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Stability of the Toroidicity-induced Alfv n Eigenmode

. in Axisymmetric Toroidal Equilibria

G. Y. Fu, C. Z. Cheng and K. L. Wong

Princeton Plasma Physics Laboratory

Princeton Ur_iversity, PO Box 451, Princeton, iV. J. 08543

The stability of toroidicity-induced Alfv_n eigenmodes (TAE) is investigated

in general tokamak equilibria with finite aspect ratio and finite plasma beta.

The finite orbit width of the hot particles and the collisional damping of the

, trapped electrons are included. For the trapped hot particles, the finite orbit

width is found to be stabilizing. For the circulating hot particles, the finite
m

orbit width effect is stabilizing for larger values of vh/vA (> 1) and destabilizing

for smaller values of Yh/t) A (< 1), where Vh is the hot particle speed and vA

is the Alfv_n speed. The collisional damping of the trapped electrons is found

' to have a much weaker dependence on the collision frequency than the previous

analytic results. The contribution of the curvature term to the trapped electron

collisional damping is negligible compared to that of the parallel electric field

term for typical parameters. The calculated critical hot particle beta values for

the TAE instability are consistent with the experimental measurements.

II

PACS number: 52.35.Bj, 52.55Fa

MAS[EB



I. INTRODUCTION

As we approach the realization of tokamak pl_ma ignition, it is crucial to under-

stand the novel behaviors of burning plasma associated with energetic alpha parti-

cle in fusion reactors. In particular, tile problem of toroidicity-induced shear Alfvdn

eigenmode 1'2 (TAE) destabilized by energetic alpha particles a-t' has recently received

a great deal of attention. It was l_,ointedout in Ref. I and 2 that the TAE modes

maybe destabilized by energetic particles through wave particle interaction. Fua, Fu

and Van Dam 4, and Cheng, Fu and Van Dam 5 showed that the circulating alpha

particles can strongly destabilize the n=l TAE mode in an ignited tokamak. Much

progress has since been made on understanding the energetic particle destabilizing

effects on the TAE modes for both the low-n modes 6-12, and the high-n modes la- t5

In particular, the important effects of finite orbit width of the energetic particles have "

been studied 11'15

Recent experiments showed that TAE modes can be indeed destabilized by ener-

getic circulating beam ions in the neutral beam injection (NBI) heated plasmas 16'_r,

and also by fast minority ions in the ion cyclotron radio frequency (ICRF) heated

plasmas ts and can lead to serious loss of energetic particles _ shown in a numerical

simulation 19. However, the measured stability threshold was larger than that of the

earlier works. Thus, it is required to include additional damping mechanisms, such as

o
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ion Landau damping 8`'a, the trapped electron collisional damping 2__'_5, the contin-

, ' ".27ttum damping 1°'2a-''5 and the nonperturbative kinetic damping 2_ due to coupling
II

between magnetohydrodynamic (MHD)TAE mode and the kinetic Alfvdn wave.

" Most of previous studies made use of simplified large aspect ration, low beta, plasma

equilibria, On the other hand, a kinetic-MHD stability code as (NOVA-K) has been

recently developed ;o calculate the stability of low-n TAE modes by properly tak-

ing into account tile particle dynamics in general tokamak equilibria. A resistive

MHD stability code a9 (NOVA-R) has also been developed to study tile continuum

damping effect for general tokamak equilibria. However, in the NOVA-K code, the

effect of finite orbit excursion from the flux surface and tile collisional damping of

trapped electrons were neglected. In this work, we extend the kinetic-MHD model of

Cheng s'2s to include the effects of finite orbit width (FOW) of the hot particles due

to the magnetic drift and the collisional damping due to trapped electrons for gen-

eral tokamak equilibria. The FOW effect of the hot particles was studied previously

for a model low-n TAE mode structure 11, and subsequently for high-n TAE modes

using ballooning mode representation _s. Here, we use the exact TAE mode structure

in a general MHD equilibrium. Both the circulating hot particles and the trapped

hot particles are included. Likewise, we calculate the trapped electron's collisional

• damping rigorously by numerically solving the bounce-averaged drift-kinetic equation

¢
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in general equilibria, without the usual approximation of model mode structures and

boundary layer analysis 2_j'1_,

We limit ourselves to a perturbative treatment of the kinetic effects. Thus, the

non-perturbative kinetic damping of the TAE modes is beyond tile scope of this work

and is not considered here. The continuum damping is also not considered since tile

continuum damping is zero for the parameters and profiles used in this work. In

another words, for the equilibria used here, the TAE mode frequency do not intersect

with the Alfv_n continuum. For other plasma parameters and profiles, the continuum

damping may be present and can be calculated with tile resistive MHD stability code

such as NOVA-R"_9,

e

The paper is organized as follows. In Section II, the formulation of this work is given.

In Section III, the destabilizing contribution of the hot particles to the stability of

TAE modes is calculated, including the FOW effects. The trapped electron collisional

damping is considered in Section IV. In Section V, the stability threshold of the TAE

modes is calculated and compared with the measurements in the Tokamak Fusion

Test Reactor 3° (TFTR) experiments. In Section VI, the parameter dependence of

the critical alpha particle beta is presented. Finally, the conclusions of this work is

given in Section VII.

4
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II. FORMULATION

A, Equations

Ve consider an _xisvmmetric toroidal plasma consisting of thermal electrons anti

" thermal ions and a hot ion species. We start from the linearized momentum equation

_o2p(=V(SP+B xV x(SB+(SB xV xB, (t)

where _ is tile mode frequency, p is the total plasma mass density, ( is tile usual fluid

displacement, (SP is the total perturbed pressure tensor due to all species, B and (SB

is the equilibrium and the perturbed magnetic field respectively. The following ideal

MHD relation is assumed

" (SB = V × ({ x B). (2)

• The perpendicular electric field (SEj_ is expressed in terms of

6E j_ = iw_ × B. (3)

Finally, the perturbed pressure tensor can be written in a diagonal form,

(SP = (SPal + ((SPH- (sP_.)bb, (4)

where the equilibrium is assumed to be isotropic, and diPiland 6P_ are obtained from

the perturbed particle distribution function (sf as

\(spa.,]= dawSf , (5)
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where _ = AIu2/2 is the particle energy, _, = AIv2_/2B is the magnetic moment and

cSf is given by
Q

or(

with g being the solution of the drift-kinetic equation

a OF i d_
(_+Ull.V+va,'_)g=ie_(_-cz,)(_vd._Ei+q2+ e B!I). (7)

In Eq. (6) and (7), 6BII is tile parallel component of the perturbed magnetic field,

is related to the perturbed parallel electric field 6E!I = -b. V*, b is the unit vector

along the magnetic field lines, aJ. is the diamagnetic drift frequency, and Vd is the

magnetic drift velocity, w, and Vd are defined a.s follows
ql

ib x VF.V

oJ, = MwcOF/Oe' (8)

b x (/.,VB + Mv_)vd = , (9)
Mco¢

where ¢z,:is the particle cyclotron frequency and _ = b. Vb is the magnetic field line

curvature.

It might be useful to add how the Eq. (7) is derived. Equation (7) is obtained from

the standard drift-kinetic equation by using following relation:

#

l[ o*- vllAll/c = w -_- + vll(b. V'I) + (SEll)]
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i d O_
v,_V(,l, - ,lJ)]= j[_(, - ,)4. ot

d
-/{_(q, - ,I,)- iw_,+ v,, E_.I (10)

where the perturbed electric field is expressed in terms of the electric potential ,I_and
i,

the magnetic vector potential A a.s 6E = -V_ + ,.1_, tile parallel component of A

is eliminated in favor of the parallel electric field potential _, the perpendicular con>

ponent of A is neglected for low beta plasmas, and the v,L.g_ term is also neglected,

since both the drift velocity and the parallel potential is small. For MHD TAE modes,

the parallel potential _ maybe calculated perturbatively using quasineutrality con-

dition. Following Fu and Cheng _'_,the potential _ satisfies following qu_ineutrality

condition:

TLjq_ _'
X f davq, dog, =X-_j gC+X f dav(1-J,_)_F,(*-*). (11). S a J

where & = Jo(Vj.vj_/w_) is the zeroth order Bessel function. It should be pointed out

that dq_contains finite Larmor radius effect (FLR) which is kept for the calculation

of the parallel electric field. Elsewhere, the FLR effect will be neglected. Further-

more, we note that the non-adiabatic distribution function 9j is needed to obtain an

explicit expression for _. For shear Alfvdn wave, the ordering of k!lv, << aa<< kit<,

is appropriate, where v, and v, are thermal ion speed and thermal electron speed,

respectively. Thus, the thermal ion contribution to the left hand side of Eq. (11) is
lb

much larger than the thermal electron contribution which can be neglected. The hot
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])article contribution (:an also be neglected because the density of the hot species is

much lower than that of thermal species. From Eq. (7), the leading order perturbed

ion distribution is given by g, ,_ @(_v,t. 6E__ + _). Plugging g, into Eq, (11) and

expanding the Bessel function to second order in ion Larmor radius, the leading order

can then be expressed as

where p, is the ion Larmor radius defined with electron temperature, and < vae >

is the electron magnetic drift velocity averaged over the Maxwellian distribution of

electrons. Equations (1-7, 12) constitute the kinetic-MHD model for the stability of

the TAE modes. We note that various kinetic effects, such as hot particle destabilizing

contribution and ion Landau damping, etc., are contained in the pressure tensor diP

through g, which is the non-adiabatic part of the perturbed distribution function.

B. Quadratic Form

In order to calculate the kinetic effects perturbatively, we construct a quadratic

form from the momentum equation. First, we separate the total perturbed pressure

tersor into two parts: d_P= 6P/+ diP_, where diPi is the fluid part which comes from

the adiabatic response of 6f, and 6P_, is the kinetic part which comes from the non-

adiabatic response g. Note that the 6Pf can be expressed explicitly in terms of _ _s II

6P/= -(, VP with P being the equilibrium pressure, assuming that the equilibrium

8



is isotropic. Now we take an inner product ;)f Eq. (l) with _' and tn)o_rate over the

whole pla.sma volume to obtain a quadratic fi3rm

6Wf + 6ii,'_ - J6K = 0, i13)
,u

where superscript, denotes complex conjugate and

6K = / d_xolSl_, (14)

6WI = f d3z_".[V.6P I+6B x V × B+B _ 7' ×6B], (15)

6W_ = /dax_ ". _76P_. (16)

We remark that 6K and 6W/ comes from the ideal MHD equation, whereas _ti,,

. represents the correction due to kinetic effects. With aid of Eq. (2-5), it can be easily

shown that _il,Vk can be written more explicitly as

6w_ -e f d3xf dav(i _,_B,_"= -va. tSE_ + ) g, (17)
'.d e

Finally, we use the quasi-neutrality condition, i.e., _j e j'd'_v6fj = 0 with the sub-

script j denoting the particle species, to obtain an explicit quadratic form fl)r 61,t_

f f OF 06W_=4i daz dave""_(_z-_,,.)G'(_+v! I,V +va.V)_lG

01;' 1"- f dazf dave2_l,_ , (Is)

9
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where the superscript -1 denotes the inversion of the propagator, and the function

G is defined as

G= 2_(we!Yd. 6E± + tIs+ e#6BH)' (19)

In deriving Eq. (18), we subtract and add • in the parenthesis of Eq. (17), and then

use the qua.sineutrality condition to eliminate f davtp9 term in favor of f d3vc_F/c% tp[2

term, We note that the inversion of the propagator can be accomplished by solving

the drift-kinetic equation. This will be done in Sec. III for hot particles and in Sec

IV for trapped electrons.

C. Perturbative Calculation of Kinetic Effects

Before going into detailed solutions of the drift-kinetic equation for each species, we

w

first consider here the perturbative method used to calculate the kinetic effects. We

assume that the kinetic effects are sufficiently small so that they do not change the

basic ideal MHD mode structure. Our goal is to calculate the kinetic contribution to

the eigenfrequency in order to determine the stability of the TAE modes. To this end,
i

we expand the eigenfrequency and eigenfunction order by order in terms of a small

parameter related to the weak kinetic effects. The zeroth order equation is then

* 2 *6Ws(,;o,,<o)- = o, (20)

which is just the ideal MHD energy principle. Here the subscript 0 denotes the zeroth

l0



order. To the first order, we obtain

6w_(_:_,_)- ,_o6K(_'o,_)_ ' - 2_o_6A"(_,_'o)+ 6wk(_;,_o,,.,.,o)= o. (21)
q

The first two terms of gq. (21) cancel due to the self-adjointness of the ideal MHD

equation, and the remaining two terms yield a quadratic expression for the kinetic

correction to the eigenfrequency

III. ENERGETIC PARTICLE CONTRIBUTION

Here, we compute the energetic particle contribution to 5W_. The derivation pre-

. sented here extends the work of Cheng s to include the finite orbit width due to the

magnetic drift. In the following, we will derive separately the circulating particle
w

contribution and the trapped particle contribution, and then give numerical results.

A. Circulating Particle Contribution

To begin with, we solve Eq. (7) by integrating along the unperturbed particle orbit.

For simplicity, we rewrite Eq. (7) as

d _ H(r, 8,¢,t) _Hm(r,8)exp[i(m6 n¢ cot)] (23)_9 = = _ _
112

where d/dt denotes the total time derivative along the unperturbed particle orbit, the

function H is the right hand side of Eq. (7), cr is the sign of the parallel velocity, r

i,
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is the poloidal flux variable, 0 and ¢ are the generalized poloidal and toroidal angles,

respectively, and m and n are the poloidal and toroidal mode numbers respectively. In
u

Eq. (23), we have expanded the function H in terms of poloidal Fourier components

of the perturbed fields. Note that the poloidal dependence of Hm(r,O) comes from

the equilibrium quantities. The solution of Eq. (23) is then

f9_ = _ H,_(r',O')exp[i(mO'- n¢'-wt')]dt', (24)

where r' = r'(t'), O' = O'(t') and ¢' = ¢'(t _) are the trajectory of the unperturbed

particle orbit with boundary conditions at t' = t: r'(t) = r, O'(t) = 0 and ¢'(t) = ¢.

At this point, it is appropriate to determine the particle orbit in an equilibrium

magnetic field of an axisymmetric tokamak. First, we note that the radial flux variable

r is no longer a constant of motion due to the magnetic drift. Instead, the toroidal w

angular momentum Pc is conserved, i.e.,

Mc
Pc = r - _vcR = constant. (25)

e

Thus, the orbit equation for r_ is

r' = + MC(vlfR-< viiR>), (26)
e

where f =< r >, <> denotes the averaging over the entire orbit. Also, we have used

the parallel velocity vN to approximate re, the toroidal component of the particle

Q
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velocity. To continue, we define the instantaneous drift frequency wd to be

d d

wd=-n(_¢-q_o)

=--n[Vd' (V¢ - qVO) + (q - q)Vllb. VO] (27)

and make use of the following definitions:

s., =m - nq, (2s)

W(t) = dt'(_d- < wd >). , (29)

The exponent in Eq. (24) can now be written explicitly

rnO'- he' - .n'= (rnO- n¢ - .,t) - (_- < _ > --GSmWt(t'-- t))

• +[Sm(O'--O)--oS,,,w,(t'--t) + W(t') - W(t)] (30)

where wt = 27r/r_ is the transit frequency with "st being the transit period of the

circulating particles. Note that the third term in Eq. (30) is a periodic function of

t' with the period r_, and so is Hm(r', _'). Thus, we can make Fourier expansion in

following manner:

H,._(r',O')exp[i(SmO' - aS,.wtt' + W(t'))] = _ H,:,pexp(ipo_,t'), (31)
P

where r' is given by Eq. (26), p is an integer to be summed from -2 to +2, and

H,_,p is given by -

H:,p(e) = l fdt'Hm(r',O')exp[i(SmO'-(p_, +aS,,,wt)t' + W(t'))] (32)rt

13



Equatin (24) can now be integrated to give

9o = _ iH,_.pexp[i((p+ aS,,,)w,U - SmO- W(t))]w- < wd > -(p + aSm)wt exp[i(m0 - n¢ - wt)] (33)m ,p

where we have defined a time-like variable t°(O)

U(O) = a dO. (34)

= H -° found in Ref. 8It should be pointed out that the symmetry relation H_. v ,,,._p

is broken due to the finite orbit width, since r' depends on cr in Eq. (32). Given Eq.

(33), the circulating particle contribution can be derived straightforwardly to obtain

6Wk = M2 df eadert(w - w,) OF o •
m ,m Oe _d-- < ¢dd > --o'(p-t" Sm)O2t

where A = #Bo/e is the pitch angle variable, and G_,p is defined exactly the same

q

way as H,_.p, with function G in Eq. (19) replacing function H in Eq. (32). In the

limit of zero orbit width, Eq. (35) reduces to Eq. (3.74) in Ref. 8.

B. Trapped Particle Contribution

The solution of Eq. (7) for trapped particle can be similarly derived, but some care

must be taken of the fact that the trapped particle orbit samples only a part of a field

line and that the parallel velocity changes sign at the turning points. The solution is

9o = _ iHm.pexp[i(P_b t° - S,,,O - W(t))] exp[i(mO - n¢ - wt)], (36)
;d-- < ¢dd > --pWbt_,p

14



where we have defined the time-like variable for trapped particles

. t+(O) = dO (37)

. for _'b/4 > t + > --Tb/4 and t-(O) = rb/2 - t+(O) for 3rb/4 > t- > rb/4, and H,,,.p is

given by

1 j dt'H,_(r' 0') exp[i(SmO' - pwbt' + W(t'))]H,,,,p(_) - _

_ t f ], j BdO' O'- 7b o, Iv,iIHm(r;,O')exp[i(Sm - pwbU + W(t')) l (38)

where the subscript cr in r' denotes the sign of vii, and rb is the orbit period of

the trapped particles. Note that < VllR >_ 0 for trapped particles, thus r_' =

+ aMclvlllR/e. The corresponding trapped particle contribution to 6Wk is

where G,,,.p is defined the same way as H,,,p in Eq. (38). In the limit of zero banana

width, Eq. (39) reduces to Eq. (3.72) of Ref. 8.

C. Numerical Results

Here, we present the numerical results for the FOW effects obtained by using Eq.

(22), (35) and (39). Since we are interested in stability, we calculate only the resonant

contribution of 5Wk or the imaginary part of _oi. We consider the parameters of the
I[

TFTR neutral beam injection (NBI) experiments16: the major radius R = 240cm, the
o
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minor radius a = 75cm, the toroidal magnetic field B = 1.0T, the central temperature

7,(0) = 7',:(0) = 1.2key, the central plasma density r_,.(0) = 2.7 x 1013cm-3, the

effective thermal ion mass m_.fi = 2., the effective charge Z_.ff = 2.5, the beam

particle mass rnb = 2.0, and beam injection energy Eb = llOkev. The plasma pressure

profile is P - Po(1 - x2)a/2, the density profile is n_ - no(1 -0.8x4), where x is the

square root of the normalized poloidal flux, the safety factor q is specified by four

parameters as in Ref. 8, the central q0 "- 1.0, the edge ql - 3.5, q[_= 1.2 and

q_ = 3.5, where the prime denotes the derivative with respect to the normalized

poloidal flux. The beam density profile is nb = nb(O)exp[-(z/Lb) 2] with Lb = 0.44.

Note that for this beam density profile, the absolute density scale length at z = 0.5

is 18cm, which corresponds tc the experimental measurement 16. Finally the beam

distribution function Fb is assumed to be a slowing-down with a single pitch angle,
q

i.e., Fb(¢, A) e¢ ¢-a/26(A - Ao) with A0 = 0 for tangential injection.

Figure 1 shows the surface component of the MHD plasma displacement vector

of a n = 2 TAE mode as a function of radial variable x. A total of four poloidal

harmonics are plotted. We note that the m = 2 and m = 3 harmonics dominate over

others and peak at z = 0.41 where q = 1.25. It is instructive to compare the orbit

width of the energetic beam particles with the radial mode width, the orbit width due

to the magnetic drift can be derived from Eq. (25) and is on order of Ab = 2qv/w,;.

16



For the parameters considered here, A_ = 16cm which is 1/5 of the minor radius and

is somewhat larger than the radial mode width of Fig. 1. Therefore, we expect the

FOW effects to be significant. This is confirmed in Fig. 2, which shows the growth

" rate of the same mode due to the circulating beam particles as a function of the ratio

of the beam speed and the Alfv6n speed. The solid line is calculated with the FOW

effects and the dashed curve is obtained by turning off the FOW effects. We observe

that the FOW effect is stabilizing for larger values of Vb/Vm, but it is destabilizing

for smaller values of Vb/VA due to the resonance broadening. This feature exhxbi_s

two opposite influences of FOW: on one hand, FOW is stabilizing due to the asu,_l

orbit averaging of the localized wave; on the other, FOW is destabilizing due to the

" resonance broadening. The same feature was previously found for the high-n TAE

. modes 15. For the particular case considered in Fig. 2, the primary wave-particle

resonance vii _ VA is satisfied for Vb/VA > 1.15 at q = 1.25 where the mode peaks and

the effect of the orbit averaging is dominating; on the other hand, for smaller values

of v_/va < 1.15, the primary resonance is only satisfied away from where the mode

peaks and the effect of the resonance broadening is dominating.

Figure 3 shows the growth rate of the n = 2 TAE mode due to the trapped beam

particles with single pitch angle h _ 1.0. We observe that the FOW effect is always

stabilizing. For these parameters, the trapped particle contribution is reduced by
t
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almost a factor of 10. It is instructive 'co note that the banana width of the trapped

particles is on order of 50cm and is much larger than the mode width.

In summary, the finite orbit width effect can be either stabilizing or destabilizing for

circulating particles, depending on the ratio of the hot particle speed and the Alfv6n

speed. For trapped particles, the FOW effect is found to be always stabilizing.

IV. COLLISIONAL DAMPING OF TRAPPED ELECTRONS

Here we consider the collisional damping of the TAE mode due to trapped electrons.

Gorenlenkov and Sharapov showed that the dominant electron damping comes from

the collisional trapped electrons 2°. Rosenbluthrosen included parallel electric field

term, in addition to the curvature term considered in Ref. 20. Fu and Cheng 15further

,p

showed that the contribution of the curvature term to the collisional damping vanishes

as the real frequency of the TAE mode approaches the bottom edge of the continuum

gap. All these previous results were obtained by solving the bounce-averaged drift-

kinetic equation approximately as a boundary layer problem for a model TAE wave

structure. In this work, we extend previous work to general equilibria by solving

numerically the bounce-averaged drift-kinetic equation, which is

(-i_- < C >)g =< H >, (40)

18



where < C > is the bounce-averaged pitch angle scattering operator given by

< C >= 2u_(-_) -3/2[I(_) 0 f u,, 0j'j'B2dO _-_(A jBvdO)- _ (,11)• till

with tile function I](z) being defined a_

1 ,_ 1 1 f' t2
[I(z) = Z, ft + _e- + _(2 - _) j. e- dt. (42)

Here, u. is a normalized electron collision frequency and is given by u_ =

41vn_e41n(A_)/ : a. (m_v,.), where n, is electron's density, m,. is electron mass, v_ is electron

thermal speed and ln(A_) is the Coulomb logarithm. Note that in the left side of Eq.

(40), we have neglected the drift term which is small for electrons. For convenience

of solving Eq, (40), we make the change of variable r/2= (A,,,.. - A)/(A,,,.. - A.,,.),

where Am,,, and Am_. is the lower bound and the upper bound of the pitch angle

. variable A = #B,/_ for trapped particles. Then, Eq. (40) becomes

10D(r/) g < H > (43)
[1- id,'Erh,r177

with

rbA
D(r/) = 6--A-< i - AB >, (44)

"_/_ _ )-3/_rI(__,.) (45)cE=

where 6A = A,... - A,.,., The boundary conditions are 9'(i) = 0 and g(t) = 0,

We solve Eq. (43) by expanding g in terms of an orthogonal set of basis function gt

19



defined as the eigenfunction of the collisional operator. Thus, gt is the solution of the

following equation with eigenvalue At

±o D(,7)_gt= -_tgz, (46)tonan an " .

where l is a positive integer with l = 1 denotes the smallest eigenvalue, Thus, we can

write 9 = _t atgt with the coefficient at determined by Eq, (43) and is given by

i f_ OT"b< H > gtd77
= , , (47)

at ._(1+ iCE,_t)f,_r_rbgrdn

The collisional contribution to _I,V_can be derived straightforwardly using Eq, (17)

and (47) to give

w

 6"' M -yeA ......+ (4att=,l "

Note that v_e have neglected w, term since w. << _ for electrons, From Eq. (48), it

is easy to show that the imaginary part of 6Wk,,: is negative, which implies damping.

Before going into detailed numericai results, it is appropriate to discuss the relative

contribution of the parallel electric field term and the curvature term in the function

H (i,e, the right hand side of Eq, (40) or Eq. (10)), Recall that H _ ieOF/Oe(iva,

6Ez + w_), We found numerically that the curva,ture term is usually much smaller

in comparison with the parallel term. The numerically calculated collisional damping

rate due to the curvature term alone agrees with that of the analytic results l_, i.e.,
,o
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the second term of Eq. (67) in Ref. 15. The smallness of the curvature term is due

to the fact that the contributions of the two dominating poloidal harmonics of the
,I

TAE mode nearly cancel when the mode frequency is close to the bottom edge of

" the continuum gap. This near cancellation is manifested as the dependence on tile

mode frequency through the parameter ,\ in Eq. (67) of Hef. 1.5. For typical case,

the mode frequency is near the bottom edge of the continuum gap and A_ ~ 0.1.

As a result, the curvature contribution to the the ccllisional damping is reduced by

an order of magnitude in comparison with that of the previous work 2U. This near

cancellation in the curvature term can be shown more explicitly as follows. To begin

with, recall that the TAE mode is localized radially near the continuum gap, where

e

a pair of neighboring poloidal harmonics, m and m + 1, dominate over the other

. harmonics (see Fig. 2, for example). Thus the curvature term va. 6Ei cx _. x ,_,_,x,

comes mainlyfromthesurfacecomponentoftheplasmadisplacementvector(since

tile radial component {_ ,,_e{, is much smaller than {,). Recall that _ is the magnetic

field line curvature. Now, _., can be expanded explicitly az _, ,_ _._"(r)sin((rn -

nq)O) + _.:"+l(r)sin((m + 1 - nq)O) for its variation along the field line, exploiting

the fact that only two harmonics are important. Near the continuum gap location

where q (rn + l/2)ln, _ reduces to _, _ (_'+t(r) c,n= - ,.,_(r))sin(0/2). Looking at

. Fig. 1. and 4, we observe that the difference between _m(r) and _._"+l(r) is small.
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Numerical results show that this difference becomes even smaller _ the TAE mode

frequency approaches the bottom edge of tile continuum gap (when the plasma beta

increases). Therefore, the contributions of the two poloidal harmonics to the curvature

term nearly cancel when the mode frequency is close to the edge. In Ref. 15, this

cancellation was shown analytically in the high-n limit.

We now present numerical results for the collisional damping rate obtained from

Eq. (22) and (48). Since the curvature term is usually much smaller than the parallel

electric field term, we will only compare the numerical 'results and the analytic results

for the parallel electric field term alone. We consider the parameters of the TFTR

ICRF experiments ts' R = 260crn, a = 96cm, B = 3.26T, T_(0) = _(0) = ,l.5kev,

n,(0) = 4.8 x 101acre-a, the effective mass rn_/t = 2., the effective charge Z,.I/= 2.5,

the pressure profile P = P0(1 - x2)2, the density profile ne = n,(0)(1 -0.8x:'4), and a

the safety profile q = exp[ln(ql)x:] with the edge q = qt = 5.6. Figure 4 shows four

poloidal harmonics of the surface component of the MHD displacement vector as a

function of the radial variable z for the n = 2 TAE mode, This eigenmode is computed

for the equilibrium considered here and is similar to that of Fig. 1. Figure 5 shows the

collisional damping rate as a function of the normalized effective collisional frequency

u,l,,/¢o for the corresponding n = 2 eigenmode, where t_,_l!= 2Z, IIU_/(SAevaluated at

x = 0.35. The solid curve shows the analytic results obtained from Eq. (67) of Ref.

22
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1.5and the circle line is obtained numerically using Eq, (48), We see that, for small

collisional frequency of v_;y/a; < 10-t, our numerical damping rate exhibits nearly

,e

,t (the same scaling with v./t/_ and is about a factor of two smaller as comparei to the

analyt'"• t¢_result. This difference of a factor of two is re_onable considering that how

. ' ' . However.many approximations have been made in obtaining the an,dyttt results t_

for not very small collisional frequency of v.1//w > 10-t, the dependence of the

collisional damping rate on the collisional frequency is much weaker for the numerical

results than for the analytic one. This is due to the factor that the analytic scaling

is only valid for very small v, Ii/_. For typical parameters, the c flhstonal frequency

ranges from v,H/_ ,.-., I0 -t for the TFTR ICRF experiments ts to v,/_ -, 1 for

" the TFTR NBI experiments to. This indicates that a nttmerical calculation of the

collisional drift kinetic equation must be employod to obtain an accurate _tlltsional

damping rate due to the trapped electrons.

Before ending this section, it is instructive to discuss the convergence of the colli-

sional damping rate with the number of the b_is functions ga, The first hnir eigen-
f

functions gt are shown in Fig, 6 for the parameter of Fig, 5_ F_r the range of v_'_,

considered here, we find that a summation up to l = 8 is sufHcient for good ¢_mw,r.

gence, This result is not surprising, since we expected the convergence to occur when
o

" , 1;_CE.\I "- O(1)or l'v, ll/_ ..., O(l) Note that the eigenvalue is roughly .\t ". 'Fh,,n
o

it
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we would expect a number of l _,, 6 is needed for convergence for _,_ff/a_ _,, 3 x 10-.2

V. STABILITY THRESHOLD: COMPARISON WITH
D

TFTR EXPERIMENTS

Here, we calculate the critical hot particle beta for the TAE instability by balanc-

ing the hot particle destabilizing contribution against ion Landau damping, electron

Landau damping and trapped electron collisional damping.

A. The TFTR NBI Experiments

We consider the TFTR NBI experiments by Wong et al.16 in which the r_ = 2

and n = 3 TAE modes were excited by the tangentially injected neutral beam ions.

The parameters and profiles are given in Sec. III. The beam particle driven growth

rates are given in Fig. 2 for the n = 2 mode. The ratio of beam particle speed and

l

Alfv_n speed is Vb/V A : 1.1 for the plasma density of n_(0) = 2.7 x 1013cm -3. Thus,

the finite orbit width effect is destabilizing. The FOW effect is also destabilizing for

the n = 3 mode. Table I lists the critical beam beta values at the radius z = 0.4

for the n = 1, n = 2 and n = 3 TAE modes. We see that the calculated critical

beam beta values agree well with the experimental measurements. It is instructive

to compare the sie of various damping mechanisms. For the n = 2 mode, the ion

Landau damping is comparable to the electron's collisional damping. For the n = 3

mode, the electron collisional damping is much larger than the ion Landau damping.
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The electron Landau damping is negligible for both modes. It should be pointed out

that both the FOW effect of the beam particle and the trapped electron collisional

G

damping are crucial for good agreement between the theory and the experiment.

• Without these two effects, the predicted threshold would be a factor of five lower

than the experimental measurement for the n - 3 mode. Finally, it should also be

pointed out that the hot particle contribution is sensitive to the pitch angle, at least

for the parameters considered here. We find that the hot particle drive increases by

a factor of six when the pitch angle varies from A = 0 to A - 0.75Ami,,. This large

change comes from the pitch angle dependence of the parallel wave-particle resonance

condition, w --< wd :> +ktlvlj, where the transit averaged magnetic drift frequency

" < wa > is not zero for passing particles due to toroidicity and magnetic shear. For

. the parameters considered here, the primary resonance UA ,_< _Md _" //%-[" YI[ is not

satisfied at the mode peak. Thus, the main hot particle contribution comes from

the sideband resonance, VA ,_< Wd > /kll + 3vlI. This sideband resonance increases

strongly as A increases. Therefore, one should be very careful in chosing the fast

particle pitch angle distribution. Here, we use a single pitch angle at A -- 0 for

simplicity. In reality, the pitch angle distribution has a finite spread even for the case

of parallel injection of neutral beam particles. In this case, the calculated critical

beam beta would be somewhat higher.
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B. The TFTR ICRF experiments

Here, we consider the TFTR ICRF experiments is in which the TAE modes were

excited by the fast minority ions heated by ICRF. Some parameters and profiles for

the core plasma have been given in Sec. IV. The fast ion distribution is chosen to

be a Maxwellian with single pitch angle Ao = 1.0 and The profile of the fast ion

temperature is chosen to be Th = Th(O)(1-2x/Lh+x2/L_) for x < Lh and Th = 0 for

z > Lh, where Th(O) = 500kev and the radial scale length Lh = 0.55 corresponding

to 40% of the whole minor radius. The fast ion density profile is assumed to be

constant. Our choice of the fast particle distribution may be justified as follows.

First, the energy distribution of the fast particles heated by ICRF is approximately

Maxwellian due to balance between the ICRF heating and slowing down by electron

collision, as shown by Stixn_. Second, the fast particles are heated predominantly

in the perpendicular direction during the ICRF heating. Furthermore, the ICRF

heatingisverylocalizednearthemagneticaxis,Thus thecorrespondingpitchangle

of the fast particles is approximately A -- i.0. Table II lists the critical volume-

averagedfastionbetavaluesforthen = 2 and then = 3 TAE modes. We see

that the calculated stability threshold agrees well with the experiment for the n - 3

mode, but for the n -- 2 mode, the theoretical critical beta is about a factor of

three lower than the experimental value. We find that for both modes, the trapped
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electron collisional damping is the dominating damping mechanism. The ion Landau

damping is negligible due to low thermM ion beta, Several reasons may be speculated

,0

to explain the discrepancy between the theory and the experiment for the n = 2

• mode. First, some additional damping mechanisms which are neglected here may be

important, such as the non-perturbative kinetic damping. Second, we find that the

calculated fast ion drive is quite sensitive to the fast ion temperature and it's profile.

For example, raising the central ion temperature from 500key to 700key would reduce

the fast ion contribution by a factor of 2.2, and changing the temperature profile to

Th = Th(O)(1 - X/Lh) would reduce the fast ion drive by a factor of 7.7 ! Therefore,

one needs an accurate experimental measurement of the fa.st ion parameter and profile

" to make a more conclusive calculation of the fast ion contribution. All these issues

must be dealt with before a better comparison between theory and experiment can

be made.

VI. PARAMETER DEPENDENCE OF STABILITY THRESHOLD

IN AN IGNITED TOKAMAK

Here, we study the parameter dependence of the critical alpha beta for TAE stability

in an ignited tokamak. We consider following parameters: the major radius H =

250crn, the minor radius a = 80cm, the toroidal magnetic field B = ST, the central

electron temperature T,(O) = lOkev, the ion temperature T,(0) = 20key, the effective,i

u
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ion mass rn_/l = 2,5, the effective charge Ze// = 2.5. The plasma pressure profile is

P --- Po(1 - x_)2, the density profile n, - 'n0(1 - 0.8x2), where x is the square root

of the normalized poloidal flux, the safety factor q is specified by four parameters as
t,

in Ref. 8, q0 = 1.1, ql = 5.5, q_ = 1.0 and _ = 5.5, where the prime denotes the

derivative with respect to the normalized poloidal flux. The alpha particle density is

given by n,, = n,,(O)exp(-x2/L_), where L_ is the normalized density scale length.

The alpha particle distribution function is assumed to be a slowing-down in energy

and uniform in pitch angle. It should be noted that these parameters and profiles

are similar to those expected in the planned TFTR D-T experiments 32. For these

parameters, the trapped electron collisional damping is very small. On the other
e

hand, the FOW effect is important and will be discussed below.

A. Dependence on V_/VA

Figure 7 shows the critical volume-averaged alpha particle beta values as a function

of v,,/va for the n = I TAE mode, where v,, is the fusion alpha particle speed at

birth and va is the Alfv_n phase speed evaluated at the magnetic axis. The solid dots
!

in Fig. 7 are computed with the finite orbit width (FOW) effects of alpha particles

due to the magnetic drift, whereas the circles are computed without FOW effects. A

similar plot for th_ n = '2 mode is shown in Fig. 8. In these figures, we vary V,,/VA
e

by varying the plasma density while keeping all other parameters fixed. Since the
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equilibrium beta is proportional to density, each dot (or circle) is computed with the

self-consistent equilibrium at the corresponding beta value. We see that the FOW
¢

effects are stabilizing for larger values of v,,/vA and destabilizing otherwise, The

" minimum of < /3, > occurs at V,,/VA _ 1.0. The critical beta increases rapidly as

v,,/va increasea for v,,/va > 1.0 due to increasing ion Landau damping. On the other

hand, for v,/vA < 1.0, the critical alpha beta increases _ V,,/vA decrea_sing due to

increasing electron Landau damping and weakening alpha particle drive. For value of

v,,/va ,._ 1.4 corresponding to the TFTR D-T experiments :_, the critical alpha beta

is < i_,, >,-_6 x 10-4, which is close to the expected Mpha particle production in the

TFTR D-T experiments.

e

B. Dependence on equilibrium beta

The results just shown in Fig. 7 and 8 are obtained with self-consistent equilibrium

at finite plasma beta. Here, we show what will result if the zero beta equilibrium

is used. Figure 9 compares the critical alpha beta values obtained using the self-

consistent equilibria (solid dots) with that of zero beta equilibrium (circles) for tile

n = 1 mode. As expected, for small values of equilibrium beta or v,,/v,4, the critical

:dpha beta values are nearly the same for the two ca..ses. However, for the larger

values of v,,/va, the critical alpha beta with zero beta equilibria is much smaller than

,t

that with finite beta equilibria. We find this large difference comes mainly from the
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dependence of tile real mode frequency on the equilibrium beta. As the equilibrium

beta increases, the real frequency becomes smaller. As a result, the ion Landau
qt

damping is enhanced strongly by the finite beta effects. On the other hand, the

o

alpha particle drive is found not sensitive to the equilibrium beta. Thus, the critical

alpha beta is enhanced by the finite equilibrium beta effects for v,,/vA > 1.1. (For

V,_/VA < 1.L, the critical alpha beta is enhanced slightly by the finite equilibrium beta

due to the increased electron Landau damping).

C. Dependence on T_/Te

Figure L0 shows the critical alpha beta of the n = 1 TAE mode as a function

of the ratio of ion temperature and electron temperature for T, + T, = 30key and

v,,/vn = 1.38. We see that < ',3_,> increases rapidly as T,/T,. increases. This strong

dependence is due to the fact that tile ion Landau damping is sensitive to the ion

beta. For the parameters considered here, the ion Landau damping is found to be

the dominating damping mechanism.

D. Dependence on alpha particle density scale length

Figure 11 shows the critical alpha beta as a function of the alpha density scale length

L_,with FOW effects (solid dots)_tnd without FOW effects (circles) fi)r the n - I TAE

mode. Recall that the alpha density profile is chosen as n,, = n,,(O)exp(-x:/L,",),

t
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where z is the square root of the normalized poloidal flux and L,, is the normalized

alpha density scale length. In Fig. 11, we see that the critical alpha beta increases

L,, increa.,_es for both c_es. The effects of FOW enhances the dependence of alpha

• critical beta on L,,, especially near L,, = 0,3. This can be understood physically _-_

follows, The dependence of alpha particle drive on L,, comes from the combination

of two opposite effects. For smaller L,,, the destabilizing pressure gradient t_,rm is

larger. [towever. the location of the largest pressure gradient of the alpha particles is

further away from where the mode peaks. This shift of ni_imum gradient surface ,as
l

L,, bet.onl'es smaller, which is stabilizing, is weaken by the 1:{'_','effects, As a result,

the critical alpha beta is more sensitive to L,, with FOW effects than with¢)ut FOW

effects.

VII. CONCLUSIONS

We have presented a comprehensive analysis of the stability of the TAg modes in

general tokamak equilibria, including the finite orbit width of the hot particles due

t{_the magnetic drift and the ct}llisional _tamping of trapped electrons, in addition to

the Landau damping of the thermal ions and electrons, For the trapped hot particles,

the tinite orbit width is found to be stabilizing. For ttle circulating hot particles, the

tinite orbit width effect is stabilizing for larger values of t,n, t,,a and destabilizing for

• smaller values of t,h/v,_. The collisional damping of trapped electrons is found to

" a I
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have a much weaker dependence on the collision frequency than the previous analytic

results for u_f//_ > 10-t. The contribution of the curvature term to the collisional
4

damping is negligible compared to that of the parallel electric field term for typical

parameters. The calculated stability thresholds agree re_onably well with the TFTR

eexp rlmetlts.
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TABLE I. Comparison of the theoretical critical beam ion beta with the experimental

measurements in the TFTR NBI-heated plasmas

critical beta n = 1 n = 2 n = 3

(_h),_v stable 0.5% 0.5% "

(/3h),he,_ i.2% O.47% 0.38%

P
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TABLE II, Comparison of the theoretical critical fast ion beta with the experimental

measurements in the TFTR ICRF-heated plasmas

• critical beta n = 2 n = 3

< #h >exp 2.7 x 10 -4 2.7 x i0 -4

< ]_h >theory 0.74 X 10 -4 3.5 X 10-4
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FIGURE CAPTIONS

Figure 1. The surface component of the MHD plasma displacement vector as a func-

tion of the radial variable x for the n -- 2 TAE mode in the TFTR NBI experiment.

Figure 2. The circulating beam particle driven growth rates of the n = 2 TAE mode

versus the ratio of the beam particle speed and the Alfv_n speed with and without

the finite orbit width effects.

Figure 3. The trapped beam particle driven growth rates of the n = 2 TAE mode

versus the ratio of the beam particle speed and the Alfv_n speed with and without
i

the finite orbit width effects.
,p

Figure 4. The surface component of the MHD plasma displacement vector as a func-

tion of the radial variable x for the n = 2 TAE mode in the TFTR ICRF experiment.

Figure 5, The collisional damping rate due to trapped electrons as a function of the

effective collisional frequency.

Figure 6. The first four eigenfunctions of the collisional operator.
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Figure 7, The critical volume-averaged alpha particle beta as a function of v_/v_ for

the n = 1 TAE mode with the FOW effects (solid dots) and without the FOW effects

e

(circles).

- Figure 8. The critical volume-averaged alpha particle beta as a function of _,_,/va for

the n = 2 TAE mode with the FOW effects (solid dots) and without the FOW effects

(circles).

Figure 9. The critical volume-averaged alpha particle beta as a function of v,,/VA for

the n = 1 TAE mode obtained with self-consistent finite beta equilibria (solid dots)

and the zero beta equilibrium (circles).

Figure 10. The critical volume-averaged alpha particle beta as a function of T,/T_ for

• the n = 1 TAE mode.

Figure 11. The critical volume-averaged alpha particle beta as a function of the alpha

density scale length L_ for the n = _ TAE mode.
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