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Abstract. This paper addresses the design of pointing control systemsa for autonomous space vehicles. The function
of the pointing control system is to keep distant orbiting objects within the field-of-view of an on-board optical sensor.
We outline the development of novel nonlinear control algorithms which exploit the availability of on-board sensors.
Simulation results comparing the performance of the different pointing control implementations are presented.
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1. INTRODUCTION

Design of space vehicle attitude control systems where large
angular rotations are required has been addressed using the
concept of Euler axis of rotation and quaternion feedback
control (Mortensen (1986),Wie and Barba (1985),Vadali
(1986), VanDenBosch et. al. (1986), Wie et. al.(1989)).
Euler axis of rotation is preferred since it defines an axis
about which if the specified scalar angle of rotation is per-
formed provides the most direct transition between two ori-
entations of the space vehicle. Rotational maneuvers which
execute the Euler axis rotation are considered to be op-
timal maneuvers. The existing works dealt with rest-to-
rest re-orientation manuevers where the vehicle body rates
are regulated, and vehicle quaternion feedback is employed.
Lyapunov synthesis methods are mostly applied for design
and stability analysis, slthough variable strcuture control
design method has also been considered.

In this paper, we examine the design of pointing control sys-
tems for autonomous space vehicle applications where wide
Field-Of-View (FOV) on-board optic sensors are available
to track distant orbiting objects, and the primary attitude
control actuators are in the form of thrusters. The design
objective of the pointing control loop is to align the Line-of-
Sight (LOS) of the orbiting object to the center of the imag-
ing plane of the optic sensor. For autonomous operations,
the pointing control system utilizes, in addition to the optic
sensor measurements, the vehicle's angular rates which are
measured by means of gyros. As the orbiting object moves
in space relative to the space vehicle, the pointing control
system is to be designed such that the LOS alignment is
maintained.

2. VEHICLE KINEMATICS AND DYNAMICS

The orien.ation of the orbiting vehicle is defined with re-
spect to a Cartesian coordinate frame whose origin is at
the center of Earth (Earth Centered Inertial (ECI) frame).
The difference in orientation between the Body Fixed (BF)
coordinate and the ECI frame is expressed by its Euler pa-
rameters, or quaternions which consist of a scalar part nvg,
and a three component vector part qvg. Angular rates of
rotation with respect to the three orthogonal BF frame axes
characterize the vehicle's angular motion dynamics. Let w

be 8 3 x 1 vector whose first component is the roll rate, the
second is pitch, and the third is yaw rate. The quaternions
evolve in time according to ! :

. 1
Qvg = —E(W”st—wﬂvs)» (1)
. 1
g = —§WTQVE. (2)

The body rates satisfy rigid body rotational dynamics equa-
tion:

Ju=—w dw+T, 3)

where 7 denotes a three component vector whose elements
represent torque applied to the vehicle with respect to the
body axes, and J is the moment of inertia matrix.

3. ON-BOARD IMAGING SENSOR

An optical sensor is rigidly mounted to the vehicle body.
Gimballed mounts are eliminated by other vehicle system
engineering design constraints. It is assurned that the point-
ing axis of the sensor coincides with vehicle’s X(roll) axis.
The imaging plane of the optics is in the vehicle’s Y(pitch)-
Z(yaw) plane. A distant orbiting object, if detected within
the field-of-view of the sensor, is registered on the imaging
plane and decoded as a pair of coordinates which respre-
sent the “centroid” of the object image. Equivalently, its
location on the plane can be characterized by an azimuth
angle 64, and an elevation angle fg. Given these angles, an
unit line-of-sight (LOS) vector is defined:

7 =r;‘( 1, tanf,, tanfg ) , (4)

rp = (1+tan?6, +tan?6g)t . (5)
Three directional cosine angles, a, §,, are derivable from
P

cosy = 1/rp, cos f = tanba/rp, cosa = tanbg/r, (6)

13 = (a1,03,as) it expresed as 3 x 1 vector a7 = [a1,02,03],0% &
0 -a3 a

as 0 -Gy
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4. POINTING CONTROL

The pointing control algorithms we developed are based on
Euler rotation. Fror ' wssical mechanics (Goldstein(1981)),
it is known that given two coordinate systems with different
orientations, there exists an axis of rotation (the so-called
Euler axis of rotation) X and an angle ¢ such that rotat-
ing one of the coordinate system about X by ¢ produces
two coordinate systems with identical orientations. For the
orbiting vehicle, the goal of pointing the roll axis at the dis-
tant orbiting object is equivalent to aligning the roll axis
with the LOS vector p. By adopting the LOS vector as the
X axis of a fictituous rigid body and defining the other two
orthogonal axes by right hand rule, a new coordinate sys-
tem (the LOS frame) is created. The pointing control goal
is translated into matching the orientations of the LOS and
the BF frame. The Euler axis of rotation is defined with
the directional cosine angles:

I=(0 -3 7). ")
and the requisite angle of rotation is . Figure 1 shows
the relative orientations of the LOS and BF frames. The
quanternions that characterize the orientation of the BF
frame relative to the LOS frame are:

Gvr = (siny/2) X, vy =cosy/2. (8)

The quaternions for the orientation of the LOS frame rela-
tive to the BF frame are:

qv = ~qve, Mv =1mvL. 9)

Using trigonometric identities, we express §rv as a three
component vector in the form :

dv=[0 =2 =225 ). (10)

4.1. A Lyapunov Design

A pointing control law is derived below using a Lyapunov
stability argument. It is composed of a feedforward term
to compensate for cross axis rate couplings, and rate and
orientation error feedback where the orientation error is
expressed in terms of qpv:

r = ww-Dw-w,) - Kqv, (11)
D = diag(d,dz,ds), K =diag(ks, ka,ks), (12)

where d; > 0,k > 0,i = 1,2,3 and w;, is 8 3 x 1 angu-
lar rate vector whose components are the rates of rotation
about the LOS frame's axes. It is assumed that the body
rates of the LOS frame remain constant during the orbital
encounter. The closed loop system stability is examined via
a Lyapunov function candidate:

=Hw-w)TK ' Nw—w) +
+(qvs — que)T(qvs — qus) + (ove — nue)®,  (13)

where qug, N5 are the quaternions of the LOS frame with
respective to the ECI frame. Since J is positive definite,
and k;’s are chosen to be positive, V is positive definite
except at the origin where w =wy,qve = qus, and nvg =
.. The Lyapunov stability proof hinges on an equivalent
representation for quy which is expressed in terms of the
quaternions qyg and q.g:

QvL = —qLv = NWVEQLE — NLEQVE — Qv EILE - (14)

It has been proved (the proof is omitted due to page limits)
that

/ = —(w—w)TK ' D(w —wyg) < 0. (15)

Thus, in the closed loop system, the origin is an asymp-
totirally stable equilibrium, i.e., the angular rates of the

orbiting vehicle synchronize with that of the LOS asymp-
totically, and the quaternions of the vehicle tend to the
same as that of the LOS frame. This means that the point-
ing axis would eventually be in perfect alignment with the
LOS.

4.2. Feedback Control Realization

The feedback mechanisms in the pointing control law be-
come clear if the last term in Eqn.(12) are expressed more
explicitly in terms of the azimuth and elevation angles.Denote
the feedback control in Eqn.(12) as 7/,

di{wr — we)
= —Dw-—w)-Kav=—| dy(wz ~wr2) ] +

da(ws — wia)
0
R
+ —ka \/§(1+,'); tanfg . (16)

4
+k3m tan 84

From these expressions, we observe that:

1. The roll torque (the first component of 7f) provides
damping only. Orientation error in the roll axis is
automatically nulled by servoing actions in the pitch
and yaw channels.

2. The servoing actions which operate on the pitch and
yaw orientation errors are proportional to the tan-
gents of the azimuth and elevation angles of the opti-
cal sensor.

For a vehicle whose body axes conicide with the principal
axes, the inertia matrix J is diagonal and its diagonal el-
ements J;,i = 1,2,3 are the principal moments of inertia.
The roll dynamics are decoupled from the pitch-yaw dy-
namics, and the closed loop system is reduced to *:

Jign = —di{w) —wry), (1m

Jiin = —dy(we —wr) ~ kar(9,64) tanbe,  (18)

Jsin = —da(ws —wis) +kar(05,04) tanba,  (19)
where

r(0s,04) & (2_(1_%_3)4 , (20)

is a norm-like measure of the angular deviations from bore-
sighting the distant object. -

From a feedback control realization viewpoint, it 18 advan-
tageous to replace w; which is a vector expressed in the
LOS frame by w} - & vector whose components are the ro-
tations of the LOS frame as detected and computed from
the vehicle's on-board sensors. For the pitch and yaw axes,
the azimuth and elevation angles can be used as angular
displacement state variables, From the relative geometry
of the LOS and the body frame, we have

95 = M+&Er (21)
6a = -wy+0a, (22)

where o5 and G4 are the rotations of the LOS frame with
respect to the pitch and yaw axis respectively For the roll
axis, the angular rotation of the object as scen from the
imaging plane is the third displacement state vanabie

fr=wr — w2 wr. (23)

Note that the steady state value of 8z defines the onen-
tation of the LOS frame in :he plane normal o the LOS.
Defining the rate errors as

wz +U.E = éE ) (24)
wy — 64 = —ba, (25)

WE

o> e

Wa

1For vehicles with non-diagonal inertia ratrix, thu smpification
can be accomplished by premultiplying the RHS of tqn (12) by J.



the resulting feeback control realization and the associated
stae space model of the closed loop system are summarized

below.
dle 0
7 = - [ dawg jl + —kg'r(as,g‘) tanfg } (26)
dywa +k37’(6s,9;\) tanf4
br = wn, (27)
J)QR = -—dlwn, (28)
éE = WE, (29)
Jaog = —dawg ~ kar(8s,04) tanbs, (30)
ba = -wa, (31)
Jywsa = —dswa+ ker(05,64)tan6,. (32)

Since 2112 < r(65,04)) < 27!, the stability of the pitch
and yaw subsystems can be attributed to its similarity to a
coupled spring-mass system where nonlinear stiffness exists
in the equivalent mechancial springs - spring forces become
unbounded only at the singular points g = 84 = 7 /2 which
are physically unrealistic even in wide-field-of-view optics.

4.3. Feedback Control Gain Design

The design of the control gains d;'s and k;'s for the pitch
and yaw channels are simplified by using that the follow-
ing approximations for the nonlinearities for azimuth and
elevation angles in the range 0 < 64,05 < 7/4:

1
"'(95 ) oA) ~ 5 ) (33)
tanf, ~ 6,4, tanfg=0g. (34)

The control gains can then be selected for a linear system
whose closed loop characteristic equation is:

J.-s’+d.~s+%=0, i=23. (35)

For the roll channel, the time constant of the roll rate er-
ror decay is J;/d;. Standard linear control design methods
are applicable to meet transient response and steady state
performance criteria. For large initial off-boresight angular
errors, implying wider field-of-view optics, there are two
options for the design. First, the same gain values as calcu-
lated from the above equation can be used. For large initial
errors, the effective damping is smaller than as predicted in
the linear design. This is due to the large linearized position
gain for large angles, whereas the velocity gain is constant.
Thus, the linear design can be used as a conservative design
even for large initial errors. Alternatively, a direct compen-
sation of the nonlinearities is also feasible. For the particu-
lar feedback control realization using ezimuth and elevation
angles as orientation state variables, replacing the last term
in Eqn.(26) by contant gain feedback of the respective off-
boresight angles reduces t'.e design problem to essentially
a linear omne.

5. CONTR( L ACTUATOR CONSTRAINTS

The use of constant magnitude thrusters in pointing con-
trol for autonomous space vehicles requires a Pulse-Width-
Modulation (PWM) implementation of the developed con-
trol .lgorithms. This means that discrete value discontinu-
ous control signals are devised to approximate the contin-
uous control signals. Alternatively, discontinuous control
design methods such as variable strcuture control (VSC)
can be directly applied to compute the feedback parame-
ters. One of the major advantage of this approach is the
superb disturbance rejection and robustness properties of
VSC. This means that it is not necessary to provide a feed-
forward term in the pointing control law. The VSC pointing
control design is summarized below. The control torques
are computed as:

T, if0i(85,04) > €
=40, ifloife.ba)l <&
T if 0.-(95,94) < —€

i=2,3.  (36)

where a deadzone is established in an ¢, neighborhood of
the switching surface o:(-,-) = 0. A constant torquc ¥ is
applied by the firing one of two thrusters which exert forces
in opposite directions. The signs of the torques for the pitch
and yaw channels are:

T, =-T, T3 =473 >0, (37)
F;=73>0, Ty = —Ts, (38)
Design of the switching surfaces is reduced to choosing the
parameters ¢, cy. From the sliding mode condition, i.e.,
o = os = 0, the ideal sliding mode dynamics govern the
transient behavior of the azimuth and elevation angles:
65 = —or(6g,64)tanbs, (39)
0,4 —O.T(GE,OA) ta.nOA . (40)

i

Using the same approximations as in Eqn.(34), the time
constants for the azimuth and elevation channels are -2/,
and —2/cy repsectively. For initial off-boresight angles larger
than /4, the effective decay rates are higher. Thus these
time constants provide conservative estimates of the tran-
sient decaying time in sliding mode.

An salternative to the deadzone i8 to implement an PWM
realization of a continuous linear feedback signal,

!'9 ) :
ro= 2B o0 s, =20, (@)

wher kg = —1,x3 = 1.

6. SIMULATION STUDY

For the purpose oi checking the peformance of the various
pointing control implmentations, we simulate the pointing
and tracking performance of the pitch-yaw loops. For ease
of reference, we normalize the torque input to the vehicle
axis by the respective principal moment of irertia such that
the control inputs areangular accelerations. The dynamic .
performance of the pointing control loop depends on the
pitch and yaw motion. Thus we focus on the pitch and
yaw loop control design. For the control gain selection,
we specify 8 worst case transient response time constant
of 0.14/2 seconds. According to the characteristic equation
and the desired double poles at —5+v/2,

& = dy=10V2, (42)
ky = dy=100, (43)

[l

which correspond to a damping ratio of £ = 1.
Disturbance rejection properties of the pointing control loops
are tested, with a8 sawtooth time profile to represent the
effects of time-varying disturbance torques which change
signs abruptly. The disturbance torque is similarly scaled,
and therefore is measured in rad./sec.2. The magnitude
of the disturbance is +10rad./sec.®, and its period is 100
msec. This is a severe, persistingly exciting disturbance for
the control authority assumed. The disturbance has zero
mean. The same disturbance is applied to the azimuth and
elevation channels simultaneously.

Initial off-boresight errors correspond to an szunuth angle
of §4(0) = 1.5658 radians, and an elevation angle of 0.1
radians are chosen for the simulation. The initial azimuth
angle is deliberately chosen to be very close to the singu-
larity of the tangent function in order to test the robust-
ness of the linear control design. Figure 2 shows the time
responses with the continuous time pointing control. The
time response of the azimuth angle is divided by 0.16,4(0) to
permit a comparison of the small and large angle responses.
Whereas the elevation angle shows the predicted transient
response, the overshoot caused by the reduced damping for
large angle is exhibited in the scaled azimuth angle plot.
The effects of the PWM implementation of the continuous
time pointing control law are shown in Figure 3. The con-
stant normalized torque level is set at 10 radians/sec.?. A



100 Hz sampling rate (T = 10 m sec.) is chosen for the
computation of the sampled pointing control law. For the
PWM implementation, a minimum pulse on period of 1
msec. is assumed. Control input saturation in the azimuth
channel slows the error decay rate, as well as reducing the
overshoot. The VSC pointing control, whose responses are
given in Figure 4, is implemented as a discrete time con-
trol law with a sampling period of 10 msec. The switching
surface parameters ¢; and c3 are chosen to yield a time
constant of 0.2 sec. for small initial angular errors. This
corresponds to:

g =qaq=10. (44)

In both of these figures, the overshoot characteristics of the
continuous time control are present for large azimuth ini-
tial error. Control input saturation in the azimuth channel
lengthens the settling time.

7. CONCLUSIONS

Design of pointing control systems for autonomous space
vehicles which utilizes on-board optical sensors for the de-
tection of other orbiting objects can be simplified by adopt-
ing a new state space model which compactly represents the
essential pointing system dynamics. The rest'ting pointing
control laws are connected to those control laws designed
for large angle maneuvers for spacecrafts via Euler axis ro-
tations. The dynamic variables required for feedback how-
ever are directly measurable in the present design, as com-
pared to requiring quaternion computations in the previous
designs. Control gain selections in the present design are
based on standar< linear design methods where the tran-
sient performance parzmeters,such as damping ratio and
time constants, are directly translated in the gain parame-
ter space. This is in contrast to the Lyapunov methods in
previous designs using Euler axis of rotations where asymp-
totic stability is the primary design objective, and transient
performance is indirectly controlled via the rate of conver-
gence of the Lyapunov function. Within the current design
framework, we compared the PWM and the VSC imple-
mentation of the pointing control law, both of which utilize
control pulses to point. We found that VSC is more robust
than PWM to both cross couplings between the pitch and
vaw channels, and external distcontinuous disturbances.
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