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ABSTRACT

Backup shutdown systems proposed for future LMRs may

employ discreet absorber particles to provide the negative

reactivity insertion. When actuated, these systems release

a dense packing of particles from an out-of-core region to

settle into an in-core region. The multiple particle

settling behavior is analyzed by the method of continuity

waves. This method provides predictions of the dynamic

response of the system including the average particle

velocity and volume fraction of particles vs. time.

Although hindered settling problems have been previously

analyzed using continuity wave theory, this application

represents an extension of the theory to conditions of

unrestrained settling. Typical cases are analyzed and

numerical results are calculated based on a semi-empirical

drift-flux model. For 1/4-inch diameter boron-carbide

particles in hot liquid sodium, the unrestrained settling

problem assumes a steady-state solution when the average

volume fraction of particles is 0.295 and the average

particle velocity is 26.0 cm/s.
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I. INTRODUCTION

Defense-in-depth is a principle which is well

established in conventional Light Water Reactor (LWR)

design. This principle requires the designer to provide

redundant an_ diverse means to fulfill each major safety

function. The major safety functions include containment,

heat removal from the core and reactivity control. Backup

systems are designed to fulfill each one of these functions

so that a single malfunction in any system will not place

the plant in an unsafe condition.

The reactivity control function in typical LWRs is

accomplished by complementary systems consisting of

mechanical control rods and boron injection. Thus, in the !

event of an unforeseen design flaw or accident sequence

resulting in the common mode failure of all control rods,

the boron injection system provides a backup method of core

shutdown. Defense-in-depth is hereby achieved when

redundant and diverse means for inserting absorber material

into the core are provided.

In order to apply the same standard of defense-in-

depth to the reactivity control systems of advanced Liquid

Metal Reactor (LMR) designs, a backup method for inserting

absorber materlal into the core must be dev_loped. Direct

injection of boron compounds into liquid metal coolants



does not seem practical due to the difficulty of chemical

separation. Sliwinski I has proposed a system which would

inject discrete boron particles into the core of an LWR.

Although this proposal has not gained acceptance, particle

injection may be a practical alternative for LMRs.
i

Discrete boron carbide particles could be easily separated

by mechanical means.

A variety of different backup shutdown systems have

been proposed for LMRs. Some examples of those which

employ the settling of discrete absorber particles are

reviewed in Section II. The objective of this report is to

determine a method for predicting the settling speed of the

particles in a dense mixture. The settling speed of the

particles is directly related to the negative reactivity

insertion rate which drives the core to a subcritical

condition. Thus, a determination of the settling speed is

essentlal for understanding the dynamic operation of the

shutdown system and for evaluating the core response.

In Section III, we review an analytic solution for the

motion of a single particle which is released from rest in

a quiescent liquid. For an analysis of multiple particle

settllng, we appeal to the semi-empirical drift-flux model

as developed in Section IV. Dynamic conditions are

analyzed by the method of continuity waves. The continuity

wave method and some example calculations using this



methodology are given in Section V. Finally, Section VI

contains a summary of conclusions.

II. BACKGROUND

In order to provide a redundant and diverse means of

shutdown Jn LMR cores, several systems have been suggested.

Our interest is primarily focused on those systems which

utilize discrete absorber particles to provide the

reactivity insertion. In these systems, the absorber

partlcles settle from an out-of-core region to an in-core

region when the system is actuated. Actuation may be

initiated under conditions of low flow, high temperature,

over-power or some combination of these. In any case, the

settling behavior of a dense mixture of discrete particles

in a liquid medium is the physical process which

characterizes the dynamic operation of these systems.

The illustration in Fig. 1 is one concept that the

author has proposed for a backup shutdown system in LMRs. 2

The absorber material consists of boron carbide

microspheres which are maintained in a position above the

core during normal operation. A mechanical flow control

damper at the bottom of the stcrage compartment opens when

the system is actuated. When this damper opens, the

absorber particles fall into the in-core region and a

reactor shutdown results.
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Figure 1: Proposed Backup Shutdown System for LMRs.



The flow control damper is connected to an actuating

cylinder that is normally held shut by the force applied

from the core inlet pressure acting on the bottom of the

actuating piston. The system actuates when flow through

the core drops to a point that the inlet pressure is

insufficient to maintain the damper in the closed position.

When core inlet pressure is restored, the damper closes and

orifices in the cylinder wall are exposed. The flow of

primary coolant through the orificed cylinder wall is just

sufficient to transport the particles upward through the

annular region. The cyclone separator at the top of the

annular duct disengages the particles from the flowstream.

Normal operation is restored when all of the absorber

particles have been transferred from the in-core region to

the out-of-core region. The device is sized so as to

occupy a fuel assembly position in the core grid.

An alternative design, investigated by Specht et. al. 3

of Atomics International utilizes 1/4-inch diameter

tantalum balls for the absorber material. The balls are

maintained in an out-of-core region by the hydraulic drag

force exerted on them by the flow of primary coolant past

them. When the flow rate through the device decreases to

the point that the weight of the particles can no longer be

supported, the balls settle into an in-core region. Thus,

actuation occurs automatically upon failure of the primary



coolant pumps. In addition, a thermally actuated flow

shutoff valve with a curie-point trigger provides inherent

protection for over-power transients.

As a final example, we consider the ultimate shutdown

system of General Electric'8 advanced LMR conceptual

design. 4 The ultimate shutdown system is designed to

shutdown the reactor in the event of control rod failure

after inherent reactivity feedbacks have terminated the

accident transient and brought the core to a safe stable

condition. The actuation sequence is therefore initiated

only by operator action.

The ultimate shutdown system utilizes 1/4-inch

diameter boron carbide balls as the absorber material.

During normal operation, the absorber balls are stored in a

canister mounted on the closure head. When the system is

actuated, a diaphragm at the bottom of the storage canister

is ruptured and the balls fall through a guide tube. The

guide tube extends through the sodium pool and directs the

balls into a catcher assembly at the center position of the

core grid. Normal flow of primary coolant through the

system is minimal so that actuation may occur regardless of

the core inlet pressure. Normal operation is established

only after the center core assembly is removed and

replaced. This operation is performed with the normal fuel

handling equipment.



Backup shutdown systems of the type described above

could complement a system of mechanical control rods by

providing a redundant and diverse shutdown mechanism in

future LMRs. Those systems which actuate automatically on

conditions of low flow, high temperature or over-power

could enhance the operational safety by adding an element

of passive safety to the design. In this type of system,

the insertion of absorber material into the core is

accomplished by the settling of a two-phase mixture of

particles and fluid. In order to gain a perspective on the

physical processes which are significant in multiple

particle settling behavior, we first consider the case of

single particle settling.

III. SINGLE PARTICLE SETTLING

A. An Exact Solution

The equation of motion for a single spherlcal particle

which is released from rest in a large body of stagnant

fluid is: 5

(i)



Here, positive forces are defined in the downward

direction. The symbols are defined asz

v - particle velocity
d - particle diamtor

p. - partlcledenslty

9t " fluld denmity
- fluld viscosity

g " acceleration of gravity

The left-hand side of Eq. (1) represents the force

required eo accelerate the "apparent" mass of the particle.

An "added" mass component, I/2(,/6d3pf) arises because

acceleration of the particle requires acceleration of the

surrounding fluid. The right hand side of Eq. (1) is an

algebraic sum of the forces which act on the particle.

These forces are: a net body force consisting of

gravitational attraction minus buoyancy; a viscous drag

force which is proportional to the particle velocityl and

the "Basset" force which adds a dynamic component to the

viscous drag force, depending on the acceleration history

of the particle. This equation incorporates the Stokes

drag law which arises from the "creeping" flow

approximation. The validity of Eq. (I), is therefore

limited to low values of the particle Reynolds number, when

inertial effects can be neglected. Here, the particle

Reynolds number is based on the diameter of the particle,

hence:

9fdv
Re - -'F- (2)



Equation (I) has a steady-state solution given by:

d's<p,-p,>" ' '

This i8 the terminal velocity of a spherical particle in a

quiescent fluid. Alternatively, Eq. (3) gives the average

upward fluid velocity necessary to maintain the particle
!
J

suspended in a stationary position. _'

B. Extension to Higher Reynolds Numbers

s zq (3.)Following the discussion in Cllft et. al., .

can be extended to higher Reynolds numbers as:

t

"0

This equation is not rigorously valid. The creeping flow

derivation has boon modified by placing dimensionless

coefficients AA and AH in front of the added mass and

Basset history terms, respectively. Equation (4) is thus

empirical in nature and nA & _H must be determined by

correlations of experimental data. The Stokes drag term is

also modified from Eq. (1). For higher Reynolds numbers,

the steady-state drag force is given in terms of a

dimensionless drag coefficient, CD. The drag coefficient

is an empirical function of the Reynolds number and has

been well determined for spherical particles.
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Under steady-state conditions, Eq. (4) reduces to:

_d:s(p.- pe) - _daptCvva (5)

The drag coefficient is therefore proportional to the ratio
!

of net gravitational forces and inertial f_rces:

- _ (6)cO

Here, 7 is a density ratio defined byz

P' (7)
7"_

For boron carbide (B4C) particles in hot liquid eodiua, the

density ratio is:

p, . 2510 k_

.y - _ _ - 2.86 (8)

Many empirical correlations are available for the drag

coefficient. However, at low Reynolds numbers, _k and _H

converge to unity and the drag coefficient converges to

Stokes law:

cD. _. Pt_24_ (m, < 1) (9)

When the drag coefficient in Eq. (6) has been

empirically determined, we see that the general formulation

for the terminal velocity of a spherical particle is:

v_- __ (10)
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Substituting Eq. (9) into Eq. (10), we obtain the terminal

velocity in the Stokes law range of Reynolds numbers, as

shown in Eq. (3). We may therefore think of Eq. (10) as a

generalization of Eq. (3). The particle Reynolds number

baaed on terminal velocity will be designated by:

In order to determine the terminal velocity of a

spherioal partiole, we define a dimensionless Arohimedee

number as:

4dlsPt(Pa- P_)
Ar - CORe; - ...........3, a (12)

Note that the Archimedes number is a function of the fluid

and particle properties only and is independent of

velocity. When the Archimedes number is used to correlate

experimental measurements of the Reynolds number at

terminal velocity, then RaT can be defined as an empirical

function of Ar. Cliff at. el. 5 recommend a plecewlse

continuous function given by the empirical correlations in

Table 1. Calculation of RaT with adjacent correlations

agree within i% at the points of discontinuity. The

terminal velocity can be found from Eq. (11) when Re T is

known.
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Empirical Correlations of Cliff at:. a,l. S for
ReT as a In'unction of At. W - log10 Ar i

i " ....... _ ........... _ ............ _ ...... L_ ,,,_ ,_L_ ............ _................. __*_ ...... i; -

Range Correlation

...................73 " "' ........n.''.............. io-,
Re < a,37 + 6.9252 x 10-7 Ar 3

- 2.3027 x 10 "10 Ar 4

?3 < Ar < 580 lo(/10 He ,, -1,7095 . 1.33438 1#
2.37 < Re< 12.2 - 0,11591 I#2

580 < Ar < 1.55 x 107 log10 Re - -1.81391 + 1.34671 W
12.2 < Re < 6.35 x 103 - 0.12437 W2 + 0.005344 W3

1.55 x 107 < Ar < 5 x 1010 log10 Ha - 5.33283 - 1.21728 W
6.35 x 103 < Re < 3 x 105 + 0.19007 W2 - 0.007005 W3
• ,ill; ii . ilul i1 _11 ...., i ...... ..... ur_/ i1_1 i i[,u_ u ii, u ,ll ; " - -; ............

Just as Eq. (10) is a generalisation of Eq. (3), we

may also _hink of Eq. (4) as a generalisation of Eq. (1).

In order to affect thls genorallsatlon, the parameters ak

and aH have been empirically deteralned by Odar and

Hamilton 6 from measurements of the drag force on a sphere

executing simple harmonic motion in a liquid. When Eq. (4)

In transfor:ed into a dimensionless form, it can be solved

by numerical integration. Zn o_der to implement this

transformation, the independent, variables are expressed in

terms of a dimensionless time r, and a dimensionless
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displacement modulus ND. These variables are defined as

follower

r " g_t_dt
(13)

Cliff st. el. 5 give a graphical representation of the

solution to 2q. (4) In dimensionless torn. We note that

the solution Is s tunotion of the particle density ratio 7,

end the terminal velocity Reynolds nuaber ReT, as well so t

end ND. Using this solution, we san oaloulato the tins t*

end distance s* that are required for a particle of

diameter d to attain gOt of its terminal velocity during

acceleration from rest. The results of this calculation

are tabulated in Table 3 for several different particle

s/sen.

Time t* and distance s* required for a spherical
particle of diameter d and density ratio 7 - 3.84
to attain 90t of Its terminal velocity during
acceleration from rest in a quiescent liquid.

O.1SO O.OSg 1030 36.9 0.08 12.4 0.13 1.86
0.130 0.047 714 33.3 0.13 12.1 0.11 1.46
0.090 0.035 438 lg.0 0.17 11.4 0.09 1.03
0.060 0.024 313 13.9 0.3 10.6 0.07 0.64
0.030 0.012 55.0 7.16 0.86 7.7 0.05 0.23
0.015 0.006 11.7 3.04 2.0 4.4 0.03 0.07
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Equation (S) shows that, for a particle traveling at

its tsrninal velocity, there is an equilibrium of forces In

whloh the hydrodynamic drag force is balanced by the net

weight of the particle in the fluid. Therefore, the

calculations oE Table 2 are estimates of the time and

distance that the particle travels before this force

equilibrium is established.

in a practical shutdown device, the absorber particles

will be required to settle a distance of several meters.

From the results of Table ], we nee that the acceleration

phase of their motion is of relatively short duration and

displacement. Therefore, we can generally assume that a

particle attains its terminal velocity imaediately after

release.

Until now, ve have only considered the motion of a

single spherical particle, settling in an unbounded fluid

medium. Zn a mixture of particles and fluid with finite

boundaries, the equations of motion are more difficult to

derive and solve. The mere presence of additional

particles Increases the effective density and viscosity of

the mixture. The motion of each particle induces motion of

the surrounding fluid and transmits forces between

particles. The net effect of these complicating factors is

to Increase the total drag force experienced by each

particle. Thus, the terminal velocity of a single particle
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places an upper bound on the settling velocity st a

mixture.

IV. TWO-PHASE, TWO-COHPON2NT FLOW

&. Oove_tng Equations

Consider a two-phase, two-component system consisting

st a aixture of identical spherical particles dispersed In

an lncolpresatbie fluid and confined to a vertical duct of

constant cross-section. The average volume traction st

par!:ioles, designated a, will be de£ined as:

Voluneof particlesIn a siven controlvolume.
e - Totai_volmot_he _o_troi vol_e, (la)

We will also define an average void traction or average

volume fraction of fluid aa ,:

, - I - a (15)

When these parameters are associated with a particular

point in space and time, we will understand that the values

are averages for a suitably sized differential volume

element located at that particular point. According to

Rumpf, 7 if a large number of particles are loosely packed

in a duct with a diameter much greater than the particle

diameter, a maximum particle Fraction of a _ 0.58 will

result.



16

For a two-phase mixture which flows parallel to the

axis of a vertical duck, the one-dimensional momentum

equation is:

s[c1- +o,.] ap

Hare, vf and v i are the velocities of the fluid and solid

phases, respectively. These are defined as positive in the

upward direction. Also, ap/am is the pressura gradient and

8o/8z is the shear stress gradient due to friction at the i

wall of the duct. If the diameter of the duct D, is much

larger than the particle diameter d, i.e. D >> d; then

friction at the wall becomes negligible in comparison to

the other forces, i..e. u - O.

In addition to the momentum balance of Eq. (16), the

two-phase mixture must also satisfy separate mass

conssr_'ation relations for each distinct phase. Since no

mass transfer occurs, we obtain the following continuity

equations:

+ _(op,v.)- o (17)

Nots that Ps and pf are the material densities of the solid

and fluid phases, respectively. They are therefore
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constants, and may be taken outside of the differential

operators.

Even with the assumption of a = 0, Eqs. (16), (17) and

(18) are still insufficient to determine the flow. There

are four unknowns, namely: p, Vs, vf, and _. Hence, we

need a fourth equation in order to complete the set. As

discussed by Soo 8, the remaining equation must account for

the nature of the interface between the two phases. In

this particular case, we assume that the particles are

fully dispersed in the fluid with an average volume

fraction of _. Soo's method (see Ref. 8) calls for writing

an inter-phase momentum balance equation which will account

for the exchange of momentum between the phases at their I

mutual boundaries. Instead, we will adopt the approach

taken by Zuber 9 as an alternative to the formalism of Soo's

method. Although this form of the closure relation will

differ from the form obtained by Soo, it can still account

for the fundamental nature of fluid-particle and particle-

particle interactions. In addition, Zuber's approach has

the advantage that the closure relation is easier t3

derive.

In Ref. 9, Zuber builds upon the work of other

investigators to write an equation which describes the

° IImotion of a single "representatlve particle in a two-phase
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mixture of particles and fluid. The equation of motion for

a representative particle is:

x_,3 dr, . _d3p, s ._.a3ap 2a ] dye,.... 1 aJ"d"E-

t.

Note that this equation is similar in form to Eq. (1)

except that the velocity dependent forces are now functions

of Vfs, the relative velocity between the particles and the

fluid.

v_, - v_ - v, (20)

In some literature, vfs is referred to as the slip

velocity. The sign changes between Eq. (I) and Eq. (19)

are a result of reversing the direction of the positive z-

axis. In Eq. (19), positive forces are defined in the

upward direction.

The left-hand side of Eq. (19) is the force required

to accelerate a representative particle. The right-hand

side is an algebraic sum of the forces acting on the

particle. The forces acting on a representative particle

are: a viscous drag force; the particle weight; a force

due to the hydrostatic pressure gradient; a force required

to accelerate the added mass of the particle; and the

Basset force which adds a dynamic component to the viscous
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drag force. Since the viscous drag force is described by
!

the Stokes drag law, Eq. (19) is rigorously valid only in

the creeping flow approximation when inertial effects are

negligible, i.e. Re T < 1. Also note that in Eq. (19), the

viscous drag force is proportional to _eff, the effective

viscosity of the two-phase mixture. The effective

viscosity appears under the radical in the Basset history

term as well. Finally, the added mass term in Eq. (19)

includes a correction factor to account for the particle

concentration in the mixture. Additional details of the

derivation can be found in Ref. 9.

Earlier, it was asserted that the derivation of Eq.

(19) is equivalent to Soo's procedure for obtaining a

closure relation, in that the fundamental nature of fluid-

particle and particle-particle interactions can be

accounted for. We note that the particle concentration is

explicitly accounted for in the added mass term. In

addition, particle concentration effects can enter Eq. (19)

through the, as yet unspecified, pressure gradient. Also,

fluid-particle interactions which are velocity dependent

appear as functions of the relative velocity. Finally,

particle concentration as well as collision effects are

implicitly included by use of the effective viscosity of

the mixture.
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When the effective viscosity is specified, Eq. (19)

together with Eqs. (16), (17) and (18) form a complete set.

In principle at least, these four equations can be solved

to fully determine the functions: p(z,t); vs(z,t) ;

vf(z,t)_ and a(z,t). In making this statement, we have

again assumed that o - 0 in Eq. (16).

B. Effective Viscosity

A number of investigators have studied the effective

viscosity of two-phase mixtures which consist of solid

particles suspended in a fluid medium. It is well known

that the effective viscosity of the mixture is greater than

the viscosity of the fluid without the presence of the

particles. The earliest result was derived by Einstein 10

from theoretical considerations. Einstein distinguished

three types of motion which a fluid element can experience.

These motions are translation, rotation and dilation. A

rigid particle, embeded in the fluid element does not

affect the translational or rotational motion of the

element. The effect on viscosity is a result of the

inability of the rigid particle to experience dilational

motion in the same manner as does the continuous fluid

phase. In Ref. 9, Zuber offers this explanation:

The effect of the presence of particles
arises because of the inability of the particle

i
I
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to take part in the deformation of the flow
field induced by the motion of a single particle.
Since at the boundary of each solid particle the
velocity of the fluid is zero, each particle
contributes to the distortion of the field and

thereby influences the motion, of the repre-
sentative particle. This influence, i.e. resis-
tance to motion, appears to the representative
particle as a change in the viscosity which
becomes a function of the concentration.

Einstein's result for the effective viscosity of a

mixture is z

P.zz" p (i + 2.5a) (21)

Here, p is the viscosity of the pure liquid and the

constant 2.5 is a shape factor which is valid only for

rigid spheres. Because this result is based on the

assumption of non-interacting particles, it is restricted

to low particle concentrations, i.e. a < 0.05.

After Einstein's analysis of effective vis _:Lty,

several investigators have attempted to extend the theory

to high particle concentrations. In addition to the shape

factor for spherical particles, Mooney's 11 theor °,

introduces a self-crowding factor. His result is:

(22)

The value of the self-crowding factor is predicted to be in

the range of 1.35 < k < 1.91. The best value is to be

empirically determined.
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Vand 12 developed a theory of effective viscosity for

dense particle concentrations by explicitly accounting for

two-particle collisions. Vand's result is:

The significance of the constants and their theoretical

values are:

- 2.5 shape factor
- 3.175 collision factor

r - 4 collision tlme constant

Q -_ hydrodynamic interaction constant

The theory was experimentally tested by rand. 13 He found

that empirically determined values of the constants agreed

with the theoretical values within an experimental margin

of error.

Brinkman 14 also developed a theory of effective

viscosity for dense particle concentrations by considering

the flow field around a spherical particle embedded in a

porous mass. He found that:

Since the theory models the particles as a porous mass, it

does not account for their mobility. The permeability of

the porous mass is obviously related to the void fraction.

However, failure to consider the relative motions of the

particles which constitute the porous mass probably limits
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the validity of Brin_nan's result. This consideration may

also be responsible for the unique form of Eq. (24).

Many empirical determinations have also appeared to

predict the ef£e_Ive viscosity. These methods yield

little insight into the physical processes which a£_ect

viscosity and the results are not generally applicable to
f
i mixtures other than those considered in the derivation.

Consequently, the results may appear quite different. !

Carman's 15 result is based on flow through packings of sand

and powders. He found that:

(25)

Steinour 16 studied sedimentation of tapioca particles in

oil and glass particles in water. His result is:

#.tt " # exp(4,19o) (26)

Oliver's 17 result, which is based on the data of Steinour

and others, is:

(l - a)a
_." " # (1 - O'"'Tba°i::f)'ii-:'_2-'lS'a) (27)

The empirical results have obvious limitations.

However, the theoretical models for effective viscosity are

also of limited value. They are not generally valid in the

turbulent regime because the derivations are based on

viscous flow and neglect inertial effects. We do know that
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there is a functional dependence on the particle fraction

which can be expressed by the following relation:

. _ (28)

in the su_eeqNont discussion, Zq. (28) will be used to

define the effective visoosity. The specific ton of the

function f(a) can be found from the most appropriate model

for the effective viscosity.

C. Steady-State Solution

With the effective viscosity given by Eq. (20), we are

in a position to meek a solution to the governing equations

found earlier. Assume first, that the ratio of particle

diameter de to the diameter of the duct D, is small. With

this assumption, we let o - 0 in Eq. (16). Equations (16),

(17), (18) and (lS) nov have a deter=inistic solution. We

will first consider steady-state solutions.

For steady-state, Eq. (16) reduces to the hydrostatic

pressure gradient of the mixture:

dp
_- -,((1 - ,),, + o,.] (29)

Here, we see that the hydrostatic pressure gradient is

simply the product of the effective density of the mixture

and the constant of gravitational acceleration. The

negative sign indicates that the pressure gradient is

directed downward.
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The 8o/at tern san be eliminated from Eqs. (17) and

(18) to obtaint

_1(1. ,)v,+ av.l.O (30)

Integration st Zq. (30), results int

(_. a)vf + my, -j (31)

Here, mju L8 the aonetant of integration. We ego _ron Iq.

(31) that :J ann be interpreted as the volumetric average

veioaity. _lternatLvoly, j ann a18o be interpreted an the

net volunetrio _lux.

P/nallye for steady-states Eq. (19) reduces to8

When the right-hand alden st Eqs. (28) and (29) are

oub|titutod into Eq. (32), we obtain:

o),,.o,.1

vt, - _(1 - a)f(a) (33)

In view o5 Eq. (3), ws may re-write Eq. (33) amt

Yr. - vt (1 • a)_(a) (34)

?hers_ore, in laminar flow, ths not volumstric _lux is

given by Eq. (31) and the relative velocity is given by Eq.

(34). We will now extend theme results to higher Rmynold8

number flows.
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D. Zxtension to Higher Reynolds Numbers

In the transition region between laminar and turbulent

21owt viscous sftsots become ieas significant for

increasing Reynolds numbers and inertial effects become

dominant. According to Stokes lawt the drag force on s

spherical partials is only due to skin friction. Howavere

skin friction becomes negligible in turbulent flow where

form drag predominates. Form drag develops as • result of

the pressure different!s1 across the particle. In a two-

phase mixture of particles and fluid, we expect the

effective drag force e_erienced by each Individual

partlcle to behave in this same characteristic manner.

That is, viscous effects become less significant ms the

Reynolds number of the partlcle increases. Joseph eC.

al. 18 have shown that in the turbulent reqlne, interactions

between particles are dominated by inertial effects. We

are therefore lad to express the effective drag force which

acts on a representatlva particle in terms of an effective

drag coefficient, CDeff. By introducing this modification

Into Eq. (19)e we obtain:

: dv
" " " " _J-dl-

{t_e, do' (35)
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Nots that lq. (3S) includes th, empirical constants A& and

aH vhich were intr_uced An [q. (4). These constants

modify the sdded _ass and Basset history terms to corteot

for the e£fects at turbulence.

When CDetf to speoitted, then the governing equations

tot the flow of the rye-phase nixture, inoludinq lnez"cial

efSects, are Bq. (35) twether vith [qs. (16), (17) and

(18). 1(o vt11 assune that the ettsotive draq coefficient

5or a ut_uro o5 particles can be o_rsssad as the pz'oduot

o5 the drag coefficient 5or a single particle and an

unknovn ooncentration factor. In equation term, this

assunption can be stated as:

36)

As we have already seen, Eq. (16) reduces to the

hydrostatic pressure gradient at the _ixture at steady-

state, _.e. Eq. (ag). Also, Eqs. (17) and (18) combine to

yield Eq. (31). The steady-state fo_ at Eq. (35) is:

[ ",];daPtCDottvt.a ,. _d: poE + _ (37)

How, by substituting the right-hand sides cf Eqs. (ag) and

(36) into Eq. (37), we obtain:

_d:,, S_ v,,- _,3S(,.. (1. ,),,- "'.l

• I_ ,J(_._),(o_ (38)_tlJ an
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With the qeneral torn of the particle teruin81 velocity

defined by |q. (10), we may express the relative velocLty

in |q. (38) all

vf, - v_ _(l ,--a)S(a_' (39)

We vLXX thLnk ot |q. (3m) ms m generaXLmstLon ot [q. (34)

to the turbulent tlov regime. However0 the tunctLon g(a)

nust be speoiEiod Lt thLs Eoruulation :Ls to have any

praatLaal value.

rron the enalysLs of a verLety ot experimental dataw

R/ohaz_lson and |8kL 19 have found that the rolatLvo voloo/ty

ann be soourately predLoted by the tollovLnq equatLons

v, - v_ (1 - o)"'l (40)

Xn thLl equitLonp the exponent "n" is 8 function ot the

terlLnal velooLty Reynolds number and the rstLo o! the

paz_Lale dLeneter to the duct dLaneter.

,- n(h,._) (41)

The eapirio81 correlations tot n are given in Table 3. The

ratio d/D provides 8 correction _or triation at the w811 ot

the duct. Note that this aorreotion becomes negligible tot

even moderately turbulent flows, _.e. RoT > gO0. We also

see that n is 8 tunotLon ot ReT only in the transit/on

regLon, O.a < Re? < 500. ?hLs result Lo oonsLstent wLth

the dinensLonal unalyaJLs ot RLahardson and ZakL 19 whLoh
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predicts that the ratio v fa/v t should be independent of ReT

whenever either viscous or inkrt;tal effects can be ignored.

tnpiriosl Correlations of Richardson and Zakt. 19
:.... ..................... tit tit t it : : _T II I: II m,ill ,11"':_".............. --_" .....

Re,l,, n
......... _ " - : ........ i[i i iiii ii: i: i :__::: ::: ::__ iiii {ii : iiii ] IlL :i IL i]i : .....

ReT < 0.3 4.65 + 19.5(d/D)

0.3 < ReT < 1 14.35 + 17.5(d/D)IReT "0'03

1 < Re? < 300 14.4S + 18(d/O))RsT "0"1

300 < RoT < 500 4.45 RaT"0"1

ReT > 500 2.39
....... . ............. .... , ,r._!m,,, ,,,, ,, ,, ,,.,_r11.,,,,i,,_, I .... I

The empirical correlations of Richardson and Zaki vere

later verified for the lowest ranges of Reynolds numbers by

the experimental data of Richardson and Meikle. 30 Zn their

own experinents, Oarside and A1-Dlbouni 31 obtained a result

similar to that of Richardson and Zski, but they found that

the bait value of the exponent n was predicted by the

relieving correlation:

5.09 + 0,284 RoT°'e"
n - ....t +o,04 RaT (42)

In this result, we see that n approaches 5.09 for small

Reynolds numbers and 3.73 for large Reynolds nun_ers,

These values are somewhat higher than Chose predicted by

Richardson and Zaki_s correlation. This difference may be
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partially accounted for by the lack of an explicit

correction factor for wall friction. Similar results have

aZeo been obtained by Maude and Whitmore. 22 They obtained

a graphioaZ representation of n as a function of Re T, but

no equations are provided. Again, no wall correction

factor is given, but their graph indicates that n - 4.65

for ReT < 0.1 and n m 2.39 for RoT > 3000. Finally,
J

kndereaon 23 derived a semi-empirical equation for vfs/v t

which is an extremely complicated function of a. Equation

(40) provides a form which is much more convenient to use.

The correlations of some additional investigators are

tabulated in Ref. 24.

By comparing Eqs. (39) and (40), we find that:

8(a)- (I - a):"'3 (43)

Introducing this result into Eq. (36), we obtain the

effective drag coefficient which is experienced by a

representative particle in a two-phase mixture of particles

and fluid.

_,. - CD (I - a)3"_ (44)

In Eq. (44), CD is the drag coefficient for a single

particle in a pure fluid. Also, by comparison of Eqs. (34)

and (39), We find that:
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After substitution of Eq. (43) into the above, we obtain=

f(a) - (I - a)n-2 (46)

Therefore, for small Reynolds numbers, the correlations of

Richardson and Zaki give the following expression for the

effective viscosity:

#._- # (i - =) "c2'65+16'_ (47)

Note that these results are obtained from a steady-state

analysis. The time-dependent solution will be considered

next.

E. Time-Dependent Solution

We have obtained a set of governing equations for a

two-phase mixture flowing through a vertical duct. This

set consists of Eqs. (16), (17), (18) and (35). Equation

(35) incorporates empirical factors which correct for

inertial effects. These equations are therefore valid for

both laminar and turbulent flow regimes. In the following

discussion, we will attempt to find a time-dependent

solution.

We begin with Eq. (16). When a = O, we obtain the

following expression for the pressure gradient:

Op ._)p_[ vavt] =az]
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From Eqs. (17) and (18), we have already obtained Eq. (31)

for the volumetric average velocity. We arbitrarily choose

to eliminate vf in favor of v s in the remaining equations.

From Eq. (31) we find:

Vf J " OfVa" -1 ,= (49)

In order to provide some simplification in the

remaining analysis, we will drop the added mass and Basset

history terms from Eq. (35). With this simplification, we

re-write Eq. (35) as"

or, 8v,1 3p= opp, -_ +v,_j .-_ %.. v,=. p,g . _'i <so>

Now, substituting in the pressure gradient from Eq. (48) :

Pl "_t" + V,--_] - CD.,f V=2 " pag + (1 " ca)Of "-_ + Vf-_J

lay. av.] g[(1 o,),_+ ] (SZ)+ ap, "FE"+ v.'T/"j + " o,p,

Dividing this expression by pf and rearranging we get:

lay. Ov.] [Ov_ Oval(1 - a)._ "-6T+ v,-6[ " _ co,- VsZ+ (1 - a) -6F + vf.-/£.

- g(l -a)(7 - I) (52)



33

Finally, we substitute in the right-hand side of Eq. (49)

to eliminate vf and simplify the result.

_ %.,,<v.,.2iv.>-_ %.,,j'-s<_-o>_<_-_> <53>

We also have, from Eq. (17):

Equations (53) and (54) are two coupled Partial

Differential Equations (PDEs) which are satisfied by the

functions v s(z,t) and a(z,t). However, the solutions cannot

be obtained by exact analytical methods. Some further

simplification may be obtained if physical constraints are

considered. For instance, we could specify j - 0 for a

closed system of sedimenting particles. This constraint

results from the observation that a fixed volume of

settling particles displaces an equal volume of fluid at

every point in the flow. Even with this simplification, a

solution cannot be obtained analytically. The complexity

of Eq. (53) would only increase if the added mass and

Basset history terms from Eq. (35) were included.

Our efforts to find an explicit solution in the form

v s = v s(z,t) and a = a(z,t), have so far been frustrated.
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However, further consideration of the continuity equation

and its consequences will provide a method for predicting

the dynamic behavior of a general two-phase system. This

discussion will be taken up in Section V. First, it will

be oonvienient to express the steady-state solution in

terms of the drift-flux model.

F. The Drift-flux Model

In Section IV.C, we found that for two-phase flow, the
i

relative veloaity between the phases is given by Eq. (39).

Substituting Eq. (43) into Eq. (39), we obtain:

v_, - v_ (I - a)"'I (55)

This result was obtained empirically by Richardson and

Zaki. 19 Recall that n is an empirical function of Re T and

d/D, (see Table 3). Note that Re T and d/D are independent

of the flow. Since v t is also a unique function of Re T, we

may regard Re T and d/D as parameters. Therefore the

functional relationship expressed by Eq. (55) may be

written as:

vf, - F(ReT._',=) (56)

In other words, the relative velocity depends on the

particle fraction only, without regard to the direction of

the flow or the direction in which either component is

flowing. Lapidus and Elgin 25 were the first to recognize
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the significance of this result. They showed, on the basis

of a theoretical argument that: "The particle knows the

movement of only the fluid and not the walls and does not

know whether it is moving relative to the latter or not."

The relative velocity may therefore be considered as an

invariant parameter of the flow. The relationship of Eq.

(55) may be obtained from the results of either

sedimentation or fluidization experiments. Also,

fluidization experiments may involve either co-current or

counter-current flow. Lapidus, Elgin and their co-workers

have verified this relationship for particle-fluid systems

and for gas-liquid systems, (see Refs. 22, 26, 27 and 28).

In a general two-phase flow system, the volumetric

flux of each component is the volume of that component

which flows across a unit cross-sectional area, per unit

time. The component volumetric fluxes have the same units

as velocity and are related to the component velocities as

follows:

| m _V|

(57)
J_- (i - _)v_

In some literature, the component volumetric fluxes are

referred to as superficial velocities. The net volumetric

flux is the sum of the component fluxes.

+ j m aV, + (i - _)vt (58)J - J. ,
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The net volumetric flux is the same as the volumetric

average velocity as described in the discussion following

Eq. (31). The net volumetric flux is also a constant of

the flow for a general two-phase system in which

incompressibility of the components is assumed. This fact

follows directly from continuity considerations. We have

already soon, that for sedlmenting particles in a closed

system, the net volumetric flux is identically zero at

every point in the flow. In a constant-flow fluidized

system, the net volumetric flux is fixed by the volumetric

flow rate of the fluid. Again, j is constant at every

point in the flow.

We now want to describe the relative motion between

the phases in terms of the drift-flux model. The drift-

flux is defined as the volumetric flux of a component

relative to a surface which is moving at the volumetric

average velocity. The drift-flux of the particle phase is

given by:

- a(J + jr) - (l - a)J - aJ (59)J.,- - j)- J. . . t

Note that the drift-flux of the fluid phase is the same

magnitude of, but in the opposite direction to the particle

drift-flux.

Jr, "aJ_" (l - a)j, - "J,t (60)
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In order to obtain a relationship between the drift-

fluxes and the relative velocity, we substitute the

definitions of the component fluxes given by Eq. (57) into

(e0).

Jr," a(1 - a)v t - (1 - a)uv, - a(1 . a)v. (61)

in view ot Eq. (55), the drift-flux can be expressed ass

Jr, " "J,t" =(1 . a)" vt (62)

Here, we see that the drift-flux is another invariant

parameter for a general two-phase system.

E_dation (62) will be regarded as the semi-empirical

drift-flux model. This model can be used to describe the

Interaction between the particle and fluid phases in a

general two-phase flow system. Figure 2 illustrates a

typical graph of the form obtained from this model. The

graph of drift-flux vs. particle traction represents the

locus of all points of hydrodynamic equilibrium between the

particle phase and the fluid phase. The drift-flux is

maximal when the derivative of Eq. (62) vanishes. This

occurs at a particle fraction of:

a - 1 (63)

We see that the drift-flux attains a maximum value of:

w nn

<j,.>..<.+
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j,o-a (1-a)'V.

, n N

I i
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n+l

Porticie Froction,at

Figure 2: A _ioal Curve of Drlft-flux
vs. Particle Fraction.

Waills29 has shown that the 8emi-emplrloal drift-flux

model Just described can be used to predict the dynamic

behavior of a two-phase, two-component system under

conditions of hindered settling. His analysis is based on

the concept of continuity waves. In Section V, we will see

that continuity waves arise as a consequence of the

continuity equation.
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V. COh_ZNUZTY WAVE KtFFHOD

A. General

The theory of continuity waves was first developed by

Xynoh. 30 He used this theory to predict the settling rats

of particles during batch sedimentation under idealised

conditions. The idealized conditions assume that the

particle concentration Is constant across any horizontal

cross-section. Additional assumptions include identical

particles of spherical shape which are largo enough to

prevent any tendency to tloculate. Shear stress at the

vertical walls is also neglected. Batch sedimentation

describes the settling behavior of an initially homogeneous

mixture of particles, suspended in a fluid medium. The

mixture is confined to a vessel oF Fixed volume and over

time, the particles accumulate at the bottom oF the vessel

leaving a region of clear Fluid above. This process is

also referred to as hindered settling in some literature.

Experimental investigations have shown that three

different settling modes are possible under conditions of

hindered settling. The mode which will actually occur For

a given system is dependent on the properties oF the

particles and the fluid. Kynch was able to use the theory

of continuity waves to explain this phenomena. In Refs.

S1, 32 and 33, Shannon, Tory and their co-workers have used

the continuity wave method to analyze their experimental
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results with good muooess. &ddttional details which

di|tinguish the three nodes of hindered |ettling are

provided by WaXIie An Ret. 29.

In this report, the application o! continuity wave

theory 18 extended to condition8 st unrestrained settling.

Unrestrained mettling describe8 an initially homogeneous

mixture of par_ioles and fluid, below which there is a

region st clear fluid. As the particles settle through the

clear fluid, continuity wave theory predict8 that a stable

configuration of constant average velocity end constant

particle traction wiZl be established. Figure 3

illustrates a simplified phymiaal model of the unrestrained

settling problem.

B. Continuity Wave Velocity

Continuity waves are beat described as the propagation

of continuous value8 of the particle fraction through a

two-phase mixture. Propagation of the particle fraction in

waves arises as a direct consequence of continuity

requirements. Xn some literature, continuity waves are

referred to as klnematic waves.

Consider the continuity equation for the particle

phase, _.e. Eq. (17), expressed as:

_j_+ _z(_,,) - 0 (65)
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Figure 3s A Bimpllfio4 PhyJical Modal
ot the Unrestratnod Settlinq prot)lom.

Umlnq the dotinition of the particle flux qiven in Zq.

(57)+ we nay ro-vr:Lto Eq. (65) 88t

_+ _J -0 (66)

By assuning a condition ot hydrodynamic oquXlibrXu= botwoon

the ptrtiolo phamo and the fluid phaoo, we may use tho

re|ultt of the steady-state analysis :LnSection IV to t.Lnd

I illII
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an expresston tar the ps_tcle tlux. Zn vtev at |q. (61)),

obtiLn !

J. - aj + J., (67)

II_ltLtutLng _I i_tlllLOn tar the partLoii drLft-fl_

trU |q. (el) LhtO llq. (aT), results /ni

J,. aj • Q(t • a) %, (6e)

Xarep va see that the psx%iole flux Ls a funotion ot _a

partLale traotLon only. _Ls obsa_atLon via a cruoLal

aaaunptLon Ln _oh,s developer of Ir_eoontLnuLty vlva

theoL-/.30 |quatLon (611)above that the vJlLdLty of thLs

ain,t/on ash be attr/butad to the Laver/inca of the

V, 'qttl'LO average veloaLty and the L'elit/ve veloaLty

):)at.roan phaees. He have establLshed the LnverLanoe of :_

and via wLth respect to the flay Ln BeotLon ZV. He are

therefore :)ustLtLad Ln expressLng the contLflu/ty ralatLon

at Igq. (66) nat

_+_(j.) _-0 (69)

8Lnoa ve )_novthat the partLoli flux LI Lndepandant o5

Oiler and Oa/as, [q. (69) La a t/rat-order hyperbolLo PD| at

the tollovLng total

p.. 0 (,0)



43

We toe.nine tnuwdiately that Vw in Zq. (70) in the

velooity at whioh the dependent veriab!e propeqates in the

|-direotion. By oonperl|on of Zq|, (69) nnd (70), we Bee

thlt _jtii oont_nutty t/lye veloolty ll given by:

. _J, (71)v.

Substituting the psrtloie flux from the right-hand aide of

|q. (67), ve obtatn:

- j + _j,, (72)%

Time dependent problems involving pez"cicle motion ere

often _ormulstod in terms ot • diffusion process. When

there ewe no eouroe or sink te_e, the diffusion equation

oen be vritten in the follovinq general form:

_ . v.6Vn- 0 (7))

Hero, we define!

n - nuaber denoLty of partLcLee, a/cur
6 - partLcle dLffuaLvLty, cmS/e

- nubstantLal or materLal derLvatLve

l(ultiplying Ecl. (73) by the volume of a single partiole, ve

obtain:

. v6va - 0 (74)

Zn • one-dimensions1 Iagrsngian ooordinste system vhioh

morea st the volumetrio average velooity _, Eq. (74)

transfers to:
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By eubstltutlng the oontlnulty wave veloolty from Zq.

(72) into Zq. (70), we find theft

P_+.'H',+_<.',,>P,.o <,+)

lquatlon (76) san be re-wrltten in a form whloh is similar

to Eq. (75), namelyz

H+.'P,+k,.,- o <"_

In comparlnq this form with that of mq. (75), we obtain the

followlng relatlonshlp between the partlole drltt-tlux, the

diSfuslvlty and the gradlent o5 the particle fraotlonl

J,t" " 6 _ (78)

We reocwnize the familiar form of Eq. (?e) as Fic]¢'s law.

The diftumtvlty could be determined from empirical

measurements st the particle drift-flux and the gradient ot

the particle traction.

When the ditSusivity depends on the particle traction,

we see that gq. (75) is a second-order non-linear PDE.

Although Eq. (76) is also non-linear, it is only a first-

order PDE. It appears that a formulation in terms of

particle diffusion provides no particular advantage since

Eq. (76) is easier to solve than Eq. (75). This point is
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also discussed by Zuber and Staub in Ref. 34. Equation

(76) is of the same form as Eq. (70) where the continuity

wave velocity is given by Eq. (72). When the particle

drift-flux for any condition of hydrodynamic equilibrium is

determined by empirical methods, the continuity wave

velocity is known and Eq. (70) will allow prediction of the

transient response.

C. Application to Unrestrained Settling

Unrestrained settling is defined as a homogeneous

mixture of particles and fluid with a layer of clear fluid

below. The particles are released from rest and settle

through the region of clear fluid. Eventually, the

particles attain a constant average velocity and a uniform

particle fraction. Changes from the initial condition

occur as a result of continuity waves which propagate

throuch the mixture. When the hindered settling solution

described by Wallis 29 is appended to the solution for

unrestrained settling, the final motion of the particles is

known and the solution is complete.

Consider the simplified model of unrestrained settling

which is illustrated in Fig. 3. The particles are confined

to a vertical duct of uniform cross-section. We will

assume a value of 0.58 for the initial particle fraction.

As the particles settle, a continuous state of hydrodynamic
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equilibrium is maintained between the particle phase and

the fluid phase. This hydrodynamic equilibrium is

described by the semi-empirical drift-flux model of Eq.

(62). Since the settling particles displace a volume of

fluid which is equal to their own volume at each point in

the flow, the net volumetric flux is zero. The continuity

wave velocity from Eq. (72) therefore simplifies to:

8
- . (79)

At a point of finite discontinuity in the particle

fraction, an interface is clearly visible between two

regions of different particle fractions. The movement of

this interface is described as propagation of a shock wave.

If the particle fraction in the upper region is designated

aA and the particle fraction in the lower region is

designated aB, then the shock wave velocity in the downward

direction is given by:

(J )^" (J )
V,_ - _" _,B (80)

aA " _B

In comparing Eqs. (79) and (80) to the graph of drift-

flux vs. particle fraction (Fig. 2), we see that the

continuity wave velocity is represented by the slope of a

tangent line while the shock wave velocity is represented

by the slope of a chord joining two points on the graph.

At the point of maximum drift-flux, the slope of the
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tangent llne Is zero and the continuity wave velocity

vanishes. We will find that this point represents a stable

condition of hydrodynamic equilibrium in which the average

relative velocity between particles and fluid is maximized

during unrestrained settling.

jf_ = a(1 -a) n v,_

_""_'- I_ VWA> VsAB

Jfa

0 O_ aB aA

Figure 4: Drift-flux Curve Showing the Initial Settling
Behavior. Note that the continuity wave velocity in region
A exceeds the shock wave velocity between regions A and B.
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After the particles in Fig. 3 are released from rest,

they immediately begin to settle with a velocity given by

the slope of the chord connecting aA, (Jfs)A and a - O,

J fs " O, (see Fig. 4). Thus aA propagates downward with

shock wave velocity VsAI

V,^- (J_*)A" 0a,^-O ....- (i - a^)" v_ (81)

However, particles at the bottom will begin to settle

faster because they are not restrained by particles below

them. A region of lower particle fraction will therefore

begin to form. Suppose that the particle fraction in this

region is designated aB where aB < aA. The shock wave for

region B causes aB to propagate downward with velocity VsBS

V,m . (J_,)B" 0 )"
as - 0 - (i - an v_ > V,^ (82)

Regions A and B are now separated by an interface at which

aA changes abruptly to aB. This interface propagates

downward with a velocity given by the slope of the chord

Joining aA, (Jfs)A and aB, (Jfs)m.

Recall that the continuity wave velocity in the

downward direction is given by the slope of a line tangent

to the curve of J fs. Since Jfs is decreasing between sB

and aA, the slope of the tangent line is negative and all
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continuity waves in this region will propagate upward.

Assume that the drift-flux curve is concave downward at all

points, as shown in Fig. 4. In this case, at least some of

the continuity waves will propagate faster than the shock

wave VsA B, represented by the interface between regions A

and B. Shock wave VsA B will therefore be reinforced

resulting in a stable interface.

The argument in the preceding paragraph can be

repeated until the drift-flux reaches its maximum value.

When the drift-flux is maximized, there is maximum relative

velocity between the particle phase and the fluid phase.

The kinetic energy of the system is thus maximized while

the potential energy decreases at a maximum rate. The

maximum point on the Jfs curve occurs when the continuity

wave velocity vanishes and represents a stable condition of

hydrodynamic equilibrium. The particle fraction required

to maximize the drift-flux is given by Eq. (63). The

maximum drift-flux is given by Eq. (64). When these values

are substituted into Eq. (82), we find that the maximum

shock wave velocity in the downward direction is:

(v,_)m,- [ n";"[] v_ (84)
n

n

After the shock wave VsA B has propagated through the entire

two-phase mixture, the average settling velocity of the

particles will be given by Eq. (84) and the average
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partlcle fraction of the homogeneousmixture will be given

by Eq. (63).

If the cylindrical duct in the idealized settling

problem of Fig. 3 is terminated in a solid bottom plate,

the particles can be assumed to come to rest in inelastic

collisions at the bottom. The final motion of the

particles is described by the hindered settling problem

analyzed by Wa11Is. 29 The final particle fraction is =A

and the final drift-flux is zero. The shock wave between

_A and aB propagates downward with velocity VsB A, given by:

o l°. - ...... ¢85)
.

The solution described by these results is easy to

visualize by a plot in the z-t plane. This plot represents

a time history of the particle fraction vs. height. Figure

5 illustrates this solution for the case of a drift-flux

curve which is concave downward at all points, some

typical numerical results are given in Table 4 for the case

of boron-carbide particles in hot liquid sodium.
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jr== =(1-=)nv=; n<2.45
B

Iv,=

_ FLUID _

FLUI
', _ ; .;

0t --- _._
- r

o tl t t2 t] to tl t2 t3

Figure 5: A Time History of Multiple Particle
Settling Behavior. Note the laok of an
inflection point in the drift-flux curve.
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When an inflection point occurs in the drift-flux

curve, the solution is more complicated. An inflection

point occur| when the second derivative of Eq. (62)

vanishes. When the particle fraction at the point of

inflection is less than the maximum particle fraction, the

drift-flux curve will be concave upward to the left of aA

in Fig. 4. This condition is only possible when the

exponent n in the drift-flux model is greater than some

limiting value, computed as _ollows:

n+-_ < 0.58

n> 2- 0,_8. 2 45 (86)0.58

If the continuity wave velocity at aAie less than the

shook wave velocity between aA and =B, a direct shock to a B

is not possible. In this case, the time history of

particle fraction vs. height is illustrated in Fig. 6.

This figure shows that when the operating point in region B

has moved far enough to the left, a shock wave will for=

between o B and a C. Region B represents a gradually

decreasing particle fraction from aA to some lower limit

where the shock wave to region C forme. Table 5 gives some

typical numerical results for boron-carbide particles in

hot liquid sodium which correspond to Fig. 6. Note that

region B only forms when the continuity wave velocity at eA

prevents the immediate formation of a shock wave.
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Figure 8: A Time Hiator7 ot Multiple Partiole
Settling when _he Initial 8ettZing Velocity
ix Limited by the Continuity Wave Velocity.
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A thtrd cospltcatLon may artse vhsn the drttt-tlux

curve ts extrenoly ccnoave. ThLs sLtuatLon Ls Lllustratod

Ln rLg. 7. In thLs tLtPJre, dLreot shock batvoen oC and the

fuZly packed state Lo not poseLble. As s result, regLcn i

retorus durLng the tLnal sUges st aettlLng. ThLs

sLtustton ts the soot oouplox process that can occur. The

three cases oonsLdsrod here are analogous to the three

nodes ct hLndered settlL_ dseorLbod by WIIILo. 29

Jr," a(l-a)nv- ' n>2,4S

C
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VZ. CONCUJBXON8

We have seen that the velocity of a sinqle particie in

s quiescent liquid of infinite extent can be datelined W

solvi_ an equation which considers the net sum o5 the

fo_=es acting on the pa_iole. The 8slutiSh indicates that

the petiole accelerates to got o5 its to.Anal velocity

over a distance o5 about ten particle diameters. When the

total distance of travel Is much greater than ten panicle

diameters, the acceleration phase of the motion may be

considered insigniSicant. When the particle is moving at

its te_insl velocitye it is in a condition st hydrodynamic

equilibriua in which the weight o5 the particZe in the

liquid is _ust balanced by the drag torte experienced by

the parbtole.

We have also seen that when a mixture of particles and

liquid is confined to a vertical duct ot finite diameter,

the particles attain a steady-state velocity which As lose

than the terminal velocity of a singZe partlcle. Each

particle in the mixture experiences an increased drag torte

because the effective density and viscosity of the mixture

ate greater than those of the pure liquid. Conservation o5

momentum tot the mixture and conservation of mass for each

cnponent are found to be insufficient conditions to

determine the flow of a two-phase mixture. However, a

closure relation can be obtained by writing a force balance
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for a representative particle in the mixture. In this

force balance, the transport properties are modified to

account for both the presence of additional particles as

weli as their motion. This modification introduces the

effective viscosity and an attsctlve drag coefficient.

Men the n_l£fied transport properties are known, then the

system of four differential equations has a deter=Inistic

solution.

Fron the steady-state solution for two-phase flow of a

particle-fluid system, we found that the average relative

velocity between the phases is an Invarlant parameter of

the flow. This means that the relative velocity is

independent of the average velocity of either componentz

an effect that has also been observed experimentally. The

Invarlanoe of the volumetric average velocity when both

phases are incompressible is established directly, by

continuity considorstlons.

The volumetric average velocity may also be thought of

as the net volumetric flux. The relative velocity between

phases can be expressed in terms of the drift-flux. The

drift-flux is the volumetric flux of either component with

respect to a surface which moves at the volumetric average

velocity. In the drift-flux model, the volumetric flux of

particles is equal to the particle fraction times the net

volumetric flux, plus the particle drift-flux. Since the
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relative velocity is independent of the flow, the drift-

flux can be empirically correlated by the expansion of a

fluidized bed or the settling rates of suspensions. A
l

graph of the drift-flux vs. particle fraction represents

all points of hydrodynamic equilibrium between the particle

and fluid phases. We have described such a correlation as

a semi-empirical drift-flux model.

The continuity equation for the particle phase can

also be expressed in terms of the volumetric flux of

particles. Since the particle flux is dependent on the

particle fraction only, the continuity equation has the

form of a first-order hyperbolic PDE. This form suggests

continuity waves which propagate at velocities

corresponding to the derivative of the particle flux with

respect to the particle fraction. If a condition of

hydrodynamic equilibrium is maintained, then the semi-

empirical drift-flux model can be introduced. With respect

to the volumetric average velocity, the continuity wave

velocity is the slope of a line tangent to the curve of

drift-flux vs. particle fraction.

Although continuity wave theory has been applied to

the problem of hindered settling, the unrestrained settling

problem has not been previously addressed. Unrestrained

settling has been defined as the settling behavior of a

dense packing of particles which is released from rest in a
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fluid-filled duct with a region of clear fluid below.

Applications to backup shutdown systems for LMRs which use

discreet absorber particles to provide the reactivity

insertion, are expected to involve both types of settling.

The initial settling behavior is modeled by the

unrestrained settling problem and the final stages are

modeled by the hindered settling problem.

We have shown that the method of continuity waves can

be extended to predict unrestrained settling behavior when

the semi-empirical drift-flux model is employed. The time

dependent solution to the particle continuity equation is

described in terms of continuity waves. The velocities of

the continuity waves are predicted on the basis of a

steady-state analysis which describes all conditions of

hydrodynamic equilibrium in terms of the semi-empirical

drift-flux model. At the point where the drift-flux is

maximized, the continuity wave velocity vanishes and the

continuity waves are unable to propagate. During

conditions of unrestrained settling, this point represents

a stable equilibrium in which the kinetic energy of the

system is maximized and the potential energy is decreasing

at a maximum rate.

When the hindered settling solution is appended to the

unrestrained settling solution, the behavior of the

multiple particle settling problem is completely described.
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Three distinct modes of settling are possible. These modes

are illustrated in Fig.'s 5, 6 and 7. These modes are easy

to understand in terms of the shape of the drift-flux plot.

The shape assumed by the drift-flux plot is determined by

the physical properties of the fluid-particle system.

Tables 4 and 5 present the results of numerical

calculations for boron-carblde particles of various sizes

in hot liquid sodium. Higher density absorber materials

such as tantalum and tungsten are expected to provide

faster continuity wave velocities than those obtainable

with boron-carbide particles.

The results we have described are easily applied to

specific systems which employ multiple particle settling.

In a backup shutdown system for an LMR, the reactivity

insertion as a function of time can be determined from the

particle settling velocities predicted by this method. The

significance of the analysis is that it ultimately enables

the designer to predict the dynamic response of the core to

shutdown transients.

Further work in this area should include experimental

validation of the solution to the unrestrained settling

problem. In addition, two-dimensional effects can be

incorporated into the model. Such effects include

expansion or constriction of the cross-sectional area

normal to the flow and a non-uniform particle distribution
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over the cross-section. Also, these results must be

coupled to reactor kinetics calculations to demonstrate

that backup shutdown systems which employ multiple particle

settling are able to provide the required reactivity

insertion rates and shutdown margins.
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