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Abstract

This paper describes an implementation of hardware neural networks using highly linzar
thin-film resistor technology and an 8-bit binary weight circuit to produce customizable artificial
neural network chips and systems. These neural networks are programmed using precision laser
cutting and deposition. The fast turnaround of laser-based customization allows us to explore
different neural network architectures and to rapidly program the synaptic weights. Our
customizable chip allows us to expand an artificial network laterally and vertically. This flexibility
permits us to build very large neural network systems.

Overview

The human cerebral cortex contains approximately 101! neurons and 1014 synapses [1].
This extremely high degree of parallelism is perhaps the main factor that gives humans their
powerful cognitive capabilities. It thus seems logical that any technology intended to mimic human
capabilities and intelligence should have the ability to fabricate a very large numbers of neurons and
an even larger numbers of synapses. Furthermore, one must be able to program the synaptic
strengths, as these strengths contain the information that controls the function of the neural
network.

Our approach is to address the synaptic problem with a relatively simple and yet highly
reliable and scalable technology. We use a resistive material to form the synapse. This approach
reduces the number of masks from a typical eighteen-mask EEPROM process down to only five.
Such a great reduction in complexity allows us to scale the technology up for the implementation of
an immense number of resistors and still maintain a reasonable yield. By using an 8-bit binary
weighted representation of a synapse, we are able to define 256 synaptic strengths with 8 identical
resistors. This scheme allows us to build synaptic arrays based on single-valued resistors and thus
further simplifies the processing issues, making possible the fabrication of a complex artificial
neural network chip. Our resistor technology therefore offers the advantages of linearity over a
wide range of operations, and simple fabrication processing which can be scaled to extremely large
and complex neural network chips or systems.

A wide variety of neural network applications do not require synaptic weight variation once
the application is fixed. This makes the fixed resistors weighting ideally suited for these types of
applications. Well-known examples may be found in the areas of signal processing and artificial
vision. Also, our proposed synaptic technology is not exactly a fixed-weight scheme. It is a
programmable technology using direct laser cutting and laser-induced deposition [7,8] to define the
synaptic strengths. In addition, these laser technologies allow us to connect or disconnect the paths
between any two pairs of points and thus allow us to define almost any neural network
architecture, for example, a Hopfield net with feedback paths or a multi-layer feedforward net.
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The combination of laser-programmable synaptic weights and laser-defined architecture
allows us to define the concept of a customizable neural network. Such a customizable chip can be
prefabricated, and thus enable us to customize different applications in a short time frame of
minutes to hours, depending on the complexity of the neural c{)rcuits. This fast prototyping of new
designs should greatly accelerate the development of neural network hardware and applications.
Such a combination of design and technology would also allow rapid, cost-effective, low-volume
prototype production. This approach will permit all functional defects to be addressed and
corrected before beginning high-volume production of a neural network.

Artificial Synapses

We have designed and successfully fabricated two prototype artificial synapse structures
based on our resistor technology. The first structure is based on isolated resistors, allowing us to
fully characterize each of the 315 resistors. The second one is a resistor array containing 34,816
resistors with a packing density of 2 x 105 resistors/cm?2,

Measurements of the 315-resistor structure yielded a standard deviation of 0.79% (Fig. 1)
for resistance measurements. This sampling covers the equivalent of an area that will contain
68,000 resistors for the resistor array (Fig. 2). The standard deviation for linearity of the resistors
over a +/- 3 V range is 0.08% (Fig. 3).

Our success has several implications. First, our demonstration of large arrays of resistors in
the range of ~200,000 Q to 2 MQ is a significant step toward artificial neural networks with
sufficient complexity to mimic human capabilities. Second, the extremely tight tolerance in
uniformity means that the laser programming of the chip can be done in one single pass. Third, the
highly uniform synaptic value distribution thus obtained suggests that we can build an even larger
chip and still retain excellent uniformity as we improve our processing techniques. Fourth, the high
degree of linearity makes it easier for potential users to transfer their neural network designs from
standard software simulations to hardware. Fifth, our wider range of linearity implies better
dynamic range, which simplifies the neuron body circuit design.

Input Buffers and Output Neurons

All the active circuitry on the IC was designed in CMOS for 5 V operation and laid out for 2-
micron, P-well, double-poly, double-metal fabrication using typical design rules. These circuits
consist of input buffer amplifiers (Fig. 4) and the neuron body output amplifiers (Fig. 5). The
neuron body amplifiers contain a binary weighted summer section, a sigmoid limiter, and an cutput
buffer amplifier. The only difference between the output buffer amplifier section and the input
buffer amplifier is the fixed unity gain of the input amplifier.

All amplifiers are fully differential about an user-selectable reference voltage (Vref). For
minimum power dissipation and maximum linearity the best value for Vref is 1.5 V, with the
sigmoid limits set at 0.5 V and 2.5 V. This gives the neuron amplifiers a dynamic range of +/- 1.0
V. Although the resistors are linear over a much greater range, the 2.0 V output limit was selected
to maximize the amplifier linearity and minimize the resistor power dissipation. The sigmoid limit
voltages are common to all output amplifiers on the chip and are set by the user through external
pins. The sigmoid limits can be disabled at any amplifier during laser cutting if linear processing is
desired on some of the neurons. The amplifier gain on each neuron body amplifier is selectable by
lascx(') cutting of the feedback resistors. There are 128 possible gain selections, ranging from unity
to 1024.

Each leg of the differential amplifier is capable of driving 128 8-resistor synapses at the worst
case differential of 2.0 V. Each resistor will dissipate between O to 2 uW. The power dissipation of
each resistor is due to the voltage differential between its input and the average voltage of all the
inputs on the summing line. The summing section at each neuron body amplifier is designed to
have an 8-bit binary weighting function with a maximum error of one least significant bit (LSB).
The average measured error is 0.6 LSB. The summer error must not be greater than the resistor




fabrication tolerances. The amplifier voltage output offset error was found to be an average of 7
mV and the worst error measured was only 16 mV. These measurements indicate that each neuron
amplifier can easily be nulled to Vref with a single bias weight, although nulling does not appear to
be necessary with such a small offset error.

Laser Programming

Our laser apparatus was designed and built with the goal of patterning features as small as 1
micrometer. The beam source for the system is a water-cooled argon laser, operated at a 514
nanometer wavelength, The laser beam is positioned within a scanning window by applying f
modulation on the two acoustic optics scanner crystals to separately control the horizontal and
vertical scans. After the window is scanned, the stage then moves to a new position for the
patterning of another window.

Figure 6 shows scanning electron micrographs of a resistor cell before and after a laser cut.
No metal traces or debris can be seen with either an optical or a scanning electron microscope. X-
ray microanalysis of the cut region reveals no traces of metals either left on the surface or
originating from any possible reaction of the metal with the underlying oxide because of the
extreme high reaction temperature induced by the laser. Electrical testing confirms that these
resistors are open circuits after laser cutting. The present programming speed for a 50% cut of the
34,816 resistor array is 1.5 minutes. One major reason for the relatively slow speed is due to the
slow settling time of the mechanical stage. Another way to improve the cutting speed is to increase
the packing density of the resistors.

The third generation of the resistor structure will have a fourfold increase in density.
Combined with a faster mechanical stage, this would allow us to program 0.25 million resistors in
2 minutes, assuming again that 50% of the resistors will be cut. Based on this projected speed, the
time needed to cut 1 million resistors will be 8 minutes, excluding the time needed for wafer
loading, pump down, unloading, and alignment. We believe this programming speed is high
enough to give a fast turnaround for prototyping a specified set of synaptic weights for a neural
network chip. A further substantial improvement in programming speed can be achicved by using a
multi-beam laser system.

The synaptic strengths are defined by the laser cutting and laser deposition for repair and
rework. This implies that synaptic strength variation due to charge leakage or hot electron is not a
factor. This inherent reliability is a major consideration for using artificial neural network
technology in areas such as space exploration or smart missile.

A 96-Neuron Architecture

With all the components and programming technology successfully demonstrated, we are
now integrating these components to form a neural network chip.

While a self-contained single-chip neural network with I/O interface built in may seem
appealing, we believe that such chip may offer only a limited growth potential for addressing
complex future neural networks. Since our goal is to build extremely large and complicated neural
network systems, we decided to develop a modular neural network structure. This modular
approach is somewhat similar to NAND or NOR gates in digital technology. Our customizable
module thus becomes the basic building block for complex neural network systems. This chip
contains an input buffer amplifier for each input line, a fully-connected synaptic array, and output
neurons, representing a single-layer neural network. Our current design has 96 neurons and
12,288 synapses in one single chip (Fig. 7). Based on current design rules, the chip's dimensions
are 1.25 by 1.25 cm. Only the passive resistors and metal interconnects are positioned in the center
section of the integrated circuit. All active circuits lie on the boundary of the IC. Power distribution
is thus confined to the periphery, minimizing bussing problems and voltage variations across the
chip. In most architectures, the input amplifiers would only be used for the first layer. The output
amplifiers would drive the synapse resistors in the next layer.



With this single customizable chip we can build many different architectures. With
feedback paths formed by our fast-turnaround laser processing, we can readily implement a
Hopfield net. The amplifier gain on each neuron body amplifier is individually selectable by laser
cutting of the feedback resistors. This gives the capability of having multiple transfer functions on
a single layer, and thus allows us to implement multi-layer networks on our single layer neural
network chip, provided that the total number of neurons in the application is equal to or less than
96 and the number of synapses is no more than 12,288, This is possible because the feedback
rclsistors are physically identical to the synapse resistors, and therefore have the same fabrication
tolerances.

Our present projected power consumption for the resistor array is 0.2 W maximum and that
for the active circuitry for input buffers and output neuron bodies is less than 0.5 W. This implies
that no special provision is needed for heat dissipation. Our current design is expected to operate at
a minimum of 1 MHz. As a result, the throughput of the system for a single chip will be at least

1.2 x 1019 interconnects/sec.

Conclusions

We have described a novel approach to the development of VLSI artificial neural network
hardware. With all components and programming technology successfully demonstrated, we are
integrating these components to form a customizable neural network chip. Our processing
technology yields resistors with a highly linear behavior over a wide dynamic range. Laser
processing provides an unique and extremely rapid means of defining the synaptic weights of a
neural network as well as its architecture. The 8-bit binary weight scheme allows us to define
synaptic strengths with sufficient resolution. The customizable chip combined with laser
processing will allow fast-turnaround customization of neural network chips for many different
applications. A fast fabrication process of this kind gives system designers a high degree of
freedom and flexibility to prototype neural network hardware, and thus allows timely insertion of
neural networks into different applications. Our approach may be extremely cost-effective for low-
volume production. Finally, another major advantage of this unique approach is the ability to scale
up to extremely large and complex neural network systems such as an artificial retina.
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Fig.3. Electrical characteristic of the resistors (a) 200 KQ and (b) 2 MQ
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Fig.4. Eight input butfer amplifiers

Fig.6. Laser programmable resistors (a) before laser cut, and (b) after laser cut.
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