to 9). It means we have
• to examine the largest9 observationsfrom the combineddata set.

4. Order the combineddata set from smallestto largest (see Table 7).
' Count the number, k, of measurementsfrom the cleanup unit that are

among the largest g observations. In Table 7, we find k = 7.
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Table 7. Result of the WRS Test--ArsenicTest Case.,,,(sheet,I of,,,,,,2),, ..... ,
I

Reglona Well Well Arsenic Rank Newb Background Site I t
,,,Code ,,,Name (ppb),,,, ,,,, _,,_b Rank Rank I J

2 27 6"43"88 O.5 I I I
, ,, ,, .... ,,. ,. ,, ,,

I 10 6-55-89 1.0 2 6 6 9
,,, , ,, , ,, ,., ,

I 8 6-24-46 1.0 3 6 6
, i J, , ,,,, ,, ,, , i ,.,

2 38 3-3-1 1.0 4 6 6
i llml ,.. i,ii,i. .. i i,ii i,. , iii m i i,i|

2 32 6-62-31 i.0 5 6 6

2 34 6-66-39 I.0 6 6 6
i,,i i . , , , . ,,, , ........

• 2 31 6-57-83 1.0 7 6 6, ,,,, ,, ,,, __

2 42 6-54-34 I.0 8 6 6
,,, ,.- .. , ,,,. .. ,,. .

2 28 6-48-18 1.0 9 6 6

...... 2 II, 16 6"48-71 .......... 1.0 10 6 . j 6

2 20 6"55"76 1.3 11 11 11
,.. ,,,, , , . , ,.,

2 29 6-50-85 2.0 12 13 13 3
, |i ,,,, ,,,,,, ,,, ,.. , - .

2 40 6-39-39 2.0 13 13 13

2 26 6-37-82A 2.0 14 13 13
,.., ,, , ,,

I 9 6-25-55 3.0 15 18,5 18.5 8
,t ,., , , ,, ,,m i ,,

I 5 6-11-45A 3.0 16 18.5 18.5
, ,,,, ,,., , ,,,,, .,, , •

I 7 6-19-43 3.0 17 18.5 18.5

2 13 6-35-78 3.0 18 18.5 18.5
., ,,. ,,,. ,., ,..,

2 37 6-17-5 3.0 19 18.5 18.5
. ,, ., , . ,,. , ,,

2 17 6-63-90 3.0 20 18.5 18.5
l "

2 41 6-47-46 3.0 21 18.5 18.5
... , , ,.,

2 30 6-55-50C 3.0 22 18.5 18.5
,, , , ..... ,,,

I 6 6"14-38 4.0 23 24.5 24.5 4
..... , ,.. . .

2 22 6-45-69 4.0 24 24.5 24.5
i_ ,, , ,,., , ,,. , • ,,- -

2 33 6-63-25A 4.0 25 24.5 24.5
, , ,, ,.. , , ,

2 24 6-51-63 4.0 26 24.5 24.5
,,,, ,, , ,,,,. ,,,, .., .,, ,,, --

2 12 6-33-56 4.7 27 27 27 .... ]. ...

2 11 6-20-E5-0 5.0 28 28 28
,...L , ,.,, , ,'

I I 6-$12-3 5.5 29 29 29

- I 3 6-$3-25 6.0 30 31.5 31.5 4

2 19 6-34-51 6.0 31 31.5 31.5
, ,, • , , ,, ,,,. ..., , ,,

" 2 23 6-71-30 6.0 32 31.5 31.5
,,.. ,

2 21 6-31-53B 6.0 33 31.5 31.5

I 4 6-2-33 6.5 34 34 34

2 15 6-49-55 6.6 35 35 35,..
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Table 7 Result of the WRS Test--ArsenicTest Case. (sheet 2 of 2)
__ ,, _ : ....... '',c ,, , , , ,,,,,, , ,,,,, ,,,,,' , ,, :::

Code 1 Name (ppb) b Rank Rank

2 14 6-4-86 7.0 36 36.5 36.5 2
,, , ± , ,,, , ,, ........ _ iil ,,i ......

, ,

2 18 6-50-28B T.O 37 36,5 36.5

2 36 6-15-i5B 8.0 38 38.5 38.5 2
,, , .... ,,f i i,i ll,i1 H

2 35 3-8-4 8.0 39 38.5 38.5
I II I I I I Illil IIII II iiJ]l IIIII I II I .....

, 2 39 6-40-33 10.0 40 4O....................... .__I 4 0 ___ __ ,,,, ,, ,,,,,,, , i ,,,,,,_ ,, i i i

I 2 6-S8-19 11.0 41 41 41
,, ,,,,, i , i i i ,,

_ 2 25 6-57,25A 13.5 42 42 ..........42im ,, -, ,, ,, , ,, , ,,, ,,,, ,, , , ' ,,,,,,,, ,i, ',,L - ,,,

Total 227.5 675.5
_ "" i I i i ii :_ _ I _ IIII I :: I I I_IiIIII I I _ : till ]I II IIH IIIIp!I I ] I -.: III !

aReglon I = RattlesnakeMountainCorridor (i.e.,backgrounddata set)
bRegion 2 = HartfordSite (i.e.,wasce cleanupunit).
Averageranks are assigned to the tied group.

5. Because r <_20, we calculatethe probabilityof obtaining a value of k
as large or larger than 7 using the formulafor P (see Step 6 of Section
2.2.2)

_,_ ( rn+n-r)( r)p= n-i i

m+nn)
= O.6385

Note in calculatingP, the summationover i is for i=k (=7) to i-r (-9).
In other words, there are 3 terms (i=7, i=8, and i=g) in the above
equation.

6. Do not reject Ho because P = 0.6385 > 0.05 (the specifiedvalue of a).
Therefore,there is no statisticalevidence that the cleanup unit has
not attainedthe cleanup standard.

4.0 SUMMARYAND CONCLUSIONS

Resultsof the random effectsmodel analyses indicate that spatial
variabilityis the major contributingfactor to the total variability. Only
specific conductancevalues from a RCRA facilitywere used for demonstration

• purposes,however, experiencesuggests this statementis generallytrue for
all of the constituentsoccurringnaturally in the groundwaterat the Hanford

. Site. Backgroundlevels calculatedwithout consideringspatial variability
will be conservative(too low) and lead to unnecessaryremediationbecause sz
will underestimatethe true variance. If upper confidencelevels, tolerance
intervals,and/or prediction intervalsare to be used as thresholdvalues for
determiningthe presence of contamination,one should use the unbiased
estimator in the calculations. In addition,to obtain a more precise estimate

21



precise estimate of Var(_...), one should use the results of the variance
components analysis as a guide. For example, if spatial variability is the
most important factor in the total variance components, the most effective way
to reduce the uncertainty in the estimation of background mean is to increase
tho number of background we'lls. To offset the cost due to sampling of more
wells, one can decrease the number of sampling times and reduce the number of
replicate analyses, especially when the cost associated with each chemical
analysis is high.

To effectively collect and utilize groundwater monitoring data in the
four programmatic areas at the Hanford Site, the background region should be

' selected from area(s) not influenced by the operations of the hazardous waste
' site and similar to the test site in physical, chemical, or biological

characteristics. Furthermore, concentrations of chemicals in groundwater vary
' considerably depending on factors such as soil characteristics, proximity to

recharge and discharge areas, and flow rates. Additionally, background should
be considered as a statistical distribution of concentration levels, rather
than a single concentration, so that statistical techniques discussed in this
paper can be applied.

Finally, when making contamination and/or remediation decisions about a
waste site, all available information must be used. In addition to
statistical test procedures, geochemical and hydrologic considerations are
integral parts of the decision making process. A phased approach, as shown in
Figure 4-I, is recommended. The phases proceed from simple to the more
complex, and from an overview to detailed analysis. All phases should be
completed and evaluated before a decision is reached. Work is in progress
toward this approach.
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