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Stability of the Toroidicity-induced Alfvén Eigenmode

in Axisymmetric Toroidal Equilibria

G. Y. Fu, C. Z. Cheng and K. L. Wong

Princeton Plasma Physics Laboratory

Princeton University, PO Boz 451, Princeton, N. J. 08543

The stability of toroidicity-induced Alfvén eigenmodes (TAE) is investigated
in general tokamak equilibria with finite aspect ratio and finite plasma beta.
The finite orbit width of the hot particles and the collisional damping of the
trapped electrons are included. For the trapped hot particles, the finite orbit
width is found to be stabilizing. For the circulating hot particles, the finite
orbit width effect is stabilizing for larger values of vy /v4 (> 1) and destabilizing
for smaller values of vp/v4a (< 1), where v, is the hot particle speed and v4
is the Alfvén speed. The collisional damping of the trapped electrons is found
to have a much weaker dependence on the collision frequency than the previous
analytic results. The contribution of the curvature term to the trapped electron
collisional damping is negligible compared to that of the parallel electric field
term for typical parameters. The calculated critical hot particle beta values for

the TAE instability are consistent with the experimental measurements.

PACS number: 52.35.Bj, 52.55Fa
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I. INTRODUCTICN

As we approach the realization of tokamak plasma ignition, it is crucial to under-
stand the novel behaviors of burning plasma associated with energetic alpha parti-
cle in fusion reactors. In particular, the problem of toroidicity-induced shear Alfvén
eigenmode!? (TAE) destabilized by energetic alpha particles® > has recently received
a great deal of attention. It was pointed out in Ref. | and 2 that the TAE modes
maybe destabilized by energetic particles through wave particle interaction. Fu?, Fu
and Van Dam*, and Cheng, Fu and Van Dam® showed that the circulating alpha
particles can strongly destabiiize the n=1 TAE mode in an ignited tokamak. Much
progress has since been made on understanding the energetic particle destabilizing
effects on the TAE modes for both the low-n modes®~!2, and the high-n modes!3~— 1.
In particular, the important effects of finite orbit width of the energetic particles have
been studied!!'!5.

Recent experiments showed that TAE modes can be indeed destabilized by ener-
getic circulating beam ions in the neutral beam injection (NBI) heated plasmas!'®!",
and also by fast minority ions in the ion cyclotron radio frequency (ICRF) heated
plasmas'® and can lead to serious loss of energetic particles as shown in a numerical

simulation!®. However, the measured stability threshold was larger than that of the

earlier works. Thus, it is required to include additional damping mechanisms, such as




202115 Cthe contin-

ion Landau damping®?, the trapped electron collisional damping
uum damping!"#*~ and the nonperturbative kinetic damping®>-*" due to coupling
between magnetohydrodynamic (MHD) TAE mode and the kinetic Alfvén wave.
Most of previous studies made use of simplified large aspect ration, low beta plasma
equilibria. On the other hand, a kinetic-MHD stability code®® (NOVA-K) has been
recently developed io calculate the stability of low-n TAE modes by properly tak-
ing into account the particle dynamics in general tokamak equilibria. A resistive
MHD stability code*® (NOVA-R) has also been developed to study the continuum
damping effect for general tokamak equilibria. However, in the NOVA-K code, the
effect of finite orbit excursion from the flux surface and t‘he collisional damping of
trapped electrons were neglected. [n this work, we extend the kinetic-MHD model of
Cheng®?® to include the effects of finite orbit width (FOW) of the hot particles due
to the magnetic drift and the collisional damping due to trapped electrons for gen-
eral tokamak equilibria. The FOW effect of the hot particles was studied previously
for a model low-n TAE mode structure!!, and subsequently for high-n TAE modes
using ballooning mode representation'®. Here, we use the exact TAE mode structure
in a general MHD equilibrium. Both the circulating hot particles and the trapped

hot particles are included. Likewise, we calculate the trapped electron’s collisional

damping rigorously by numerically solving the bounce-averaged drift-kinetic equation




in general equilibria, without the usual approximation of model mode structures and
boundary layer analysis®”!5,

We limit ourselves to a perturbative treatment of the kinetic effects. Thus, the
non-perturbative kinetic damping of the TAE modes is beyond the scope of this work
and is not considered here. The continuum damping is also not considered since the
continuum damping is zero for the parameters and profiles used in this work. In
another words, for the equilibria used here, the TAE mode frequency do not intersect
with the Alfvén continuum. For other plasma parameters and profiles, the continuum
damping may be present and can be calculated with the resistive MHD stability code
such as NOVA-R?,

The paper is organized as follows. In Section II, the formulation of this work is given.
In Section III, the destabilizing contribution of the hot particles to the stability of
TAE modes is calculated, including the FOW effects. The trapped electron collisional
damping is considered in Section IV. In Section V, the stability threshold of the TAE
modes is calculated and compared with the measurements in the Tokamak Fusion
Test Reactor® (TFTR) experiments. In Section VI, the parameter dependence of

the critical alpha particle beta is presented. Finally, the conclusions of this work is

given in Section VII.




II. FORMULATION

A. Equations
We consider an axisymmetric toroidal plasma consisting of thermal electrons and

thermal ions and a hot ion species. We start from the linearized momentum equation
w'pé = V6P +B x V x 6B +6B x V x B, (1)

where w is the mode frequency, p is the total plasma mass density, € is the usual fluid
displacement, 6P is the total perturbed pressure tensor due to all species, B and 6B
is the equilibrium and the perturbed magnetic field respectively. The following ideal

MHD relation is assumed
éB =V x (¢ x B). (2)
The perpendicular electric field §E, is expressed in terms of ¢
fE, =iwé x B. (3)
Finally, the perturbed pressure tensor can be written in a dia.gong.l form,
6P =6P 1+ (6P - 6P.)bb, (4)

where the equilibrium is assumed to be isotropic, and 6P, and 6 P, are obtained from

the perturbed particle distribution function §f as

() niCe57)
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where ¢ = Mv?/2 is the particle energy, u = Mv? /2B is the magnetic moment and

6 f is given by

6B OF . s
6f = =61 VF = u—pl =1 - Z)¥ + (6)

with g being the solution of the drift-kinetic equation

) . i -
('5{ +u - V4+vyV)g= ze——-—(w—-w.)(;v,p&EL + ¥+ géBg;)v (7)

In Eq. (6) and (7), 6B is the parallel component of the perturbed magnetic field, ¥
is related to the perturbed parallel electric field 6E) = —b - V¥, b is the unit vector
along the magnetic field lines, w, is the diamagnetic drift frequency, and v4 is the

magnetic drift velocity. w, and vy are defined as follows

 _bxVF.V s
* = Mw.dF)8e )
b x (uVB + Mo

v (u ] v“n), (9)

Muw,
where w, is the particle cyclotron frequency and x = b Vb is the magnetic field line
curvature.
It might be useful to add how the Eq. (7) is derived. Equation (7) is obtained from

the standard drift-kinetic equation by using following relation:

1,09 ,
P — UHAH/C: (__J[.é? + U||(b" Ve + (SE”)]
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(b -¥)+ %-‘:i - v V(b - W)

it

E_l*-

m

L

4
dt
d .
I((D V) -iw¥ +vy E] (10)

E.i=-

where the perturbed electric field is expressed in terms of the electric potential ® and
the magnetic vector potential A as 6E = -V 4 124 d' , the parallel component of A
is eliminated in favor of the parallel electric field potential ¥, the perpendicular com-
ponent of A is neglected for low beta plasmas, and the v, VW term is also neglected.
since both the drift velocity and the parallel potential is small. For MHD TAE modes,
the parallel potential ¥ maybe calculated perturbati\./ely using quasineutrality con-
dition. Following Fu and Cheng!®, the potential ¥ satisfies following quasineutrality

condition:

9

5 [ ¢vg, g, =Z "’)\MZ/dS L= )AL, - v) (11)
J

~

where J(‘) = Jy(V v, /w.) is the zeroth order Bessel function. It should be pointed out
that Jy contains finite Larmor radius effect (FLR) which is kept for the calculation
of the parallel electric field. Elsewhere, the FLR effect will be n»eglected. Further-
more, we note that the non-adiabatic distribution function g; is needed to obtain an
explicit expression for ¥. For shear Alfvén wave, the ordering of kv, << w << kyv,
is appropriate, where v, and v, are thermal ion speed and thermal electron speed,
respectively. Thus, the thermal ion contribution to the left hand side of Eq. (11) is

much larger than the thermal electron contribution which can be neglected. The hot

-
{




particle contribution can also be neglected because the density of the hot species is
much lower than that of thermal species. From Eq. (7), the leading order perturbed
ion distribution is given by g, = %’”}(fv‘, -0E | + V). Plugging g, into Eq. (11) and

expanding the Bessel function to second order in ion Larmor radius, the leading order

¥ can then be expressed as
1 12 i I)
\Il::i;,ou,‘VJSI‘L_~~;<:v,,e>-515‘L (12)

where p, is the ion Larmor radius defined with electron temperature, and < vy, >
is the electron magnetic drift velocity averaged ovver the Maxwellian distribution of
electrons. Equations (1-7, 12) constitute the kinetic-MHD model for the stability of
the TAE modes. We note that various kinetic effects, such as hot particle destabilizing
contribution and ion Landau damping, etc., are contained in the pressure tensor 6P

through g, which is the non-adiabatic part of the perturbed distribution function.

B. Quadratic Form
In order to calculate the kinetic effects perturbatively, we construct a quadratic
form from the momentum equation. First, we separate the total perturbed pressure
tersor into two parts: 6P = 6Py + 0Py, where 6Py is the fluid part which comes from
the adiabatic response of 6 f, and 6P, is the kinetic part which comes from the non-
adiabatic respons;a g. Note that the §P; can be expressed explicitly in terms of § as

6P; = —¢- VP with P being the equilibrium pressure, assuming that the equilibrium

8




is isotropic. Now we take an inner product of Eq. (1) with & and integrate over the

whole plasma volume to obtain a quadratic form

Wy + oWy — WK =0, (13)

where superscript * denotes complex conjugate and

5K =/d-’mg1*, (1)
oWy = [da¢" [V 6P, + 6B x V x B+ B x ¥ x 0B, (15)
SW, = /d%gﬂwm. (16)

We remark that 6K and W), comes from the ideal MHD equation, whereas 61V,
represents the correction due to kinetic effects. With aid of Eq. (2-5), it can be easily

shown that W, can be written more explicitly as

5Wk = ~8/d3I/dSU(£Vd'L§EL + 5(53(')'0 (17)

Finally, we use the quasi-neutrality condition, i.e., ¥, e [ d’véf, = 0 with the sub-
) ]

script j denoting the particle species, to obtain an explicit quadratic form for oWy

Wy = 4i/d3$/d3052%§(w - w‘)('.(% + V+vy: V)‘Q‘
ZOF .
- 3. 3,,,2 2 .
/d I/dve _8€l\y| N (18)




where the superscript —1 denotes the inversion of the propagator, and the function
G is defined as

i

6(;

G=§E

v 6B, + 0+ ‘2‘53,,). (19)
In deriving Eq. (18), we subtract and add ¥ in the parenthesis of Eq. (17), and then
use the quasineutrality condition to eliminate [ d*vW¥g term in favor of [ d*vdF/0<|¥|?
term. We note that the inversion of the propagator can be accomplished by solving

the drift-kinetic equation. This will be done in Sec. III for hot particles and in Sec

[V for trapped electrons.

C. Perturbative Calculation of Kinetic Effects
Before going into detailed solutions of the drift-kinetic equation for each species, we
first consider here the perturbative method used to calculate the kinetic effects. We
assume that the kinetic effects are sufficiently small so that they do not change the
basic ideal MHD mode structure. Our goal is to calculate the kinetic contribution to
the eigenfrequency in order to determine the stability of the TAE modes. To this end,

we expand the eigenfrequency and eigenfunction order by order in terms of a small

parameter related to the weak kinetic effects. The zeroth order equation is then
tﬂ’Vf({S,fo) _wgéK(&;u&O) = 01 (20)

which is just the ideal MHD energy principle. Here the subscript 0 denotes the zeroth

10




order. To the first order, we obtain
SW(E5,€1) = WK (&5, €1) — 2wowi 8K (€5, &) + Wi (&5, €0 wo) = 0. (21)

The first two terms of Eq. (21) cancel due to the self-adjointness of the ideal MHD
equation, and the remaining two terms yield a quadratic expression for the kinetic

correction to the eigenfrequency

ﬂ - 5Wk(£5,£0,01())
W 2wi6K(&5,%)

(22)

III. ENERGETIC PARTICLE CONTRIBUTION
Here, we compute the energetic particle contribution to §W,. The derivation pre-
sented here extends the work of Cheng® to include the finite orbit width due to the
magnetic drift. In the following, we will derive separately the circulating particle

contribution and the trapped particle contribution, and then give numerical results.

A. Circulating Particle Contribution
To begin with, we solve Eq. (7) by integrating along the unperturbed particle orbit.

For simplicity, we rewrite Eq. (7) as

%g" = H(r,§,¢,t) = Z H,(r,8)exp(i(mf — ng — wt)] (23)

where d/dt denotes the total time derivative along the unperturbed particle orbit, the

function H is the right hand side of Eq. (7), o is the sign of the parallel velocity, r

11



is the poloidal flux variable, § and ¢ are the generalized poloidal and toroidal angles,
respectively, and m and n are the poloidal and toroidal mode numbers respectively. In
Eq. (23), we have expanded the function H in terms of poloidal Fourier components
of the perturbed fields. Note that the poloidal dependence of H,,(r,6) comes from

the equilibrium quantities. The solution of Eq. (23) is then
t
¢° = / Y Hu(r',8") expli(mf’ — ng' — wt')|at!, (24)

where 7 = r/(¢'), 8' = §'(t') and ¢ = ¢'(t') are theAtrajectory of the unperturbed
particle orbit with boundary conditions at ¢’ = ¢: 7'(¢) = 7, #'(¢t) = 6 and ¢'(t) = ¢.
At this point, it is appropriate to determine the particle orbit in ar equilibrium
magnetic field of an axisymmetric tokamak. First, we note that the radial flux variable
7 is no longer a constant of motion due to the magnetic drift. Instead, the toroidal

angular momentum Py is conserved, i.e.,
Mc
Py=r~- T%R = constant. (25)

Thus, the orbit equation for 7’ is

' c

r =7+ (UHR— < U“R >), (26)

o | S

where 7 =< r >, <> denotes the averaging over the entire orbit. Also, we have used

the parallel velocity v to approximate vy, the toroidal component of the particle

12



velocity. To continue, we define the instantaneous drift frequency wy to be

=—n[vg - (Vo = §V0) + (g - Dy b - V4] (27)
and make use of the following definitions:

S, =m —ng, (28)

Wi(t) = /0‘ it (wa= < wa>). (29)
The exponent in Eq. (24) can now be written explicitly
ml' —ngd —wt' =(mh - ng — wt) = (W= < wyg > —0Smui(t —t))
+[Sm(8' = 8) = oSpw (t' —t) + W(t') — W(t)] (30)
where w; = 27/7, is the transit trequency with 7, being the transit period of the
circulating particles. Note that the third term in Eq. (30) is a periodic function of

t' with the period 7, and so is H,,(7',6'). Thus, we can make Fourier expansion in

following manner:

Ho(r',8") expli(Spmb’ — oSpwit’ + W(t'))] = Z Hy, ,exp(ipwyt’), (31)
where 7’ is given by Eq. (26), p is an integer to be summed {rom —cc to +o0, and
Hy, , is given by -

HE, (7) fdtH 7 8') expli(Smb’ — (pur + 0 Smwi)t + W())]  (32)

13



Equatin (24) can now be integrated to give

iHy, ,expli((p + 0Sm)wet’ = Smb — W(2))]
w— <wqg > —(p+ 0Sm)w:

expi(mf — ng — wt)] (33)

=3

m.p

where we have defined a time-like variable t7(8)
6 jB
t°(0) =0 | ~—db. 34)
) /0 vl (

It should be pointed out that the symmetry relation Hy, , = H;7 , found in Ref. 8
is broken due to the finite orbit width, since ' depends on ¢ in Eq. (32). Given Eq.

(33), the circulating particle contribution can be derived straightforwardly to obtain

8r? 2 dA OF (G2, )*G?
Wi =50 82 [ar [ By - mol Gy (g
Wi M? ";n dr/ B edemw - w )85 W= < wyg > ~0(p+ Sm)w (35)
where A = puBy/e is the pitch angle variable, and G7, , is defined exactly the same
way as HZ _, with function G in Eq. (19) replacing function A in Eq. (32). In the

m,p?

limit of zero orbit width, Eq. (35) reduces to Eq. (3.74) in Ref. 8.

B. Trapped Particle Contribution
The solution of Eq. (7) for trapped particle can be similarly derived, but some care
must be taken of the fact that the trapped particle orbit samples only a part of a field

line and that the parallel velocity changes sign at the turning points. The solution is

L z: T;Hm.p exp[i(pwbta — Smb — W(t))]
g W= < Wq > —puwh

m.p

exp[i(mb — ng — wt)], (36)

14



where we have defined the time-like variable for trapped particles

¢ iB

e = o |y

1= 49 (37)

for 7,/4 > t* > —m/4 and t7(6) = 7/2 = t*(6) for 3n/4 >t~ > /4, and Hy,p is

given by

Hop o(F) = fdtH 7, 0") expli(Smb' — pwst’ + W(t'))]

T Bd&' : ”
== / i lenl P8 expli(Smb' — pupt® + W(t))]  (38)

where the subscript o in 7' denotes the sign of v, and 7, is the orbit period of
the trapped particles. Note that <'v“R >= 0 for trapped particles, thus r! =

7+ oMclvy|R/e. The corresponding trapped particle contribution to 6Wj is

6F (G ! )‘G"l
= E g3 - m_.p P
oW /d / edem(w ~w) Zo 0t w— < wy > —puwy (39)

m’ m

where Gy, is defined the same way as H,,, in Eq. (38). In the limit of zero banana

width, Eq. (39) reduces to Eq. (3.72) of Ref. 8.

C. Numerical Results
Here, we present the numerical results for the FOW effects obtained by using Eq.
(22), (35) and (39). Since we are interested in stability, we calculate only the resonant
contribution of §W), or the imaginary part of w;. We consider the parameters of the
TFTR neutral beam injection (NBI) experiments'®: the major radius R = 240cm, the

15




minor radius a = 75¢m, the toroidal magnetic field B = 1.07', the central temperature
T:(0) = T.(0) = 1.2kev, the central plasma density n.(0) = 2.7 x 1083¢m=3, the
effective thermal ion mass me.s; = 2., the effective charge Z.;y = 2.5, the beam
particle mass m, = 2.0, and beam injection energy E, = 110kev. The plasma pressure
profile is P = Py(1 — z°)%?2, the density profile is n, = ng(1 — 0.8z*), where z is the
square root of the normalized poloidal flux, the safety factor ¢ is specified by four
parameters as in Ref. 8, the central g = 1.0, the edge ¢y = 3.5, ¢, = 1.2 and
¢, = 3.5, where the prime denotes the derivative with respect to the normalized
poloidal flux. The beam density profile is ny = ny(0) exp[—(z/Ly)?] with L, = 0.44.
Note that for this beam density profile, the absolute density scale length at z = 0.5
is 18cm, which corresponds tc the experimental measurement!$, Finally the beam
distribution function Fy is assumed to be a slowing-down with a single pitch angle,
i.e., Fy(e,A) x e73/26(A ~ Ag) with Ay = O for tangential injection.

Figure 1 shows the surface component of the MHD plasma displacement vector £
of a n = 2 TAE mode as a function of radial variable z. A total of four poloidal
harmonics are plotted. We note that the m = 2 and m = 3 harmonics dominate over
others and peak at r = 0.41 where ¢ = 1.25. It is instructive to compare the orbit

width of the energetic beam particles with the radial mode width. the orbit width due

to the magnetic drift can be derived from Eq. (25) and is on order of & = 2qv/w..

16



For the parameters considered here, Ay = 16¢m which is 1/5 of the minor radius and
is somewhat larger than the radial mode width of Fig. 1. Therefore, we expect the
FOW effects to be significant. This is confirmed in Fig. 2, which shows the growth
rate of the same mode due to the circulating beam particles as a function of the ratio
of the beam speed and the Alfvén speed. The solid line is calculated with the FOW
effects and the dashed curve is obtained by turning off the FOW effects. We observe
that the FOW effect is stabilizing for larger values of vy/v4, but it is destabilizing
for smaller values of vy/vus due to the resonance broadening. This feature exhibits
two opposite influences of FOW: on one hand, FOW is stabilizing due to the usual
orbit averaging of the localized wave; on the other, FOW is destabilizing due to the
resonance broadening. The same feature was previously found for the high-n TAE
modes!®, For the particular case considered in Fig. 2, the primary wave-particle
resonance vy = v, is satisfied for vy/v4 > 1.15 at ¢ = 1.25 where the mode peaks and
the effect of the orbit averaging is dominating; on the other hand, for smaller values
of vy/vs < 1.15, the primary resonance is only satisfied away from where the mode
peaks and the effect of the resonance broadening is dominating.

Figure 3 shows the growth rate of the n = 2 TAE mode due to the trapped beam
particles with single pitch angle A ~ 1.0. We observe that the FOW effect is always

stabilizing. For these parameters, the trapped particle contribution is reduced by

17




almost a factor of 10. It is instructive to note that the banana width of the trapped
particles is on order of 50c¢m and is much larger than the mode width.

In summary, the finite orbit width effect can be either stabilizing or destabilizing for
circulating particles, depending on the ratio of the hot particle speed and the Alfvén

speed. For trapped particles, the FOW effect is found to be always stabilizing.

IV. COLLISIONAL DAMPING OF TRAPPED ELECTRONS

Here we consider the collisional damping of the TAE mode due to trapped electrons.
Gorenlenkov and Sharapov showed that the dominant electron damping comes from
the collisional trapped electrons®. Rosenbluthrosen included parallel electric field
term, in addition to the curvature term considered in Ref. 20. Fu and Cheng!® further
showed that the contribution of the curvature term to the collisional damping vanishes
as the real frequency of the TAE mode approaches the bottom edge of the continuum
gap. All these previous results were obtained by solving the bounce-averaged drift-
kinetic equation approximately as a boundary layer problem for a model TAE wave
structure. In this work, we extend previous work to general equilibria by solving

numerically the bounce-averaged drift-kinetic equation, which is

(—iw—- < C >)g=< H >, (40)

18




where < C > is the bounce-averaged pitch angle scattering operator given by

R 3/2wwi gm0 ‘
<c>-zu,(T) BT dgaAA/JBvdé?)aA (41)

Y

with the function I1(z) being defined as

[I(2) = Zegp + —_— +

i : -3 m
v \/_(2 - ;5)/ dt. (42)

Here, v, is a normalized electron collision frequency and is given by v, =
4rn.etin(A,)/(m?v?), where n. is electron’s density, m. is electron mass, v, is electron
thermal speed and In(A,) is the Coulomb logarithm. Note that in the left side of Eq.
(40), we have neglected the drift term which is small for electrons. For convenience
of solving Eq. (40), we make the change of variable n* = (Amaz = A)/(Amuz = Amen),
where Ap., and A, is the lower bound and the upper bound of the pitch angle

variable A = uB,/¢ for trapped particles. Then, Eq. (40) becomes

18 G i
_ d _ i 3
(1 zCE g D(n )Bn]g w<H> (43)
with
_mA |
D(n) = A <1-AB>, (44)
Cp = &Y Sysnn( o) (45)
E= AT, ‘

where A = Anaz — Ami. The boundary conditions are ¢'(1) = 0 and g(1) = 0.

We solve Eq. (43) by expanding g in terms of an orthogonal set of basis function g

19




defined as the eigenfunction of the collisional operator. Thus, g, is the solution of the
following equation with eigenvalue )\

1 & 0 .
— ) = - \gi, (46
o (n )8779' 19 (46)

where [ is a positive integer with [ = 1 denotes the smallest eigenvalue. Thus, we can
write g = 3, ;g with the coefficient a; determined by Eq. (43) and is given by

iy nm < H > gidn

N \ 9 ‘ (47)
w(l +iCeN) i nmgidn

The collisional contribution to 6W), can be derived straightforwardly using Eq. (17)

and (47) to give

Wi =

167: 6A/di‘6F 34 | Jy mmy < G > gidn|? (48)

Mz B (1+iCeN) [y nmgidn’
Note that we have neglected w, term since w, << w for electrons. From Eq. (48), it
is easy to show that the imaginary part of §W; . is negative, which implies damping.
Before going into detailed numerical results, it is appropriate to discuss the relative
contribution of the parallel electric field term and the curvature term in the function
H (i.e, the right hand side of Eq. (40) or Eq. (10)). Recall that H =~ iedF/9¢(ivq -
6E, +wW¥). We found numerically that the curvature term is usually much smaller
in comparison with the parallel term. The numerically calculated collisional damping

rate due to the curvature term alone agrees with that of the analytic results'®, i.e.,
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the second term of Eq. (67) in Ref. 15. The smallness of the curvature term is due
to the fact that the contributions of the two dominating poloidal harmonics of the
TAE mode nearly cancel when the mode frequency is close to the bottom edge of
the continuum gap. This near cancellation is manifested as the dependence on the
mode frequency through the parameter A in Eq. (67) of Ref. 15. For typical case,
the mode frequency is near the bottom edge of the continuum gap and A* ~ 0.1.
As a result, the curvature contribution to the the collisional damping is reduced by
an order of magnitude in comparison with that of the previous work®. This near
cancellation in the curvature term can be shown more explicitly as follows. To begin
with, recall that the TAE mode is localized radially near the continuum gap, where
a pair of neighboring poloidal harmonics, m and m + 1, dominate over the other
harmonics (see Fig. 2, for example). Thus the curvature term vy 6E, x £k = &k,
comes mainly from the surface component of the plasma displacement vector (since
the radial component &, ~ €, is much smaller than &,). Recall that s is the magnetic
field line curvature. Now, &, can be expanded explicitly as & = &M(r)sin((m -
ng)d) + £m*1(r)sin((m + 1 — nq)d) for its variation along the field line, exploiting
the fact that only two harmonics are important. Near the continuum gap location
where ¢ = (m + 1/2)/n, &, reduces to & =~ (§™*!(r) — £™(r))sin(8/2). Looking at

Fig. 1 and 4, we observe that the difference between £™(r) and €™*+!(r) is small.
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Numerical results show that this difference becomes even smaller as the TAE mode
frequency approaches the bottom edge of the continuum gap (when the plasma beta
increases). Therefore, the contributions of the two poloidal harmonics to the curvature
term nearly cancel when the mode frequency is close to the edge. In Ref. 15, this
cancellation was shown analytically in the high-n limit.

We now present numerical results for the collisional damping rate obtained from
Eq. (22) and (48). Since the curvature term is usually much smaller than the parallel
electric field term, we will only compare the numerical results and the analytic results
for the parallel electric field term alone. We consider the parameters of the TFTR
ICRF experiments!®: R = 260cm, a = 96cm, B = 3.26T, T.(0) = T,(0) = 4.5kev,
ne(0) = 4.8 x 108¢m =%, the effective mass m.;; = 2., the effective charge Z.sy = 2.5,
the pressure profile P = Py(1 ~ z?)?, the density profile n, = n.(0)(1 — 0.82%%), and
the safety profile ¢ = exp|ln(g,)z?] with the edge ¢ = q; = 5.6. Figure 4 shows four
poloidal harmonics of the surface component of the MHD displacement vector as a
function of the radial variable z for the n = 2 TAE mode. This eigenmode is computed
for the equilibrium considered here and is similar to that of Fig. 1. Figure 5 shows the
collisional damping rate as a function of the normalized effective collisivnal frequency
Vesf/w for the corresponding n = 2 eigenmode, where v,7y = 22,471, /6A evaluated at

z = 0.35. The solid curve shows the analytic results obtained from Eq. (67) of Ref.




15 and the circle line is obtained numerically using Eq. (48). We see that, for small
collisional frequency of v.ss/w < 10~!, our numerical damping rate exhibits nearly
the same scaling with v,/;/w and is about a factor of two smaller as compared to the
analytic result. This difference of a factor of two is reasonable considering that how
many approximations have been made in obtaining the analytic results'®. However,
for not very small collisional frequency of v,yg/w > 107}, the dependence of the
collisional damping rate on the collisional frequency is much weaker for the numerical
results than for the analytic one. This is due to the factor that the analytic scaling
is only valid for very small v,ss/w. For typical parameters, the collisional frequency
ranges from v,sp/w ~ 107! for the TETR ICRF experiments'® to v,/w ~ | for
the TFTR INBI experiments'®. This indicates that a numerical calculation of the
collisional drift kinetic equation must be employed to obtain an accurate collisional
damping rate due to the trapped electrons.

Before ending this section, it is instructive to discuss the convergence of the colli-
sional damping rate with the number of the basis functions ;. The first four eigen-
functions g; are shown in Fig. 6 for the parameter of Fig. 5. For the range of v, /w
considered here, we find that a summation up to [ = 8 is sufficient for good conver-
gence. This result is not surprising, since we expected the convergence to occur when

CeMi ~ O(1) or [Pveps/w ~ O(1). Note that the eigenvalue is roughly \; ~ (. Then




we would expect a number of | ~ 6 is needed for convergence for v, ss/w ~ 3 x 1072,

V. STABILITY THRESHOLD: COMPARISON WITH

TFTR EXPERIMENTS

Here, we calculate the critical hot particle beta for the TAE instability by balanc-
ing the hot particle destabilizing contribution against ion Landau damping, electron

Landau damping and trapped electron collisional damping.

A. The TFTR NBI Experiments

We consider the TFTR NBI experiments by Wong et al.!® in which the n = 2
and n = 3 TAE modes were excited by the tangentially injected neutral beam ions.
The parameters and profiles are given in Sec. 1II. The beam particle driven growth
rates are given in Fig. 2 for the n = 2 mode. The ratio of beam particle speed and
Alfvén speed is v,/va4 = 1.1 for the plasma density of n.(0) = 2.7 x 10*3¢cm~3. Thus,
the finite orbit width effect is destabilizing. The FOW effect is also destabilizing for
the n = 3 mode. Table I lists the critical beam beta values at the radius z = 0.4
forthe n = 1, n = 2 and n = 3 TAE modes. We see that the calculated critical
beam beta values agree well with the experimental measurements. It is instructive
to compare the sie of various damping mechanisms. For the n = 2 mode, the ion
Landau damping is comparable to the electron’s collisional damping. For the n = 3

mode, the electron collisional damping is much larger than the ion Landau damping.
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The electron Landau damping is negligible for both modes. It should be pointed out
that both the FOW effect of the beam particle and the trapped electron collisional
damping are crucial for good agreement between the theory and the experiment.
Without these two effects, the predicted threshold would be a factor of five lower
than the experimental measurement for the n = 3 mode. Finally, it should also be
pointed out that the hot particle contribution is sensitive to the pitch angle, at least
for the parameters considered here. We find that the hot particle drive increases by
a factor of six when the pitch angle varies from A = 0 to A = 0.75A,,;». This large
change comes from the pitch angle dependence of the parallel wave-particle resonance
condition, w =< wy > +kjvy, where the transit averaged magnetic drift frequency
< wy > is not zero for passing particles due to toroidicity and magnetic shear. For
the parameters considered here, the primary resonance vq ~< wq > /ky + v is not
satisfied at the mode peak. Thus, the main hot particle contribution comes from
the sideband resonance, v4 =< wy > /kj + 3v;. This sideband resonance increases
strongly as A increases. Therefore, one should be very careful in chosing the fast
particle pitch angle distribution. Here, we use a single pitch angle at A = 0 for
simplicity. In reality, the pitch angle distribution has a finite spread even for the case
of parallel injection of neutral beam particles. In this case, the calculated critical

beam beta would be somewhat higher.
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B. The TFTR ICRF experiments

Here, we consider the TFTR ICRF experiments'® in which the TAE modes were
excited by the fast minority ions heated by ICRF. Some parameters and profiles for
the core plasma have been given in Sec. IV. The fast ion distribution is chosen to
be a Maxwellian with single pitch angle Ay = 1.0 and The profile of the fast ion
temperature is chosen to be Ty = T4(0)(1 = 2x/Ly +2%/L?) for £ < Ly and Ty, = 0 for
r > Ly, where T,(0) = 500kev and the radial scale length L, = 0.55 corresponding
to 40% of the whole minor radius. The fast ion density profile is assumed to be
constant. Our choice of the fast particle distribution may be justified as follows.
First, the energy distribution of the fast particles heated by [CRF is approximately
Maxwellian due to balance between the ICRF heating and slowing down by electron
collision, as shown by Stix®!. Second, the fast particles are heated predominantly
in the perpendicular direction during the ICRF heating. Furthermore, the ICRF
heating is very localized near the magnetic axis. Thus the corresponding pitch angle
of the fast particles is approximately A = 1.0. Table II lists the critical volume-
averaged fast ion beta values for the n = 2 and the n = 3 TAE modes. We see
that the calculated stability threshold agrees well with the experiment for the n = 3
mode, but for the n = 2 mode, the theoretical critical beta is about a factor of

three lower than the experimental value. We find that for both modes, the trapped
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electron collisional damping is the dominating damping mechanism. The ion Landau
damping is negligible due to low thermal ion beta. Several reasons may be speculated
to explain the discrepancy between the theory and the experiment for the n = 2
mode. First, some additional damping mechanisms which are neglected here may be
important, such as the non-perturbative kinetic damping. Second, we find that the
calculated fast ion drive is quite sensitive to the fast ion temperature and it's profile.
For example, raising the central ion temperature from 500kev to 700kev would reduce
the fast ion contribution by a factor of 2.2, and changing the temperature profile to
Ty, = Th(0)(L = x/Ly) would reduce the fast ion drive by a factor of 7.7 ! Therefore,
one needs an accurate experimental measurement of the fast ion parameter and profile
to make a more conclusive calculation of the fast ion contribution. All these issues
must be dealt with before a better comparison between theory and experiment can

be made.

V1. PARAMETER DEPENDENCE OF STABILITY THRESHOLD

IN AN IGNITED TOKAMAK

Here, we study the parameter dependence of the critical alpha beta for TAE stability
in an ignited tokamak. We consider following parameters: the major radius R =
250cm, the minor radius a = 80c¢m, the toroidal magnetic field B = 5T, the central

electron temperature T,(0) = 10kev, the ion temperature T,(0) = 20kev, the effective
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ion mass m.ss = 2.5, the effective charge Z.5y = 2.5. The plasma pressure profile is
P = Py(1 — z%)?, the density profile n, = no(1 — 0.8z?), where z is the square root
of the normalized poloidal flux, the safety factor q is specified by four parameters as
in Ref. 8, go = 1.1, ¢y = 5.5, ¢, = 1.0 and ¢q{ = 5.5, where the prime denotes the
derivative with respect to the normalized poloidal flux. The alpha particle density is
given by n, = n,(0)exp(—z?/L?), where L, is the normalized density scale length.
The alpha particle distribution function is assumed to be a slowing-down in energy
and uniform in pitch angle. It should be noted that these parameters and profiles
are similar to those expected in the planned TFTR D-T experiments®®. For these
parameters, the trapped electron collisional damping is very small. On the other

hand, the FOW effect is important and will be discussed below.

A. Dependence on v,/v4
Figure 7 shows the critical volume-averaged alpha particle beta values as a function
of v,/va for the n = | TAE mode, where v, is the fusion alpha particle speed at
birth and v, is the Alfvén phase speed evaluated at the magnetic axis. The solid dots
in Fig. 7 are computed with the finite orbit width (FOW) effects of alpha particles
due to the magnetic drift, whereas the circles are computed without FOW effects. A
similar plot for the n = 2 mode is shown in Fig. 8. In these figures, we vary v,/va

by varying the plasma density while keeping all other parameters fixed. Since the
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equilibrium beta is proportional to density, each dot (or circle) is computed with the
self-consistent equilibrium at the corresponding beta value. We see that the FOW
effects are stabilizing for larger values of v,/v4 and destabilizing otherwise. The
minimum of < 8, > occurs at v,/vq = 1.0. The critical beta increases rapidly as
Va/ Va4 increases for v,/v4 > 1.0 due to increasing ion Landau damping. On the other
hand, for v,/v4 < 1.0, the critical alpha beta increases as v,/v4 decreasing due to
increasing electron Landau damping and weakening alpha particle drive. For value of
Ua/Ua =~ 1.4 corresponding to the TFTR D-T experiments®?, the critical alpha beta
is < 3, >~ 6 x 1074, which is close to the expected alpha particle production in the

TFTR D-T experiments.

B. Dependence on equilibrium beta

The results just shown in Fig. 7 and 8 are obtained with self-consistent equilibrium
at finite plasma beta. Here, we show what will result if the zero beta equilibrium
is used. Figure 9 compares the critical alpha beta values obtained using the self-
consistent equilibria (solid dots) with that of zero beta equilibrium (circles) for the
n =1 mode. As expected, for small values of equilibrium beta or v, /vy, the critical
alpha beta values are nearly the same for the two cases. However, for the larger
values of v,/v4, the critical alpha beta with zero beta equilibria is much smaller than

that with finite beta equilibria. We find this large difference comes mainly from the




dependence of the real mode frequency on the equilibrium beta. As the equilibrium
beta increases, the real frequency becomes smaller. As a result, the ion Landau
damping is enhanced strongly by the finite beta effects. On the other hand, the
alpha particle drive is found not sensitive to the equilibrium beta. Thus, the critical
alpha beta is enhanced by the finite equilibrium beta effects for v,/v4 > 1.1. (For
Ua/Ua < 1.1, the critical alpha beta is enhanced slightly by the finite equilibrium beta

due to the increased electron Landau damping).

C. Dependence on T,/T.

Figure 10 shows the critical alpha beta of the n = | TAE mode as a function
of the ratio of ion temperature and electron temperature for 7, + 7. = 30kev and
Va/va = 1.38. We see that < 3, > increases rapidly as 7,/7T, increases. This strong
dependence is due to the fact that the ion Landau damping is sensitive to the ion
beta. For the parameters considered here, the ion Landau damping is found to be

the dominating damping mechanisni.

D. Dependence on alpha particle density scale length
Figure 11 shows the critical alpha beta as a function of the alpha density scale length
L. with FOW effects (solid dots) and without FOW effects (circles) for the n = | TAE

mode. Recall that the alpha density profile is chosen as n, = n,(0)exp(~z*/L%),
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where r is the square root of the normalized poloidal lux and L, is the normalized
alpha density scale length. In Fig. 11, we see that the critical alpha beta increases as
L., increases for both cases. The effects of FOW enhances the dependence of alpha
critical beta on L,, especially near L, = 0.3. This can be understood physically as
follows. The dependence of alpha particle drive on L, comes from the combination
of two opposite effects. For smaller L,,, the destabilizing pressure gradient term is
larger. However, the location of the largest pressure gradient of the alpha particles is
further away from where the mode peaks. This shift of maximum gradient surface as
L., becomes smaller, which is stabilizing, is weaken by the FOW effects. As a result,
the critical alpha beta is more sensitive to L,, with FOW effects than without FOW

effects,

VII. CONCLUSIONS
We have presented a comprehensive analysis of the stability of the TAE modes in
general tokamak equilibria, including the finite orbit width of the hot particles due
to the magnetic drift and the collisional damping of trapped electrons, in addition to
the Landau damping of the thermal ions and electrons. For the trapped hot particles,
the finite orbit width is found to be stabilizing. For the circulating hot particles, the
finite orbit width effect is stabilizing for larger values of v,/v4 and destabilizing for

smaller values of vy/vs. The collisional damping of trapped electrons is found to
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have a much weaker dependence on the collision frequency than the previous analytic
tesults for v.yy/w > 10~!. The contribution of the curvature term to the collisional
damping is negligible compared to that of the parallel electric field term for typical
parameters. The calculated stability thresholds agree reasonably well with the TFTR

experiments.
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TABLE I. Comparison of the theoretical critical beam ion beta with the experimental

measurements in the TFTR NBI-heated plasmas

critical beta n=1 n=2 n=3
(,Bh)ezp stable 0.5% 0.5%
(ﬁh)themy 1.2% 0.47% 0.38%
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TABLE II. Comparison of the theoretical critical fast ion beta with the experimental

measurements in the TFTR ICRF-heated plasmas

critical beta n=2 n=3
< Bh Sezp 2.7 x 1074 2.7x 1074
< Bh Stheory 0.74 x 10~4 3.5 x 1074
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FIGURE CAPTIONS

Figure 1. The surface component of the MHD plasma displacement vector as a func-

tion of the radial variable z for the n = 2 TAE mode in the TFTR NBI experiment.

Figure 2. The circulating beam particle driven growth rates of the n = 2 TAE mode
versus the ratio of the beam particle speed and the Alfvén speed with and without

the finite orbit width effects.

Figure 3. The trapped beam particle driven growth rates of the n = 2 TAE mode
versus the ratio of the beam particle speed and the Alfvén speed with and without

the finite orbit width effects.

Figure 4. The surface component of the MHD plasma displacement vector as a func-

tion of the radial variable z for the n = 2 TAE mode in the TFTR ICRF experiment.

Figure 5. The collisional damping rate due to trapped electrons as a function of the

effective collisional frequency.

Figure 6. The first four eigenfunctions of the collisional operator.
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Figure 7. The critical volume-averaged alpha particle beta as a function of v,/v4 for
the n = | TAE mode with the FOW effects (solid dots) and without the FOW effects
(circles).

Figure 8. The critical volume-averaged alpha particle beta as a function of v, /v4 for
the n = 2 TAE mode with the FOW effects (solid dots) and without the FOW effects
(circles).

Figure 9. The critical volume-averaged alpha particle beta as a function of v,/v4 for
the n = 1 TAE mode obtained with self-consistent finite beta equilibria (solid dots)
and the zero beta equilibrium (circles).

Figure 10. The critical volume-averaged alpha particle beta as a function of T, /T, for
the n = 1 TAE mode.

Figure 11. The critical volume-averaged alpha particle beta as a function of the alpha

density scale length L, for the n = | TAE mode.
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