', Cpubg%oa;\a—-tf

A MONTE CARLO STUDY OF THE “MINUS SIGN PROBLEM”
IN THE t-J MODEL USING AN INTEL IPSC/860 HYPERCUBE

RECEIVED

M.D. KOVARIK AND T. BARNES SEP 2 3 1834

Physics Division and Center for Computationally Intensive Physics, O S T ,
Oak Ridge National Laboratory, Qak Ridge, TN 37831-6373

and

Department of Physics, University of Tennessee,
Knozuville, TN 37996-1200

ABSTRACT

We describe a Monte Carlo simulation of the 2-dimensional t-J model on an Intel
iPSC/860 hypercube. The problem studied is the determination of the dispersion
relation of a dynamical hole in the t-J model of the high temperature supercon-
ductors. Since this problem involves the motion of many fermions in more than
one spatial dimensions, it is representative of the class of systems that suffer from
the “minus sign problem” of dynamical fermions which has made Monte Carlo sim-
ulation very difficult. We demonstrate that for small values of the hole hopping
parameter one can extract the entire hole dispersion relation using the GRW Monte
Carlo algorithm, which is a simulation of the Euclidean time Schrodinger equation,
and present results on 4 x 4 and 6 x 6 lattices. We demonstrate that a qualitative
picture at higher hopping parameters may be found by extrapolating weak hopping
results where the minus sign problem is less severe. Generalization to physical hop-
ping parameter values will only require use of an improved trial wavefunction for
importance sampling.

1. Introduction

Monte Carlo studies of dynamical fermion problems in more than one spatial
dimension. such as the t-J model of the high temperature superconductors, are com-
plicated by the “minus-sign problem” encountered in multifermion systems in more
than one space dimension. For a general discussion of the minus sign problem see
the paper of Loh et al'. This problem arises from the fact that off-diagonal matrix
elements of the type

(w'l(I — Hy hy)|n) (1)
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can have either sign in these systems. These matrix elements are encountered for
example in evolving an initial distribution of configurations to a ground-state distri-
bution using the operator

= lm 3 el = H i)l
nrhr=r {n}
- )| (T = H hy)Imo) ol @)

or in evaluating the partition function, which is the trace of this operator. The
phases of these matrix elements may be assigned to weight factors associated with
configurations generated by the algorithm, and these weights evidently can have ei-
ther sign depending on the path S(7) the configuration follows in Hilbert space. The
weights are then used in averages in the calculation of matrix elements, which will
have considerably larger statistical errors if weights occur with both signs in compa-
rable numbers. In measuring dispersion relations using Monte Carlo techniques one
encounters a related difficulty, which is that the matrix elements, Eq. (1), between
momentum eigenstates are in general complex, so the “minus sign problem” gener-
alizes to a “complex phase problem”. Despite these difficulties recent Monte Carlo
studies have found it possible to extract useful results for several systems which have
minus-sign problems. These include the energy of the one-hole ground state in the t-J
model ? (which requires negative weights) and the dispersion relation of the spin-one
Heisenberg chain 2 (which requires complex weights).

The t-J model *°, which is the two-dimensional Heisenberg antiferromagnet on
a square lattice with a hopping term, has attracted considerable interest as a can-
didate model of high temperature superconductivity. This model, defined by the
Hamiltonian

1
H==t 3 (dhejy +he)+J 32 (8-S, = zniny) , (3)

<iyj>,0 <tj>

incorporates the large antiferromagnetic interaction present in the copper-oxygen
planes and allows hole hopping if vacancies are present.

In this paper ® we show that the problem of determining t-J model dispersion re-
lations using a Monte Carlo technique can be solved formally using complex weights.
Although cancellations between weights do lead to a considerable increase in the sta-
tistical noise relative to Heisenberg model simulations in practice, one may nonethe-
less obtain interesting results for one-hole band structure using currently available
computing facilities.

2. Method

We employ the “guided random walk” (GRW) algorithm, which was introduced
by Barnes, Daniell and Storey 7 as a method in Hamiltonian lattice gauge theory,
and has since been generalized to discrete degrees of freedom #° and has been applied
to U(1) lattice gauge theory !°, to multiquark systems in the nonrelativistic quark
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model ', and to the Heisenberg antiferromagnet %1274 and t-J, model '*. In this
method, the Euclidean time Schrédinger equation

— ly(r) >= Hg(r) > (@
generalizes to a diffusion equation with absorbers
=2 pa.1) = —K V(2 1) + a(e)p(:1) 5
when L &
H= s+ V(z,1). ' (6)

The diffusion equation is easily simulated using a random walk algorithm in which
the probabilty of absorption is replaced by a weight factor.

The GRW algorithm is unlike GFMC in that it does not use a fluctuating pop-
ulation of “walkers”, but instead generates a single unbranched random walk and
associates a path-dependent weight factor with that walk. The weights of many
such walks are then used in averages to determine energies, as we shall discuss. The
weights can also be used in a straightforward manner to give unbiased |¢o|®-weighted
ground state matrix elements !, which is a difficult problem for some algorithms.
(See Barnes, ref. 16, and Manousakis, ref. 17, for reviews of this and other algorithms
used in studies of the Heisenberg model.) _

In the GRW algorithm one generates a random walk in Hilbert space, in which
the path followed by the configuration is parametrised by the Euclidean time 7. One
begins the random walk at 7 = 0 with a chosen initial configuration (which in our
case is a hole at (0,0) in a Néel state), and increments the Euclidean time in steps
of h,. After each time step the walk has the option of making a transition from the
current configuration §(7) to a new configuration §’(7) with probability

P(S§ = 8)=rss by, (7)
where the stepping-rate matrix rss: is
vi(S")
== S'H S S y 8
rss = |~ (S1HiIS) P (8

after the § — &’ transition is attempted, the Euclidean time is incremented to
T + h,, and the process is repeated. In these formulas H; is the off-diagonal part of
the Hamiltonian, Hg is the diagonal part, here the “Ising energy” J 3 ;5 (5757 —
nin;/4), and $§(S) is an approximate ground-state wavefunction which is used by
the algorithm for importance sampling; the definition of rss:, Eq. (8), implies that
the walks preferentially explore regions where |¥{] is large. One calculates a weight
factor associated with each walk, which is

w(n) = exp(ig) exp{ ~ [ (Ho(S(r)) = L rse)dr} ©)
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This weight factor is a function of the path S(r) followed by the walk, and in gen-
eral has an overall phase exp(:¢). When averaged over random walks the weight
asymptotically approaches an exponential in the ground state energy,

Jlim < w(r) >= c exp(—EoT) . (10)
One may therefore determine energies from the average weight at two Euclidean times,

Eg*™ = lim In(<w(n)>/<w(n)>)/(r-mn). (11)
In practice there are biases due to the use of a finite sample of walks, a finite Euclidean
step size h, and finite measurement times 7, and 7;, and one must be careful to
establish that these systematic errors are within required limits.

The weight phase exp(i¢) is the phase of the product of (—H;) matrix elements
encountered in all transitions executed by the walk;

oo SIS
w?i0= I = S

transitions

(12)

In problems such as the determination of the ground state energy of the Heisenberg
antiferromagnet we minimise statistical errors by choosing our basis {|S)} so this
phase is always +1, which requires that all nonzero off-diagonal Hamiltonian matrix
elements be negative. In the t-J model with a 3-diagonal spin basis this is not pos-
sible in general, and in any case we must introduce complex basis phases to extract
dispersion relations.

To motivate our choice of basis phases, first consider a zeroth-order set of one-hole
basis states {|S)o} defined by applying a site-ordered string of fermion operators c ..
to the vacuum. For example, our initial Néel-and-hole state on the 4 x 4 lattice, with
the hole at site 1, 7, = (0,0), is

V(0,000 =c}_cl,cf_cf_ ... cls,10) . (13)

(Our sites are labelled as in Figure 1 of Dagotto et al'®.) The phases of this basis are
inappropriate for Monte Carlo simulations of the Heisenberg antiferromagnet, since
every spin flip has a positive H; matrix element and hence induces a change in sign
of the weight factor. The solution of this problem is well known, and is to introduce
a new basis set {|S);} with overall phases of (—1)"+/, where N,; is the number of
spin-flips required to reach the basis state starting from a reference Néel state. In
our one-hole problem this specifies the relative phases within each subset of one-hole
basis states {|S,Zx)} that share the same hole location Z;. Note however that we are
still free to specify the overall phase of each of these basis subsets. It is this freedom
that allows us to extract the dispersion relation for the hole, since this relative phase
is determined by the total momentum of the state.
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Momentum eigenstates are defined by their behavior under translations; a trans-
lation of a state of momentum k by @ returns the same state with a k-dependent
phase, ;

T(@@) k) =5 k) . (14)
We use this property of momentum eigenstates to choose our basis phases so that all
states with momenta other than a specified k are projected out in the sum over final

. hole sites, this sum being implicit in the calculation of the average weight < w >

in Eq. (10). Specifically, we use as our basis states translations ofi states with the

hole at the origin, with a multiplicative phase factor of exp{+ik - @}. For example,

to extract k = (0,0) energies, the basis state corresponding to a Néel-and-hole state
with the hole at Z; = (1,0) is taken to be the pure translated state T'|A)o,

T(Zn = %) IN(0,0))0 = C:‘;- cI+ CI— Cg- cee C'{a+ 10)

= (-1)-cf_cl_clpely ... cle-10) = (=1) - IN(1,0))o - (15)
Similarly, the & = (0,0) Néel-and-hole basis state with hole location (ng,ny) is
T(ne + ) IV (0, 0))o = (—1) W (nzy o - (16)

(The factor of (—1)" in Egs. (15) and (16) is induced by the ordering convention,
Eq. (13), used to define the {|V)o} basis.) In contrast, to extract general k states we
use basis states with plane-wave phases, so that all states with K # k are eliminated
in the average over final hole locations because ¥z, exp{z'(E — K)-Z4} vanishes unless

— —

K = k. The required Néel-and-hole basis states with general % and hole location
(ng,ny) are
exp(+ik - ) T(nz + ny§) N(0,0))o
= exp(+i(ksnz + kyny))(=1)™ IV (nz, ny))o - (17)

Previously we specified the relative phases within each fixed-hole-location subbasis
{|S,Zx)} by the Heisenberg-model (=1)Nss rule. As we have now specified the relative
phases of specific basis states from each of these subbases by Eq. (17), the relative
phases of all basis states are now determined.

The weight-factor phase, Eq. (12), equals the phase of the product of —Hpop
matrix elements, Eq. (1), between the basis states, Eq. (17), where the product runs
over all hole hops which the random walk has allowed. (We have chosen our phases so
spin flips do not change the phase, Eq. (12); only hole hops remain as nontrivial —Hy
terms in Eq. (12).) Inspection of Egs. (13) and (17) shows that fermion operator
ordering introduces an additional factor of (—1) in the matrix element of (—Hj) for
each hole hop in the +§ directions. This factor combined with the phase multiplying
Eq. (17) gives the total weight-factor phase exp(i¢) we use in Egs. (9) and (11) to
determine the hole dispersion relation.

As this definition of phases is somewhat complicated, it may be useful to specify
the resulting rule for the weight-factor phase exp(i¢) in Eq. (9) operationally:
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(?) spin flips have no effect on the phase, (¢7) under a hole hop the phase of the weight
changes by a factor of

edt = (-1)- e~ tFAT (=1)8Nes (18)

The overall (—1) is the product of the intrinsic (~1) in Eq. (16) encountered in
translating the “zeroth order” basis states as in Eq. (13) by £z times the operator-
ordering phase (—1) encountered for hole hops along +g; their combined effect is a
(—1) for every hole hop. The second factor is due to the exp(z’l_c‘ - Tp) present in a
momentum eigenstate. The third factor is the Heisenberg minus sign which insures
that spin flips never change the sign of the weight. All these may simply be evaluated
as an overall phase factor of

(R (=1)Nhope . e~k (En(N)-2n() (=1)ANes | v (19)

at the end of each walk (at 7, or 73); note that the first two phase factors on the
ths depend only on the initial and final configurations, not on the path followed.
The average weight and resulting energy for each momentum can then be calculated
using Egs. (9), (11) and (19) for each k. Note that the energies for all momenta
are determined concurrently by evaluating average weights with different end-point

factors of exp(¢ ¢(ic‘))

3. Perturbation Theory

At the present time, the large hopping parameters of high temperature supercon-
ductivity are inaccessible to the GRW because of the minus sign problem. One way
to study this regime is to fit the small ¢/J regime where simulations can be done with
a perturbative form which may then be used to extrapolate to larger values of the
hopping parameter.

Although no numerical results have previously appeared for the t-J model band-
width on lattices larger than 20 sites, there are theoretical arguments that the one-hole
band structure at small ¢/J should depend strongly on the lattice size *721. Pertur-
bation theory in the hopping parameter %2%2! finds that the small-¢/J dispersion
relation is

eh(l_c‘,t) = ep(t = 0) + Z,, - 2t [cos(k;) + cos(ky)] + O(t?*)J) , (20)

where Z,, is a bandwidth renormalization; the small-t/J bandwidth is W = Z,, - 8t.
Z. = +1 for a free fermion on the lattice, and for the hole it is a function of both S,
and L, and involves an overlap of initial and final spin-wavefunctions 2!. It has been
suggested that this bandwidth renormalization is actually zero in the bulk limit °,
although probably only for low-spin states 2! (Si:/L? — 0), because the staggered-
magnetized spin background reduces the overlap between one-hop initial and final
spin states to zero. This effect has also been attributed to a dimerization of the
lattice by the staggered magnetization in the bulk limit !°, which reduces the size of
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the effective Brillouin zone and leads to degeneracies between levels with momenta
that differ by (7, 7). This implies Z,, = 0, so the bulk-limit bandwidth at leading
order in the hopping parameter expansion is O(t?/J). At large but finite L, simple
arguments involving the spin-wave gap (which vanishes o« 1/L?) and degeneracies
expected at the supersymmetric point "% (t/J = 1/2) lead one to expect that Z,
for the low-spin states should approach zero as x/L?.

One-hole band structure at second order in the hopping parameter has been dis-
cussed by Dagotto, Joynt, Moreo, Bacci and Gagliano '8, who obtained a general
three-parameter form for the O(t?/J) one-hole dispersion relation. Their equation
(20) is equivalent to the form

’ eh(l::,t)/.] = vy + vy [cos(k,) + cos(ky)] . (;)
+ {03 [cos? (k) + cos®(ky)] + va [cos(k) cos(k, )] + vs} : (:t]-) . (21)

There is a relation between the coeflicients {v;} in O(¢?/J) perturbation theory, which
is implicit in their definition in terms of the {a;} of Dagotto et al,

vy = 272, = —2ay, " (22)
2
- —8(01 +02) : (23)
a N
vy = _16en(1+as) , (24)
a
2
vy = 2L —)t (25)
a
h
where 3 9
a==——ap+2a +a; . (26)

2 2

In our fits to numerical results we do not impose the constraint but instead treat all
five coeflicients {v;} as free parameters.

4. Implementation on the iPSC/860 hypercube

To implement the GRW on the Intel IPSC/860 we subdivided the total number of
random walks in each sample into blocks of 4 million walks which were then divided
among 32 nodes. The host program performed the I/0, reading the input parameters
and the output, and handled the communication with the nodes. The random number
generator was initialized with a different seed on each node on which independent sets
of random walks were then generated. At the end, the results from the independent
runs were sent back to the host where they were averaged to give energy estimates
for the 4 million walk blocks which were themselves averaged to give estimates for




96

all walks in the sample. No communication between nodes was required because the
GRW algorithm requires only a single configuration, so the memory requirements
were very small and each node was used as an independent processor during the
simulation. Each of these 4 million walk blocks took approximately 3 and 6 hours
per node on the 4x4 and 6x6 lattices respectively at 7 = 6.0

5. Results and Discussion

In our simulations we studied the spectrum of single-hole states on 4 x 4 and 6 x 6
lattices. Lanczos results are known for the 4 x 4 lattice, which served as a test case.
For our initial configuration we used a Néel state with a hole at the origin. First, to
confirm that the algorithm gives correct results we generated 4 x 4 energies for the
six independent momenta at small ¢/J values of 0.0,0.025,0.05,0.075 and 0.10. For
importance sampling we used a simple trial wavefunction of the form

[43(S)| = cetHo(S) | (27)

and an optimum parameter value of ¢ & 0.56 was found by minimizing the variance
of weight-factor moduli. (This is slightly larger than the value used in previous static-
hole simulations '.) After some numerical tests we chose to set 7 = 6.0, 7, = 7.0
and h; = 0.025/L? (the Euclidean times and k, are given in units of J=1), and we
generated samples of 2?? random walks for each value of ¢/J. The average weights
< w(r) > and < w(r;) > are in general complex numbers, but as only the overall
time dependence is relevant to the energy we used the modulus of the average weight
| <w(r) > |in Eq. (9). The resulting one-hole band is shown together with Lanczos
results in Table 1 and Figure 1; evidently the results are numerically consistent.

We have added (r,7) to all the momenta before displaying the energies in the
figure and table, to change the definition of momentum to that of references 5 and
20, and will use their convention in our subsequent discussion. The weight phases
described in the text correspond to the momentum conventions of references 24 and
25. Our results are also consistent with the known degeneracy of the (7/2, x/ 2) and
(7,0) multiplets, which is due to a higher symmetry of the 4 x 4 lattice and is not
trivially realized in the Monte Carlo simulation. '

Inspection of the weight-factor variance shows that the energy errors increase by
about a factor of three with each step of A(t/J) = 0.05, given these parameters and
the simple trial wavefunction, Eq. (27). Since the errors decrease as 1 /v Ny, to
maintain the small statistical errors in Table 1 we must increase the sample of walks
by about a factor of 2% for each step of A(#/J) = 0.05. This is illustrated by the
t/J = 0.15 points, which are averages of 2?° walks and in consequence have errors
comparable to the t/J = 0.10 points with N,, = 222. For the final measurements
at t/J = 0.20 we again generated 22° walks, and the anticipated increase in error by
approximately a factor of three relative to t/J = 0.15 is evident. For most levels the
error is still relatively small, £0.005 to £0.012, but for the worst case of k = (0,0) we
find a large error of about +0.05. We emphasize that the rapid growth of statistical
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Figure 1. Lanczos and Monte Carlo resuits
for the S0t /2one-hole band on the 4x4 attice.

errors with t/J is due to the large Euclidean measurement time 7, used in these sim-
ulations. This large 7, is required to remove excited-state contributions from the very
simple trial wavefunction, Eq. (27) used in this initial study. Improved Heisenberg-
model wavefunctions with long-range correlations have been described in the literature
(see for example section IIL.E. of the review by Manousakis 17 and papers by Liang,
Doucot and Anderson 26 and Dagotto and Schrieffer 27), and by incorporating such
an improved wavefunction we anticipate that a much shorter evolution in Euclidean
time will give comparably accurate results. As these will experience fewer hole hops,
and hence smaller rotations of the weight phase, the “minus sign problem” will be
considerably reduced.

On the 4 x 4 lattice, the values of the coefficients {v;} are found from Lanczos

data, and in particular,
vy = 0.2976 , (28)

which indicates the linear-t bandwidth narrowing relative to the free-fermion value,
Zow(4 x 4) = v5/2 = 0.1488. (29)

In figure 2a, we plot the one-hole band up to t/J = 0.5 using the above fitted
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Table 1: Lanczos and Monte Carlo results for the lowest-lying Sys = 1 /2 one-hole

band on the 4 x 4 lattice; we display eh(l-c‘)/J = (Eh(z) — Ey)/J at each independent
momentum versus ¢/J.

0.100

t/J = ] 0.025 0.050 0.075 0.150 0.200

k=(0,0) |2.36331  2.37779  2.39200  2.40593 = 2.43291  2.45864
2.3631(8)  2.3754(19) 2.3958(40) 2.4064(11) 2.4397(109) 2.5291(531)

(7/2,0) |2.35456  2.35765  2.35780  2.35502  2.34077  2.31538
2.3543(6)  2.3566(18) 2.3573(18) 2.3517(49) 2.3102(54) 2.3030(118)

(7,0) 2.34670 234112 2.33189  2.31911  2.28341  2.23529
2.3463(6)  2.3412(15) 2.3300(34) 2.3195(21) 2.2895(31) 2.2436(100)

(7/2,7/2) | 2.34670  2.34112 2331890  2.31911  2.28341  2.23529
2.3468(6)  2.3418(6)  2.3309(14) 2.3214(22) 2.2863(36) 2.2302(62)

(m,7/2) | 233970  2.32804  2.31367  2.29670  2.25540  2.20513
2.3393(4)  2.3296(12) 2.3111(15) 2.2046(29) 2.2590(32) 2.2030(49)

(x,7) 2.33355  2.31829  2.30277  2.28700  2.25472  2.92145
2.3331(7)  2.3187(12) 2.3007(21) 2.2859(50) 2.2576(23) 2.2232(85)

coefficients, and compare to previous Lanczos results in Figure 2b. The qualitative
agreement between the two plots is evident.

To study one-hole band structure on the 6 x 6 lattice, for which no numerical
results previously had been reported, we generated Monte Carlo energies for the 10
independent momentum levels using the same parameters and trial wavefunction as in
the 4 x 4 simulation. We measured energies at t/J = 0.0,0.025, 0.050, 0.075 and 0.10,
with 2% walks at each t/J value. The 6x6 Heisenberg model ground-state energy with
the same Monte Carlo parameters was found to be Ey = —24.4406 % 0.0010, which
Is consistent with our previous Monte Carlo result > and with the recent Lanczos
result of Schulz and Ziman %8, Ey = —24.4394. In the 6 x 6 one-hole systems however
we found somewhat slower convergence of Monte Carlo energies with Euclidean time,
and in the static-hole case we estimate the resulting bias due to running at =, = 6.
to be AE a~ +0.023. We have added this systematic correction to our measured
energies, and the resulting final estimates are shown with statistical errors only in
Figure 3. The complete details of our 6 x 6 results are presented in ref. 6.

The uncertainty in this bias is about £0.005, which is somewhat larger than the
statistical errors of most of the 6 x 6 one-hole energies. Thus, our errors are dominantly
systematic rather than statistical.

To provide a parametrization of the 6 x 6 band and to extrapolate to larger t/J
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Figure 3. Monte Cario resuits for three 6x6 levels and fitted curves for all levels.
(nx,ny) denotes momentum( nx::/ 3, rym/ 3);only (0,0),(1,1)and (2,2)data points are displayed.

we carried out a least-squares fit of the 6 x 6 data to the O(¢?/J) hopping parameter
expansion, Eq. (21). The 4 x 4 (Figure 1) and 6 x 6 (Figure 3) bands are plotted on
the same scale; comparison of these figures clearly shows evidence for band narrowing
on the larger lattice. To avoid confusion in Figure 3 we show Monte Carlo results only
for three representative levels, which in order of increasing energy are (27/3,2r/3),
(m/3,7/3) and (0,0); the latter generally has the largest statistical errors. We also
show the fitted band energies, Eq. (21), for all levels.

From our numerical fits to the perturbative form, Eq. (21), bandwidth renormal-
ization indicates band narrowing:

1, free fermion whooshing around

0.150(5), 4 x4 .
Zy =< 0.061(5), 6x6 ‘ (30)

0.065, 6 x 6 from supersym. arguments

0, static hole

This numerical result clearly supports the conjecture that the linear-t component
of the one-hole bandwidth vanishes in the bulk limit.

We find that the hopping-parameter expansion, Eq. (21), with numerically deter-
mined coefficients gives a qualitatively correct picture of the 4 x 4 band to ¢ /J ~ 0.5.
It may therefore be of interest to present our extrapolated results for the 6 x 6 band
for comparison with future Monte Carlo studies. Our result obtained with the fit-
ted coefficients is shown in Figure 4 for the range 0 < t/J < 0.5. Note that the
(27 /3,7/3) level is expected to be the 6 x 6 ground state at moderate t/J because it
is closest in energy to the (7/2,7/2) minimum of the O(#2/J) terms in Eq. (21).
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Figure 4. 6x6 t-J band structure from extrapolated Monte Carlo data.
(nx,ny) denotes momentum(nxu/S, ny::/3).

As a result of the simple importance sampling, Eq. (27), used here, we cannot
at present resolve band structure at appreciably larger values of ¢/J, but we antici-
pate that this will be possible given an improved trial wavefunction. This has been
demonstrated by Boninsegni and Manousakis 2, who used a trial wavefunction with
long-range correlations in a similar Monte Carlo algorithm and were able to follow
the (7/2,7/2) one-hole level to t/J = 5 on large lattices. The advantage of using a
more accurate spin wavefunction is that convergence to the ground state to a speci-
fied accuracy occurs at a smaller Euclidean time, in which fewer hole hops take place.
In consequence one may carry out Monte Carlo measurements at appreciably larger
values of t/J. In future we plan to extend our Monte Carlo study of band structure
in the t-J model to values relevant to the superconductors through the incorporation
of similar improved importance sampling.
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