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UNiGe is one of 14 UT(Si,Ge) compounds which were reported to adopt the ortho-
rhombic CeCu; -type structure (space group Imma) [1] or its ordered ternary version of
the TiNiSi type (Pnma) [2]. Note that the lattice constants g, b, ¢ in the TiNiSi notation
correspond to b, 4, ¢ in the CeCuy, -type lattice.

A number of papers on UNiGe polycrystals report a magnetic phase transition to
antiferromagnetic ordering around 40-44 K [1,3-5]. Based on powder neutron-diffraction
results, Murasik et al. [6] claimed that UNiGe crystallizes in the CeCuy -type structure
with Ni and Ge atoms being randomly distributed on copper sites. Moreover,
an antiferromagnetic structure with a propagation vector q = (1/2,0,1/2) and uranium

magnetic moments (i = 1.37+0.07 pg at 13 K) oriented along the a axis is proposed




below T = 43.3 K. The possibility of the first order magnetic phase transition was con-
sidered. In contradiction, Kawamata et al. [7] claim that they observed on a UNiGe
single crystal at 10 K only magnetic reflections which coincide with nuclear ones, which
they naturally interpreted in terms of the identical size of the magnetic and chemical
unit cell. This not very satisfactory situation about UNiGe has motivated our further
studies on a single crystal reported previously [8]. The original measurements of the
magnetization curves at4.2 K (up to 38 T) and temperature dependence of mag-
netic susceptibility were completed by an extended study of the magnetization,
specific heat and electrical resistivity as a function of temperature and magnetic field.
Moreover, we performed neutron diffraction experiments on a powder sample and on
the single crystal.

The temperature dependence of the specific heat shown in Fig. 1 exhibits a sharp
peak at 41.5 K and a broad anomaly around 50 K in a good agreement to data publish-
ed by Kawamata et al. [8]. The peak at 41.5K corresponds to the first-order magne-
tic phase transition mentioned above. Anomalies at this temperature were observed
also in the temperature dependence of magnetic susceptibility and electrical resisti-
vity. The powder neutron diffraction pattern at 3 K consists of pure nuclear reflections
consistent with the TiNiSi-type structure and magnetic reflections pointing to AF
structure of U moments up= 1.4 ug (within the b-c plane) with a propagation vector q =
(0,1/2,1/2). This pattern remains generally unchanged up to 41.5 K. Temperature scans
of several magnetic reflections made on the single crystal reveal only a week decrease
of uranium magnetic moment with increasing temperature (see Fig. 2). At 40 K, the
moment amounts still to about 90% of its low temperature value. Then it steeply de-
creases in the close vicinity of the magnetic phase transition at 41.5 K. The magnetic
state between 41.5 and 50 K is not fully understood up to now. The slight anomalies
around 50 K observed also in both the temperature dependence of the susceptibili-

ty and resistivity are indicative of a magnetic phase transition from paramagnetic state




to a sort of magnetic ordering. Preliminary neutron diffraction studies by SCD at
LANSCE and E3 at BENSC revealed between 41.5 and 50 K an incommensurate mag-
netic structure with a temperature dependent propagation vector in the b-c plane.
Further neutron diffraction studies are under way.

The magnetization curves at 4.2 K display metamagnetic transitions in fields B
parallel to b (at 17 and 25 T) and B parallel to ¢ (at 3 and 10 T) reflecting changes of

antiferromagnetic structure towards the parallel alignment of moments in high fields

[t}

(M =145pup /fu). A weak linear magnetic response to field B parallel to a (M
0.23 up/f.u.) manifests a huge magnetic anisotropy. In order to study the
microscopic origin of different magnetic states between the transitions we have
started neutron diffraction experiments on the UNiGe crystal in magnetic fields. So
far we have measured the behaviour in fields up to 6 T along the c-axis. The phase
above 3 T (amounting M =1/3 M g ) is consistent with the propagation vector q =
(0,1/3,1/3), which yields + + - stacking of uranium magnetic moments locked in the b-c
plane) along both the b- and c-direction. The pronounced hysteresis of the meta-
magnetic transition seen on the magnetization curve was reproduced when
measuring hk/2,1/2 and h,k/3,1/3 reflections with increasing and decreasing mag-
netic field as shown in Fig. 3. The first transition in fields along the b-axis cannot be
reached by static magnetic fields available at neutron beams. Considering the dra-
matic difference in the magnetoresistance response on the first metamagnetic transi-
tion in fields along the ¢- and b-axes displayed in Fig. 4, we can conclude that q of the
magnetic structure above 17 T (B parallel to ¢) cannot be equal to (0,1/3,1/3).

The up to now observed features of magnetic structures in UNiGe confirm the
conclusions, which we made previously from bulk experiments suggesting that the
strong bonding of 5f orbitals along the a axis leads to a huge magnetic anisctropy
characterized by uranium magnetic moments perpendicular to this direction, which

seems to be a general feature in UTX compounds with the TiNiSi-type structure.
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FIGURE CAPTIONS

Fig. 1 C/T vs T plots displaying the specific heat behaviour of UNiGe.

Fig. 2. Temperature dependence of several 0,k/2,1/2 reflections of UNiGe

Fig. 3. Field dependence of the magnetization (top), and 0,2/3,4/3 (middle) and
0,3/2,5/2 (bottom) reflections of UNiGe in the magnetic filed applied along
the c-axis.

Fig. 4. Longitudinal magnetoresistance in UNiGe in the magnetic field applied along
the a-, b- and c-axis.
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