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ABSTRACT

Backup shutdown systems proposed for future LMRs may
employ discreet absorber particles to provide the negative
reactivity insertion. When actuated, these systems release
a dense packing of particles from an out-of-core region to
settle into an in-core region. The multiple particle
settling behavior is analyzed by the method of continuity
waves. This method provides predictions of the dynamic
response of thé system including the average particle
velocity and volume fraction of particles vs. time.
Although hindered settling problems have been previously
analyzed using continuity wave theorv, this application
represents an extension of the theory to conditions of
unrestrained settling. Typical cases are analyzed and
numerical results are calculated based on a semi-empirical
drift-flux model. For 1l/4-inch diameter boron-carbide
particles in hot liquid sodium, the unrestrained settling
problem assumes a steady-state solution when the average
volume fraction of particles is 0.295 and the average

particle velocity is 26.0 cm/s.
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I. INTRODUCTION

Defense-in-depth is a principle which is well
established in conventional Light Water Reactor (LWR)
design. This principle requires the designer to provide
redundant anmd diverse means to fulfill each major safety
function. The major safety functions include containment,
heat removal from the core and reactivity control. Backup
systems are designed to fulfill each one of these functions
so that a single malfunction in any system will not place
the plant in an unsafe condition.

The reactivity control function in typical LWRs is
accomplished by complementary systems consisting of
mechanical control rods and boron injection. Thus, in the
event of an unforeseen desiqgn flaw or accident sequence
resulting in the common mode failure of all control rods,
the boron injection system provides a backup method of core
shutdown. Defense-in-depth is hereby achieved when
redundant and diverse means for inserting absorber material
into the core are provided.

In order to apply the same standard of defense-in-
depth to the reactivity control systems of advanced Liquid
Metal Reactor (LMR) designs, a backup method for inserting
absorber material into the core must be devaloped. Direct

injection of boron compounds into liquid metal coolants




does not seem practical due to the difficulty of chemical
separation. Sliwinskil has proposed a system which would
inject discrete boron particles into the core of an LWR.
Although this proposal has not gained acceptance, particle
injection may be a practical alternative for LMRs.
Discrete boron carbide particles could be easily separated
by mechanical means.

A variety of different backup shutdown systems have
been proposed for LMRs. Some examples of those which
enploy the settling of discrete absorber particles are
reviewed in Section II. The objective of this report is to
determine a method for predicting the settling speed of the
particles in a dense mixture. The settling speed of the
particles is directly related to the negative reactivity
insertion rate which drives the core to a subcritical
condition. Thus, a determination of the settling speed is
essential for understanding the dynamic operation of the
shutdown system and for evaluating the core response.

In Section III, we review an analytic solution for the
motion of a single particle which is released from rest in
a quiescent liquid. For an analysis of multiple particle
settling, we appeal to the semi-empirical drift-flux model
as developed in Section IV. Dynamic conditions are
analyzed by the method of continuity waves. The continuity

wave method and some example calculations using this




methodology are given in Section V. Finally, Section VI

contains a summary of conclusions.

II. BACKGROUND

In order to provide a redundant and diverse means of
shutdown in ILMR cores, several systems have been suggested.
Our interest is primarily focused on those systems which
utilize discrete absorber particles to provide the
reactivity insertion. 1In these systems, the absorber
particles settle from an out-of-core region to an in-core
region when the system is actuated. Actuation may be
initiated under conditions of low flow, high temperature,
over-power or some combination of these. In any case, the
settling behavior of a dense mixture of discrete particles
in a liquid medium is the physical process which
characterizes the dynamic operation of these systems.

The illustration in Fig. 1 is one concept that the
author has proposed for a backup shutdown system in IMRs. 2
The absorber material consists of boron carbide
microspheres which are maintained in a position above the
core during normal operation. A mechanical flow control
damper at the bottom of the stcrage compartment opens when
the system is actuated. When this damper opens, the
absorber particles fall into the in-core region and a

reactor shutdown results.
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Figure 1: Proposed Backup Shutdown System for LMRs.



The flow control damper is connected to an actuating
cylinder that is normally held shut by the force applied
from the core inlet pressure acting on the bottom of the
actuating piston. The system actuates when flow through
the core drops to a point that the inlet pressure is
insufficient to maintain the damper in the closed position.
When core inlet pressure is restored, the damper closes and
orifices in the cylinder wall are exposed. The flow of
primary coolant through the orificed cylinder wall is just
sufficient to transport the particles upward through the
annular region. The cyclone separator at the top of the
annular duct disengages the particles from the flowstream.
Normal operation is restored when all of the absorber
particles have been transferred from the in-core region to
the out-of-core region. The device is sized so as to
occupy a fuel assembly position in the core grid.

An alternative design, investigated by Specht et. al.3
of Atomics International utilizes 1/4-inch diameter
tantalum balls for the absorber material. The balls are
maintained in an out-of-core region by the hydraulic drag
force exerted on them by the flow of primary coolant past
them. When the flow rate through the device decreases to
the point that the weight of the particles can no longer be
supported, the balls settle into an in-core region. Thus,

actuation occurs automatically upon failure of the primary



coolant pumps. In addition, a thermally actuated flow
shutoff valve with a curie-point trigger provides inherent
protection for over-power transients.

As a final example, we consider the ultimate shutdown
system of General Electric's advanced LMR conceptual
design.4 The ultimate shutdown system is designed to
shutdown the reactor in the event of control rod failure
after inherent reactivity feedbacks have terminated the
accident transient and brought the core to a safe stable
condition. The actuation sequence is therefore initiated
only by operator action.

The ultimate shutdown system utilizes 1/4-inch
diameter boron carbide balls as the absorber material.
During normal operation, the absorber Salls are stored in a
canister mounted on the closure head. When the system is
actuated, a diaphragm at the bottom of the storage canister
is ruptured and the balls fall through a guide tube. The
guide tube extends through the sodium pool and directs the
balls into a catcher assembly at the center position of the
core grid. Normal flow of primary coolant through the
system is minimal so that actuation may occur regardless of
the core inlet pressure. Normal operation is established
only after the center core assembly is removed and
replaced. This operation is performed with the normal fuel

handling equipment.




Backup shutdown systems of the type described above
could complement a system of mechanical control rods by
providing a redundant and diverse shutdown mechanism in
future ILMRs. Those systems which actuate automatically on
conditions of low flow, high temperature or over-power
could enhance the operational safety by adding an element
of passive safety to the design. 1In this type of system,
the insertion of absorber material into the core is
accomplished by the settling of a two-phase mixture of
particles and fluid. 1In order to gain a perspective on the
physical processes which are significant in multiple
particle settling behavior, we first consider the case of

single particle settling.

III. SINGLE PARTICLE SETTLING
A. An Exact Solution

The equation of motion for a single spherical particle
which is released from rest in a large body of stagnant

fluid is:>

t

3 1 .d 3 3 42 d dt’
7o+ 3o )GE = E4R(p, - p,) - dmduv - 3d° FER, I & Tt (1)

0




Here, positive forces are defined in the downward

direction. The symbols are defined as:

v = particle velocity
d = particle diameter

Py = particle density

p, = fluid density

t
u = fluid viscosity
g = acceleration of gravity

The left~hand side of Eq. (1) represents the force
required to accelerate the "apparent" mass of the particle.
An "added" mass component, 1/2(R/6d3pf) arises because
acceleration of the particle requires acceleration of the .
surrounding fluid. The right hand side of Eq. (1) is an
algebraic sum of the forces which act on the particle.
These forces are: a net body force consisting of
gravitational attraction minus buoyancy: a viscous drag
force which is proportional to the particle velocity; and
the "Basset" force which adds a dynamic component to the
viscous drag force, depending on the acceleration history
of the particle. This equation incorporates the Stokes
drag law which arises from the "creeping" flow
approximation. The validity of Eq. (1), is therefore
limited to low values of the particle Reynolds number, when
inertial effects can be neglected. Here, the particle
Reynolds number is based on the diameter of the particle,

hence:

P tclv

Re = T (2)



Equation (1) has a steady-astate solution given by:

d’s(p.- p,)

v, = -—-I.BTL 3)

This is the terminal velocity of a spherical particle in a
quiescent fluid. Alternatively, Eq. (3) gives the average
upward fluid velocity necessary to maintain the particle

suspended in a stationary position.

B. Extension to Higher Reynolds Numbers
Following the discussion in clift et. al.,d Eq. (1)

can be extendad to higher Reynolds numbers as:

3, 4 1o o d ) 3, .2 dv _ de’
(0, * J0ap)TE = §8CR,- 1) - Fdl Cv? - g’ TR, La“é" T W

This equation is not rigorously valid. The creeping flow
derivation has been modified by placing dimensionless
coefficients Ap and ay in front of the added mass and
Basset history terms, respectively. Equation (4) is thus
empirical in nature and ap & Ay must be determined by
correlations of experimental data. The Stokes drag term is
also modified from Eq. (1). For higher Reynolds numbers,
the steady~-state drag force is given in terms of a
dimensionless drag coefficient, Cp. The drag coefficient
is an empirical function of the Reynolds number and has

been well determined for spherical particles.
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Under steady-state conditions, Eq. (4) reduces to:

§'8(p,- #,) = §d Cov? (3)

The drag coefficient is therefore proportional to the ratio

of net gravitational forces and inertial fcrces:

Here, 7 is a density ratio defined by:

'r-;-: 7

For boron carbide (B4C) particles in hot liquid sodium, the
density ratio is:

k
2510
7-;!-—————%——%.2.84 (s)
t 883 -

Many empirical correlations are available for the drag
coefficient. However, at low Reynolds numbers, Ap and Ay
converge to unity and the drag coefficient converges to

Stokes law:

4 24
CD'I%:"p!v (Re < 1) (9

When the drag coefficient in Eq. (6) has been
empirically determined, we see that the general formulation

for the terminal velocity of a spherical particle is:

v, = .;_.S,g;.-‘a D) (10)
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Substituting Eq. (9) into Eq. (10), we obtain the terminal
velocity in the Stokes law range of Reynolds numbers, as
shown in Eq. (3). We may therefore think of Eq. (10) as a
generalization of Eq. (3). The particle Reynolds number
based on terminal velocity will be designated by:

¢
Rey = 207 (11)

In order to determine the terminal velocity of a
spherical particle, we define a dimensionless Archimedes

number as:

4d’gp (o, #,)

(12)

Note that the Archimedes number is a function of the fluid
and particle properties only and is independent of
velocity. When the Archimedes number is used to correlate
experimental measurements of the Reynolds number at
terminal velocity, then Rep can be defined as an empirical
function of Ar. Clift et. al.® recommend a piecewise
continuous function given by the empirical correlations in
Table 1. Calculation of Rep with adjacent correlations
agree within 1% at the points of discontinuity. The
terminal velocity can be found from Eq. (11) when Rerp is

known.
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Iable 1

Empirical Correlations of Clift et. al.5 for
Rep as a Function of Ar. W = logjg Ar

Range Correlation
Ar < 73 Re = Ar/24 - 1.7569 x 10°% ar?
Re < 2.37 + 6.9252 x 10”7 Ard

- 2,3027 x 10710 Ap4

73 < Ar < 880 logip Re = =1,7098 + 1.33438 W
2.37 < Re< 12.2 - 0.11591 W4

580 < Ar < 1.55 x 107 logjo Re = =1,81391 + 1,34671 W
12.2 < Re < 6.38 x 103 - 0.12427 W3 + 0.006344 W3

1.55 x 107 < Ar < 5 x 1010 10g;o Re = 5.33283 ~ 1.21728 W
6.35 x 103 < Re < 3 x 10% + 0.19007 W2 - 0.007005 W3

Just as Eq. (10) is a generalization of Eq. (3), we
may also think of Eq. (4) as a generalization of Eq. (1).
In order to affect this generalization, the parameters 4
and Ay have been empirically determined by Odar and
Hamilton® from measurements of the drag force on a sphere
executing simple harmonic motion in a liquid. When Eq. (4)
is transformed into a dimensionless form, it can be solved
by numerical integration. In order to implement this
transformation, the independent variables are expressed in

terms of a dimensionless time r, and a dimensionless
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displacement modulus Mp. These variables are defined as
follows:

but

M= §

clift et. al.b give a graphical representation of the

(13

solution to Eq. (4) in dimensionless form. We note that
the solution is a function of the particle density ratio v,
and the ternminal velocity Reynolds number Rep, as well as r
and Mp. Using this solution, we can calculate the time t*
and distance 3" that are required for a particle of
diameter 4 to attain 90% of its terminal velocity during
acceleration from rest. The results of this calculation
are tabulated in Table 2 for several different particle

sizes.

Table 2

Time t" and distance 3" required for a spherical
particle of diameter d and density ratio y = 2.84
to attain 90% of its terminal velocity during
accsleration from rest in a quiescent liquid.

"

d (om) d (in) Rep ve (om/s) r Mp t* (s) =" (om)

0.1850 0.059 1030 6.9 0.08 12.4 0.13 1.86
0.120 0.047 714 33.2 0.12 12.1 0.11 1.46
0.090 0.038 438 19.0 0.17 11.4 0.09 1.02
0.060 0.024 213 13.9 0.3 10.6 0.07 0.64
0.030 0.012 55.0 7.16 0.88 7.7 0.05 0.23
0.015 0,006 11.7 3.04 3.0 4.4 0.03 0.07
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Equation (5) shows that, for a particle traveling at
its terminal velocity, there is an equilibrium of forces in
which the hydrodynamic drag force is balanced by the net
weight of the particle in the fluid. Therefore, the
calculations of Table 2 are estimates of the time and
distance that the particle travels before this force
equilibrium is established.

In a practical shutdown device, the absorber particles
will be required to settle a distance of several meters.
From the results of Table 2, we see that the acceleration
phase of their motion is of relatively short duration and
displacement. Therefore, we can generally assume that a
particle attains its terminal velocity immediately after
release.

Until now, we have only considered the motion of a
single spherical particle, settling in an unbounded fluid
medium. In a mixture of particles and fluid with finite
boundaries, the equations of motion are more difficult to
derive and solve. The mere presence of additional
particles increases the effective density and viscosity ot
the mixture. The motion of each particle iniuces motion of
the surrounding fluid and transmits forces between
particles. The net effect of these complicating factors is
to increase the total drag force experienced by each

particle. Thus, the terminal velocity of a single particle
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places an upper bound on the settling velocity of a

mixture.

IV. TWO-PHASE, TWO-COMPONENT FLOW
A. Governing Equations

Consider a two-phase, two-component system consisting
of a mixture of identical spherical particles dispersed in
an incompressible fluid and confined to a vertical duct of
constant cross-section. The average volume fraction of

particles, designated a, will be defined as:
a= Volume of particles ir a given control volume, (14)
Totli volume of the control volume,

We will also define an average void fraction or average

volume fraction of fluid as «¢:

(=1 -a (15)

When these parameters are associated with a particular
point in space and time, we will understand that the values
are averages for a suitably sized differential volume
element located at that particular point. According to
Rump£,7 if a large number of particles are loosely packed
in a duct with a diameter much greater than the particle
diameter, a maximum particle fraction of a ~ 0,58 will

result.
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For a two-phase mixture which flows parallel to the
axis of a vertical duct, the one-dimensional momentum

equation is:

8v av
3+ v

(1 - ::c)ﬂt + ap,

v, av,
e | T

Here, v¢ and vy are the velocities of the fluid and solid
phases, respectively. These are defined as positive in the
upward direction. Also, dp/éz is the pressure gradient and
d0/82 is the shear stress gradient due to friction at the
wall of the duct. 1If the diameter of the duct D, is much
larger than the particle diameter d, i.e. D >> d; then
friction at the wall becomes negligible in comparison to
the other forces, i.e. ¢ = 0,

In addition to the momentum balance of Eq. (16), the
two~phase mixture must also satisfy separate mass
conservation relations for each distinct phase. Since no

nass transfer occurs, we obtain the following continuity

equations:
Ea-e(ap.) + fz-(ap.v.) -0 17)
£l - a)p,| + f%[(l - a)pvy| = 0 (18)

Note that pg and p¢ are the material densities of the solid

and fluid phases, respectively. They are therefore
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constants, and may be taken outside of the differential
operators.

Even with the assumption of ¢ = 0, Egs. (16), (17) and
(18) are still insufficient to determine the flow. There
are four unknowns, namely: p, Vg, Vg, and a. Hence, we
need a fourth equation in order to complete the set. As
discussed by Soo®, the remaining equation must account for
the nature of the interface between the two phases. 1In
this particular case, we assume that the particles are
fully dispersed in the fluid with an average volume
fraction of a. Soo's method (see Ref. 8) calls for writing
an inter-phase momentum balance equation which will account
for the exchange of momentum between the phases at their
mutual boundaries. 1Instead, we will adopt the approach
taken by Zuber? as an alternative to the formalism of Soo's
method. Although this form of the closure relation will
differ from the form obtained by Soo, it can still account
for the fundamental nature of fluid-particle and particle-
particle interactions. 1In addition, Zuber's approach has
the advantage that the closure relation is easier to
derive.

In Ref. 9, Zuber builds upon the work of other
investigators to write an equation which describes the

motion of a single "representative" particle in a two-phase
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mixture of particles and fluid. The equation of motion for

a representative particle is:

a dv 3 9P 1[x 1 + 2a)9Ve
%dpla-tl_awd“uﬂv“ -%dp.g ) %d z zlgdpt][I - :_di:)_

t

342 I £ dt’ s
+ 2d (19)
Vi ,J“F.“ﬁ! . de7 NE -t

Note that this equation is similar in form to Eq. (1)
except that the velocity dependent forces are now functions
of vgg, the relative velocity between the particles and the
fluid.

(20)

In some literature, vgg is referred to as the slip
velocity. The sign changes between Eq. (1) and Eq. (19)
are a result of reversing the direction of the positive z-
axis. In Eq. (19), positive forces are defined in the
upward direction.

The left-hand side of Eq. (19) is the force required
to accelerate a representative particle. The right-hand
side is an algebraic sum of the forces acting on the
particle. The forces acting on a representative particle
are: a viscous drag force: the particle weight; a force
due to the hydrostatic pressure gradient; a force required
to accelerate the added mass of the particle; and the

Basset force which adds a dynamic component to the viscous
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drag force. Since the viscous drag force is described by
the Stokes drag law, Eq. (19) is rigorously valid only in
the creeping flow approximation when inertial effects are
negligible, i.e. Rep < 1. Also note that in Eq. (19), the
viscous drag force is proportional to ugfe, the effective
viscosity of the two-phase mixture. The effective
viscosity appears under the radical in the Basset history
term as well. Finally, the added mass term in Eq. (19)
includes a correction factor to account for the particle
concentration in the mixture. Additional details of the
derivation can be found in Ref. 9.

Earlier, it was asserted that the derivation of Eq.
(19) is equivalent to Soo's procedure for obtaining a
closure relation, in that the fundamental nature of fluid-
particle and particle-particle interactions can be
accounted for. We note that the particle concentration is
explicitly accounted for in the added mass term. In
addition, particle concentration effects can enter Eq. (19)
through the, as yet unspecified, pressure gradient. Also,
fluid-particle interactions which are velocity dependent
appear as functions of the relative velocity. Finally,
particle concentration as well as collision effects are
implicitly included by use of the effective viscosity of

the mixture.
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When the effective viscosity is specified, Eq. (19)
together with Egs. (16), (17) and (18) form a complete set.
In principle at least, these four equations can be solved
to fully determine the functions: p(z,t); vg(z,t):
ve(z,t); and a(z,t). In making this statement, we have

again assumed that o = 0 in Eq. (16).

B. Effective Viscosity

A number of investigators have studied the effective
viscosity of two-phase mixtures which consist of solid
particles suspended in a fluid medium. It is well known
that the effective viscosity of the mixture is greater than
the viscosity of the fluid without the presence of the
particles. The earliest result was derived by Einsteinl®
from theoretical considerations. Einstein distinguished
three types of motion which a fluid element can experience.
These motions are translation, rotation and dilation. A
rigid particle, embeded in the fluid element does not
affect the translational or rotational motion of the
element. The effect on viscosity is a result of the
inability of the rigid particle to experience dilational
motion in the same manner as does the continuous fluid

phase. In Ref. 9, Zuber offers this explanation:

The effect of the presence of particles
arises because of the inability of the particle
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to take part in the deformation of the flow
field induced by the motion of a single particle.
Since at the boundary of each solid particle the
velocity of the fluid is zero, each particle
contributes to the distortion of the field and
thereby influences the motion, of the repre-
sentative particle. This influence, i.e. resis-
tance to motion, appears to the representative
particle as a change in the viscosity which
becomes a function of the concentration.

Einstein's result for the effective viscosity of a
mixture is:

Boge = B (1 + 2.5a) (21)

Here, u is the viscosity of the pure liquid and the
constant 2.5 is a shape factor which is valid only for
rigid spheres. Because this result is based on the
assumption of non-interacting particles, it is restricted
to low particle concentrations, i.e. a < 0.05.

After Einstein's analysis of effective vis iity,
several investigators have attempted to extend the theory
to high particle concentrations. In addition to the shape
factor for spherical particles, Mocney'sll theor:r

introduces a self-crowding factor. His result is:
Poge = # e"p[’['z‘_ls'%a) (22)
The value of the self-crowding factor is predicted to be in

the range of 1.35 < k < 1.91. The best value is to be

empirically determined.
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vandl? developed a theory of effaective viscosity for
dense particle concentrations by explicitly accounting for

two-particle collisions. Vand's result is:

- 2
e = » oxp[ 2T (rk’Qa B2 (23)

u

The significance of the constants and their theoretical

values are:

k, = 2.5 shape factor
k, = 3,175 collision factor
r = 4 collision time constant

Q= %% hydrodynamic interaction constant
The theory was experimentally tested by vand.13 He found
that empirically determined values of the constants agreed
with the theoretical values within an experimental margin
of error.

Brinkmanl4 also developed a theory of effective
viscosity for dense particle concentrations by considering
the flow field around a spherical particle embedded in a
porous mass. He found that:

- (1 - a)? (26)

Tl AE )

Since the theory models the particles as a porous mass, it

does not account for their mobility. The permeability of
the porous mass is obviously related to the void fraction.
However, failure to consider the relative motions of the

particles which constitute the porous mass probably limits
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the validity of Brinkman's result. This consideration may
also be responsible for the unique form of Eq. (24).

Many empirical determinations have also appeared to
predict the effective viscosity. These methods yield
little insight into the physical processes which affect
viscosity and the results are not generally applicable to
mixtures other than those considered in the derivation.
Consequently, the results may appear quite different.
carman'sl3 result is based on flow through packings of sand

and powders. He found that:

10a
Heete " ¥ T a (23)

Steinourl® studied sedimentation of tapioca particles in
oil and glass particles in water. His result is:

Byge = B exp(4.19%) (26)
Oliver'sl? result, which is based on the data of Steinour
and others, is:

- (1 - a)?
Paer = B T7770. 7525390y (T - 2.15a) @

The empirical results have obvious limitations.
However, the theoretical models for effective viscosity are
also of limited value. They are not generally valid in the
turbulent regime because the derivations are based on

viscous flow and neglect inertial effects. We do know that
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there is a functional dependence on the particle fraction

which can be expressed by the following relation:

Bogg ™ ,{;—,, (28)

In the subsequent discussion, Eq. (28) will be used to
define the effective viscosity. The specific form of the
function f(a) can be found from the most appropriate model

for the effective viscosity.

C. S8teady-State Solution

With the effective viscosity given by Eq. (28), we are
in a position to seek a solution to the governing equations
found earlier. Assume first, that the ratio of particle
diameter d, to the diameter of the duct D, is small. With
this assumption, we let ¢ = 0 in Eq. (16). Equations (16),
(17), (18) and (19) now have a deterministic solution. We
will first consider steady-state solutions.

For steady-state, Eq. (16) reduces to the hydrostatic

pressure gradient of the mixture:

- g1 - g, + an, (29)

Here, we see that the hydrostatic pressure gradient is
simply the product of the effective density of the mixture
and the constant of gravitational acceleration. The
negative sign indicates that the pressure gradient is

directed downward.



The da/0t term can be eliminated from Egs. (17) and
(18) to obtain:

£ - ave+av] =0 (30)
Integration of Eq. (30), results in:

Here, "j" is the constant of integration. We see from Eq.
(31) that j can be interpreted as the volumetric average
velocity. Alternatively, j can also be interpreted as the

net volumetric flux.
Finally, for steady-state, Eq. (19) reduces to:

Indy,,,ve, = §o° [’-‘ + gg] (32)

When the right-hand sides of Egs. (28) and (29) are
substituted into Eq. (32), we obtain:

srogtipve = Bels, - - e, - o,
dig(p -
Vee = -§£;§3_211(1 - a)f(a) (33)

In view of Eq. (3), we may re-write Eq. (33) as:

Vo = v, (1 - a)f(a) (34)

Therefore, in laminar flow, the net volumetric flux is
given by Eq. (31) and the relative velocity is given by Eq.
(34). We will now extend these results to higher Reynolds
number flows.



aé

D. Extension to Higher Reynolds Numbers

In the transition region between laminar and turbulent
flow, viscous effects become less significant tor
increasing Reynolds numbers and inertial effects becone
dominant. According to Stokes law, the drag force on a
spherical particle is only dus to skin friction. However,
skin friction becomes negligible in turbulent flow where
form drag predominates. Form drag develops as a result of
the pressure differential across the particle. 1In a two-
phase mixture of particles and fluid, we expect the
affective drag force experienced by each individual
particle to bshave in this same characteristic manner.
That is, viscous effects become less significant as the
Reynolds number of the particle increases. Joseph et.
al.18 have shown that in the turbulent regime, interactions
between particles are dominated by inertial effects. We
are therefore led to express the effective drag force which
acts on a representative particle in terms of an effective
drag coefficient, Cpere. By introducing this modification
into Eq. (19), we obtain:

dv 8 dv
B0, a0 = Bt Coneves - Fa'08 - FORE - foa[Fets ][RRt

t
I, 42 dve,  de’
< jod s |t @)
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Note that Eq. (38) includes the empirical constants ap and
Ay which were introduced in Eq. (4). These constants
nodify the added uass and Basset history terms to correct
for the effects of turbulence.

When Cpegee is specified, then the governing equations
for the flow of the two-phase mixture, including inertial
effects, are Eq. (38) together with Egs. (16), (17) and
(18), We will assume that the effective drag coefficient
for a mixture of particles can be expressed as the product
of the drag coefficient for a single particle and an
unknown concentration factor. 1In equation form, this

assumption can be stated an:

Coete = ;%‘y (36)

As we have already seen, %q. (16) reduces to the
hydrostatic pressure gradient of the mixture at steady-
state, i.0. Eq. (29). Also, Egs. (17) and (18) combine to
yield Eq. (31). The steady-state form of Eq. (35) is:

d
§9% Couteves? = gaalp., v (37)

Now, by substituting the right-hand sides of Eqs. (29) and
(36) into Eq. (37), we obtain:

c
00 508y va - Eulo, - Q- o, - )

veo = SR JTaTE (38)
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With the general form of the particle terminal velocity
defined by Eq. (10), we may express the relative velocity
in Eq. (28) as!

Ve = v T a)g(@) (39)

We will think of Eq. (39) as a generalization of Eq. (34)
to the turbulent flow regime. However, the function g(a)
nust be specified if this formulation is to have any
practical value.

From the analysis of a variety of experimental data,
Richardson and Zakil® have found that the relative velooity
can be accurately predicted by the following equations

Ve =V, (1 - a)™! (40)

In this equation, the exponent "n" is a function of the
terminal velocity Reynolds number and the ratio of the
particle diameter to the duct diameter.

n = n(Res.f§) (41)

The empirical correlations for n are given in Table 3. The
ratio 4/D provides a correction for friction at the wall of
the duct. Note that this correction becomes negligible for
even moderately turbulent flows, i.e. Rer > 200, We also
see that n is a function of Rer only in the transition
region, 0.2 < Rep < 500, This result is consistent with
the dimensional analysis of Richardson and zakil? which
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predicts that the ratio veg/ve should be independent of Rep

wvhenever either viscous or inwrtial effects can be ignored.

Iable 3
Empirical Correlations of Richardson and Zaki.l?
Rep n

Rep < 0.2 4.65 + 19.5(4/D)
0.2 < Rep < 1 (4.35 + 17.5(d/D) )Rep~0:03

1 < Rep < 200 (4.45 + 18(d/D) JRep~0:1
200 < Rep < 500 4.45 Rep~0:1

Rep > 500 2.39

The empirical correlations of Richardson and 2Zaki were
later verified for the lowest ranges of Reynolds numbers by
the experimental data of Richardson and Meikle.20 1In their
own experiments, Garside and Al-Dibouni?l obtained a result
similar to that of Richardson and Zaki, but they found that
the best value of the exponent n was predicted by the
following correlation:

_ 3,09 + 0,284 Ra,® 8"

42
1+ 0,104 Reo 97 (2)

In this result, we see that n approaches 5.09 for small
Reynolds numbers and 2.7) for large Reynolds numbers.
These values are somewhat higher than those predicted by

Richardson and Zaki's correlation. This difference may be
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partially accounted for by the lack of an explicit
correction factor for wall friction. Similar results have
also been obtained by Maude and Whitmore.?2 They obtained
a graphical representation of n as a function of Rep, but
no equations are provided. Again, no wall correction
factor is given, but their graph indicates that n « 4.65%
for Rep < 0.1 and n ~ 2,39 for Rer > 3000. Finally,
Anderason?? derived a semi-empirical equation for veg/ve
which is an extremely complicated function of a. Equation
(40) provides a form which is much more convenient to use.
The correlations of some additional investigators are
tabulated in Ref. 24,

By comparing Egqs. (39) and (40), we find that:

gla) = (1 - a)? (43)

Introducing this result into Eq. (36), we obtain the
effective drag coefficient which is experienced by a
representative particle in a two-phase mixture of particles

and fluidq.

Coete = Cp (1 - a)¥™™" (44)

In Eq. (44), Cp is the drag coefficient for a single
particle in a pure fluid. Also, by comparison of Eqgs. (34)
and (39), we find that:

£(a) = A2 (45)
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After substitution of Eg. (43) into the above, we obtain:

f(a) = (1 - a)*? (46)

Therefore, for small Reynolds numbers, the correlations of
Richardson and Zaki give the following expression for the

effective viscosity:

d
) (2.55+19.56)

Bogg = 4 (1l -a (47)

Note that these results are obtained from a steady-state
analysis. The time~dependent solution will be considered

next.

E. Time-Dependent Solution

We have obtained a set of governing equations for a
two-phase mixture flowing through a vertical duct. This
set consists of Egs. (16), (17), (18) and (35). Equation
(35) incorporates empirical factors which correct for
inertial effects. These equations are therefore valid for
both laminar and turbulent flow regimes. In the following
discussion, we will attempt to find a time-dependent
solution.

We begin with Eq. (16). When ¢ = 0, we obtain the
following expression for the pressure gradient:

av, av,

op T iad |
gt £z

E-(l-a)pt ﬁ-}-vav’

+ar, at "3z

+ g[(l - a)pt + ap (48)
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From Egqs. (17) and (18), we have already obtained Eq. (31)
for the volumetric average velocity. We arbitrarily choose
to eliminate v¢ in favor of vg in the remaining equations.

From Eq. (31) we find:

J - av

Ver TTg (49)

In order to provide some simplification in the
remaining analysis, we will drop the added mass and Basset
history terms from Eq. (35). With this simplification, we

re-write Eq. (35) as:

av, av,

3p 3
It + Vegz | * 'Eag Coere V.Z - P8 - 3‘; (50)

P

Now, substituting in the pressure gradient from Eq. (48):

av av 3p av av,
P TE iz T 7d Coere VaB T 28+ (1 @dp g Vi
av, av
+ap |2 + v.?ﬁf} +g[(1 - a)p, + ap,] (51)

Dividing this expression by pf and rearranging we get:

av, av,

3t t Viaz
- gl ~a)(y - 1) (52)

- 2;33 Cpege Vs> + (1 - a)

av av
A -7 * g
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Finally, we substitute in the right-hand side of Eq. (49)

to eliminate ve¢ and simplify the result.

(- aifas -an] grea- a){[(l C 'y - alv, + azj} 2,
FA-a(y, - D §R - (av - (- adgy, + 57 42
- 221 Courr (Ve - 20%)) = 7y Couge 37 - B(L - @y - 1) (53)

We also have, from Eq. (17):

g%+v,gg+a%-o (54)

Equations (53) and (54) are two coupled Partial
Differential Equations (PDEs) which are satisfied by the
functions vg(z,t) and a(z,t). However, the solutions cannot
be obtained by exact analytical methods. Some further
simplification may be obtained if physical constraints are
considered. For instance, we could specify j = 0 for a
closed system of sedimenting particles. This constraint
results from the observation that a fixed volume of
settling particles displaces an equal volume of fluid at
every point in the flow. Even with this simplification, a
solution cannot be obtained analytically. The complexity
of Eq. (53) would only increase if the added mass and
Basset history terms from Eq. (35) were included.

Oour efforts to find an explicit solution in the form

vg = Vg(z,t) and a = a(z,t), have so far been frustrated.
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However, further consideration of the continuity equation
and its consequences will provide a method for predicting
the dynamic behavior of a general two-phase system. This
discussion will be taken up in Section V. First, it will
be convienient to express the steady-state solution in

terms of the drift-flux model.

F. The Drift-~flux Model

In Section 1V.C, we found that for two-phase flow, the
relative velocity between the phases is given by Eq. (39).
Substituting Eq. (43) into Eq. (39), we obtain:

Veg = Vv, (1 - @)™} (55)

This result was obtained empirically by Richardson and
zaki.1l? Recall that n is an empirical function of Rep and
d/D, (see Table 3). Note that Rep and d/D are independent
of the flow. Since v¢ is also a unique function of Rep, we
may regard Rep and d/D as parameters. Therefore the
functional relationship expressed by Eq. (55) may be

written as:

Ve = F(Re,.g;a) (56)

In other words, the relative velocity depends on the
particle fraction only, without regard to the direction of
the flow or the direction in which either component is

flowing. Lapidus and Elgin25 were the first to recognize
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the significance of this result. They showed, on the basis
of a theoretical argument that: "The particle knows the
movement of only the fluid and not the walls and does not
know whether it is moving relative to the latter or not."
The relative velocity may therefore be considered as an
invariant parameter of the flow. The relationship of Eq.
(55) may be obtained from the results of either
sedimentation or fluidization experiments. Also,
fluidization experiments may involve either co-current or
counter-current flow. Lapidus, Elgin and their co-workers
have verified this relationship for particle-fluid systems
and for gas-liquid systems, (see Refs. 22, 26, 27 and 28).

In a general two-phase flow system, the volumetric
flux of each component is the volume of that component
which flows across a unit cross-sectional area, per unit
time. The component volumetric fluxes have the same units
as velocity and are related to the component velocities as
follows:

j. - av,

(57)
jz - (1 - a)v,
In some literature, the component volumetric fluxes are
referred to as superficial velocities. The net volumetric

flux is the sum of the component fluxes.

j-j.+jt-av.+(1-a)vt (58)
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The net volumetric flux ias the same as the volumetric
average velocity as described in the discussion following
Eq. (31). The net volumetric flux is also a constant of
the flow for a general two-phase system in which
incompressibility of the components is assumed. This fact
tollows directly from continuity considerations. We have
already smeen, that for sedimenting particles in a closed
system, the net volumetric flux is identically zero at
every point in the flow. 1In a constant-flow fluidized
system, the net volumetric flux is fixed by the volumetric
flow rate of the fluid., Again, j is constant at every
point in the flow.

We now want to describe the relative motion between
the phases in terms of the drift-flux model. The drift-
flux is defined as the volumetric flux of a component
relative to a surface which is moving at the volumetric
average velocity. The drift-flux of the particle phase is

given by:

Je=alv, = 1) =4, - a(, +3) =1 - &), - af, (59)

Note that the drift-flux of the fluid phase is the same
magnitude of, but in the opposite direction to the particle
drift-flux.

Jo =0l - (L= @), = -], (60)
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In order to obtain a relationship between the drift-
fluxes and the relative velocity, we substitute the
definitions of the component fluxes given by Eq. (37) into
Eq. (60).

3 = a(l - a)vy - (1 - a)av, = a(l - a)v, (61)

In view of Eq. (55), the drift-flux can be expressed as!

Joo = Jyp = ol - @) v, (62)

Here, we see that the drift-flux is another invariant
parameter for a general two-phase system.

Equation (62) will be regarded as the semi-empirical
drift-flux model. This model can be used to describe the
interaction between the particle and fluid phases in a
general two-phase flow system. Figure 2 illustrates a
typical graph of the form obtained from this model. The
graph of drift-flux vs. particle fraction represents the
locus of all points of hydrodynamic equilibrium between the
particle phase and the fluid phase. The drift-flux is
maximal when the derivative of Eg. (62) vanishes. This

occurs at a particle fraction of:
We see that the drift~flux attains a maximum value of:

n
Dedaes = =yt Ve (64)
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Figure 2: A Typical Curve of Drift-flux
vs. Particle Fraction.

wallis?® has shown that the semi-empirical drift-flux
model just described can be used to predict the dynamic
behavior of a two-phase, two-component system under
conditions of hindered settling. His analysis is bhased on
the concept of continuity waves. In Section V, we will see
that continuity waves arise as a consequence of the

continuity equation.
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V. CONTINUITY WAVE METHOD
A. General

The theory of continuity waves was first developed by
Kynch.30 He used this theory to predict the settling rate
of particles during batch sedimentation under idealized
conditions. The idealized conditions assume that the
particle concentration is constant across any horizontal
cross=-gection. Additional assumptions include identical
particles of spherical shape which are large enough to
prevent any tendency to floculate. Shear stress at the
vertical walls is also neglected. Batch sedimentation
describes the settling behavior of an initially homoqnncouu
mixture of particles, suspended in a fluid medium. The
mixture is confined to a vessel of fixed volume and over
time, the particles accumulate at the bottom of the vessel
leaving a region of clear fluid above. This process is
also referred to as hindered settling in some literature.

Experimental investigations have shown that three
different settling modes are possible under conditions of
hindered settling. The mode which will actually occur for
a given system is dependent on the properties of the
particles and the fluid. Kynch was able to use the theory
of continuity waves to explain this phenomena. In Refs.
31, 32 and 33, Shannon, Tory and their co-workers have used

the continuity wave method to analyze their experimental
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results with good success. Additional details which
distinguish the three modes of hindered settling are
provided by Wallis in Ref. 29.

In this report, the application of continuity wave
theory is extended to conditions of unrestrained settling.
Unrestrained settling describes an initially homogeneous
mixture of particles and fluid, below which there is a
region of clear fluid. As the particles settle through the
clear fluid, continuity wave theory predicts that a stable
configuration of constant average velocity and constant
particle fraction will be established. Figure 3
illustrates a simplified physical model of the unrestrained
settling problem.

B. Continuity wWave Velocity

Continuity waves are best described as the propagation
of continuous values of the particle fraction through a
two-phase mixture. Propagation of the particle fraction in
waves arises as a direct consequence of continuity
requirements. In some literature, continuity waves are
referred to as Kkinematic waves.

Consider the continuity equation for the particle

phase, 1.e. Eq. (17), expressed as:

fa+ v =0 (69)
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Figure 3: A Simplified Physical Model
of the Unrestrained Settling Problem.

Using the definition of the particle flux given in Eq.
(37), we may re-write Eq. (65) as:

A (6)

By assuming a condition of hydrodynamic equilibrium between
the particle phase and the fluid phase, we may use the
results of the steady-state analysis in Section IV to find
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an expression for the particle flux. In view of Eq. (89),
ve obtain:
J,=a) + ), (67)

substituting the expression for the particle drift-flux
from Eqg. (61) into Eq. (67), results in:
J,=a) - a(l - a) v (68)

Here, we sees that the particle flux is a function of the
particle fraction only. This observation was a crucial
assumption in Kynch's development of the continuity wave
theory.3? Equation (68) shows that the validity of this
assumption can be attributed to the invariance of the

v. ' 1etric average velocity and the relative velocity
betveen phases. We have established the invariance of }
and veg with respect to the flow in Section IV. We are
therefore justified in expressing the continuity relation
of Eq. (66) as:

8% + 305‘3-’ gg -0 (69)

S8ince we know that the particle flux is independent of
da/0t and da/83, Eq. (69) is a first-order hyperbelic PDE of
the following form:

frevf2-o0 (70)
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We recognise immediately that Vy in Eq. (70) is the
velocity at which the dependent variable propagates in the
s~direction. By comparison of Eqs. (69) and (70), we see
that the continuity wave velooity is given by:

Vo = g, (711)

Substituting the particle flux from the right-hand side of
£q. (67), we obtain:

V' - J + f"J“ (72)

Time dependent problems involving particle motion are
often formulated in terms of a diffusion process. When
there are no source or sink terms, the diffusion equation
can be written in the following general form:

gg . V8% =0 (73)

Here, we define:

n = number density of particles, w/cm®
§ = particle diffusivity, cmi/s

g% = gsubstantial or material derivative

Multiplying Eq. (73) by the volume of a single particle, we
obtain:
gg . V.6% = 0 (74)

In a one-dimensional Lagrangian coordinate system which
moves at the volumetric average velocity j, Eq. (74)

transforms to:
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fa+sfa-flefa)-o (7%)

By substituting the continuity wave velocity from Eq.
(72) into Eq. (70), we find that:

farsfasfapofa-o (76)

Equation (76) can be re-written in a form which is similar

to Eq. (78), namely!

Reafirdo-o an

In comparing this form with that of Eq. (75), we obtain the
following relationship between the particle drift-flux, the
diffusivity and the gradient of the particle fraction:

Jo=- 642 (78)

We recognize the familiar form of Eq. (78) as Fick's law.
The diffusivity could be determined from empirical
measurements of the particle drift-flux and the gradient of
the particle fraction.

When the diffusivity depends on the particle fraction,
we see that Eq. (75) is a second-order non-linear PDE,
Although Eq. (76) is also non-linear, it is only a first-
order PDE. It appears that a formulation in terms of
particle diffusion provides no particular advantage since

Eq. (76) is easier to solve than Eq. (75). This point is
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also discussed by Zuber and Staub in Ref. 34. Equation
(76) is of the same form as Eq. (70) where the continuity
wave velocity is given by Eq. (72). When the particle
drift-flux for any condition of hydrodynamic equilibrium is
determined by empirical methods, the continuity wave
velocity is known and Eq. (70) will allow prediction of the

transient response.

C. Application to Unrestrained Settling

Unrestrained settling is defined as a homogeneous
mixture of particles and fluid with a layer of clear fluid
below. The particles are released from rest and settle
through the region of clear fluid. Eventually, the
particles attain a constant average velocity and a uniform
particle fraction. Changes from the initial condition
occur as a result of continuity waves which propagate
throuch the mixture. When the hindered settling solution
described by wallis?? is appended to the solution for
unrestrained settling, the final motion of the particles is
known and the solution is complete.

Consider the simplified model of unrestrained settling
which is illustrated in Fig. 3. The particles are confined
to a vertical duct of uniform cross-section. We will
assume a value of 0.58 for the initial particle fraction.

As the particles settle, a continuous state of hydrodynamic
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equilibrium is maintained between the particle phase and
the fluid phase. This hydrodynamic equilibrium is
described by the semi-empirical drift-flux model of Eq.
(62). Since the settling particles displace a volume of
fluid which is equal to their own wvolume at each point in
the flow, the net volumetric flux is zero. The continuity

wave velocity from Eq. (72) therefore simplifies to:
Vi = é%Jst - g%Jt- (79)

At a point of finite discontinuity in the particle
fraction, an interface is clearly visible between two
regions of different particle fractions. The movement of
this interface is described as propagation of a shock wave.
If the particle fraction in the upper region is designated
ap and the particle fraction in the lower region is
designated apg, then the shock wave velocity in the downward
direction is given by:

_ U Qg)s

Voun e (80)

In comparing Egs. (79) and (80) to the graph of drift-
flux vs. particle fraction (Fig. 2), we see that the
continuity wave velocity is represented by the slope of a
tangent line while the shock wave velocity is represented
by the slope of a chord joining two points on the graph.

At the point of maximum drift-flux, the slope of the
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tangent line is zero and the continuity wave velocity

vanishes. We will find that this point represents a stable
condition of hydrodynamic equilibrium in which the average
relative velocity between particles and fluid is maximized

during unrestrained settling.

Figure 4: Drift-flux Curve Showing the Initial Settling
Behavior. Note that the continuity wave velocity in region
A exceeds the shock wave velocity between regions A and B.
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After the particles in Fig. 3 are released from rest,
they immediately begin to settle with a velocity given by
the slope of the chord connecting ap, (Jeg)a and a = 0,
jeg = 0, (see Fig. 4). Thus ap propagates downward with
shock wave velocity Vga:

3,0 -0
Var = J—:'+r =(1-a)" v (81)

However, particles at the bottom will begin to settle
faster because they are not restrained by particles below
them. A region of lower particle fraction will therefore
begin to form. Suppose that the particle fraction in this
region is designated apg where ag < ap. The shock wave for
region B causes apg to propagate downward with velocity Vgp!
_(jh)a- 0

sB ay - - (1- GB)“ vy > Ve (82)

Regions A and B are now separated by an interface at which
ap changes abruptly to ap. This interface propagates
downward with a velocity given by the slope of the chord

joining ap, (Jfs)a and ap, (Jes) B+

(83)

Gea - gl ay,(1 - a,)" - ag(l - ap)"
sAB T a, - O - l" a, - ap
Recall that the continuity wave velocity in the
downward direction is given by the slope of a line tangent
to the curve of jgg. Since jgg is decreasing between ap

and ap, the slope of the tangent line is negative and all
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continuity waves in this region will propagate upward.
Assume that the drift-flux curve is concave downward at all
points, as shown in Fig. 4. 1In this case, at least some of
the continuity waves will propagate faster than the shock
wave Vgap, represented by the interface between regions A
and B. Shock wave Vgap will therefore be reinforced
resulting in a stable interface.

The argument in the preceding paragraph can be
repeated until the drift-flux reaches its maximum value.
When the drift-flux is maximized, there is maximum relative
velocity between the particle phase and the fluid phase.
The kinetic energy of the system is thus maximized while
the potential energy decreases at a maximum rate. The
maximum point on the jgg curve occurs when the continuity
wave velocity vanishes and represents a stable condition of
hydrodynamic equilibrium. The particle fraction required
to maximize the drift-flux is given by Eq. (63). The
maximum drift-flux is given by Eg. (64). When these values
are substituted into Eq. (82), we find that the maximum

shock wave velocity in the downward direction is:
n n
Vidaws = [731] W (84)

After the shock wave Vgpp has propagated through the entire
two-phase mixture, the average settling velocity of the

particles will be given by Eq. (84) and the average
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particle fraction of the homogeneous mixture will be given
by Eq. (63).

If the cylindrical duct in the idealized settling
problem of Fig. 3 is terminated in a solid bottom plate,
the particles can be assumed to come to rest in inelastic
collisions at the bottom. The final motion of the
particles is described by the hindered settling problem
analyzed by Wallis.?® The final particle fraction is ap
and the final drift-flux is zero. The shock wave between

ap and apg propagates downward with velocity Vgpa, given by:

N o n (85)
WA Tag cay 1058
n+1 )

The solution described by these results is easy to
visualize by a plot in the z-t plane. This plot represents
a time history of the particle fraction vs. height. Figure
5 illustrates this solution for the case of a drift-flux
curve which is concave downward at all points. Some
typical numerical results are given in Table 4 for the case

of boron-carbide particles in hot liquid sodium.
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Jtg= a(1-a) vy ; N<2.45
B

Nz
)
J

N

AN

to ty

Figure 5: A Time History of Multiple Particle
Settling Behavior. Note the lack of an
inflection point in the drift-flux curve.
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When an inflection point occurs in the drift-flux
curve, the solution is more complicated. An inflection
point occurs when the second derivative of Eq. (62)
vanishes. When the particle fraction at the point of
inflection is less than the maximum particle fraction, the
drift-flux curve will be concave upward to the left of ap
in Fig. 4. This condition is only possible when the
exponent n in the drift-flux model is greater than some

limiting value, computed as follows:

a..g_ru:.ss
n>l-Htﬂ-2.as (86)

If the continuity wave velocity at ap is less than the
shock wave velocity between ap and ap, a direct shock to ap
is not possible. In this case, the time history of
particle fraction vs. height is illustrated in Fig. 6.

This figure shows that when the operating point in region B
has moved far enough to the left, a shock wave will form
between ap and ac. Region B represents a gradually
decreasing particle fraction from ap to some lower limit
where the shock wave to region C forms. Table 5 gives some
typical numerical results for boron-carbide particles in
hot liquid sodium which correspond to Fig. 6. Note that
region B only forms when the continuity wave velocity at ap

prevents the immediate formation of a shock wave.
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Figure 6: A Time History of Multiple Particle
Settling when the Initial Settling Velocity
is Limited by the Continuity Wave Velocity.
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A third complication may arise when the drift-flux
curve is extremely concave. This situation is illustrated
in rig. 7. 1In this figure, direct shock between ac and the
fully packed state is not possible. As a result, region B
reforms during the final stages of settling. This
situation is the most complex process that can occur. The
three cases considered here are analogous to the three
modes of hindered settling described by Wallis.??

Iyma(1=a) v . n>2.48

O

¢

Lo t

Figure 7: A Time History of Multiple Particle
Settling Illustrating the Re-formation of
Region B During the Final Stages of Settling.
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VI. CONCLUSIONS

We have seen that the velocity of a single particle in
a quiescent ligquid of infinite extent can be determined by
solving an equation which considers the net sum of the
forces acting on the particle. The solution indicates that
the particle accelerates to 90% of its terminal velocity
over a distance of about ten particle diameters. When the
total distance of travel is much greater than ten particle
diameters, the acceleration phase of the motion may be
considered insignificant. When the particle is moving at
its terminal velocity, it is in a condition of hydrodynamic
equilibrium in which the weight of the particle in the
liquid is just balanced by the drag force experienced by
the particle.

We have also seen that when a mixture of particles and
liquid is confined to a vertical duct of finite diameter,
the particles attain a steady-state velocity which is less
than the terminal velocity of a single particle. Each
particle in the mixture experiences an increased drag force
because the effective density and viscosity of the mixture
are greater than those of the pure liquid. Conservation of
momentum for the mixture and conservation of mass for each
component are found to be insufficient conditions to
deternmine the flow of a two-phase mixture. However, a

closure relation can be obtained by writing a force balance




for a representative particle in the mixture. 1In this
force balance, the transport properties are modified to
account for both the presence of additional particles as
well as their motion. This modification introduces the
effective viscosity and an effective drag coefficient.
When the modified transport properties are known, then the
system of four differential equations has a deterministic
solution.

From the steady-state solution for two~-phase flow of a
particle-fluid system, we found that the average relative
velocity between the phases is an invariant parameter of
the flow. This means that the relative velocity is
independent of the average velocity of either component;
an effect that has also been observed experimentally. The
invariance of the volumetric average velocity when both
phases are incompressible is established directly, by
continuity considerations.

The volumetric average velocity may also be thought of
as the net volumetric flux. The relative velocity between
phases can be expressed in terms of the drift-flux. The
drift-flux is the volumetric flux of either component with
respect to a surface which moves at the volumetric average
velocity. 1In the drift-flux model, the volumetric flux of
particles is equal to the particle fraction times the net
volumetric flux, plus the particle drift-flux. S8Since the
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relative velocity is independent of the flow, the drift-
flux can be empirically correlated by the expansion of a
fluidized bed or the settling rates of suspensions. A
graph of the drift-flux vs. particle fraction represents
all points of hydrodynamic equilibrium between the particle
and fluid phases. We have described such a correlation as
a semi-empirical drift-flux model.

The continuity equation for the particle phase can
also be expressed in terms of the volumetric flux of
particles. Since the particle flux is dependent on the
particle fraction only, the continuity equation has the
form of a first-order hyperbolic PDE. This form suggests
continuity waves which propagate at velocities
corresponding to the derivative of the particle flux with
respect to the particle fraction. If a condition of
hydrodynamic equilibrium is maintained, then the semi-
empirical drift-flux model can be introduced. With respect
to the volumetric average velocity, the continuity wave
velocity is the slope of a line tangent to the curve of
drift-flux vs. particle fraction.

Although continuity wave theory has been applied to
the problem of hindered settling, the unrestrained settling
problem has not been previously addressed. Unrestrained
settling has been defined as the settling behavior of a

dense packing of particles which is released from rest in a
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fluid-filled duct with a region of clear fluid below.
Applications to backup shutdown systems for LMRs which use
discreet absorber particles to provide the reactivity
insertion, are expected to involve both types of settling.
The initial settling behavior is modeled by the
unrestrained settling problem and the final stages are
modeled by the hindered settling problem.

We have shown that the method of continuity waves can
be extended to predict unrestrained settling behavior when
the semi-empirical drift-flux model is employed. The tinme
dependent solution to the particle continuity equation is
described in terms of continuity waves. The velocities of
the continuity waves are predicted on the basis of a
steady-state analysis which describes all conditions of
hydrodynamic equilibrium in terms of the semi-empirical
drift-flux model. At the point where the drift-flux is
maximized, the continuity wave velocity vanishes and the
continuity waves are unable to propagate. During
conditions of unrestrained settling, this point represents
a stable equilibrium in which the kinetic energy of the
system is maximized and the potential energy is decreasing
at a maximum rate.

When the hindered settling solution is appended to the
unrestrained settling solution, the behavior of the

multiple particle settling problem is completely described.
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Three distinct modes of settling are possible. These modes
are illustrated in Fig.'s 5, 6 and 7. These modes are easy
to understand in terms of the shape of the drift-flux plot.
The shape assumed by the drift-flux plot is determined by
the physical properties of the fluid-particle system.
Tables 4 and 5 present the results of numerical
calculations for boron-carbide particles of various sizes
in hot liquid sodium. Higher density absorber materials
such as tantalum and tungsten are expected to provide
faster continuity wave velocities than those obtainable
with boron-carbide particles.

The results we have described are easily applied to
specific systems which employ multiple particle settling.
In a backup shutdown system for an LMR, the reactivity
insertion as a function of time can be determined from the
particle settling velocities predicted by this method. The
significance of the analysis is that it ultimately enables
the designer to predict the dynamic response of the core to
shutdown transients.

Further work in this area should include experimental
validation of the solution to the unrestrained settling
problem. In addition, two-dimensional effects can be
incorporated into the model. Such effects include
expansion or constriction of the cross-sectional area

normal to the flow and a non-uniform particle distribution
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over the cross-section. Also, these results must be
coupled to reactor kinetics calculations to demonstrate
that backup shutdown systems which employ multiple particle
settling are able to provide the required reactivity

insertion rates and shutdown margins.
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