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Abstract

The relativistic second-order S-matrix elements for photon-atom scattering
havebeensuccessfullycalculatedwithnumericalmethodswithintheindependent
particleapproximation(IPA).Thispermitsan assessmentofthevalidityofsim-
plerapproximatepredictionswhicharecommonly usedanditoffersthepossibility
ofimprovedtabulationsoftheoreticalpredictions.A varietyofunresolvedissues
remain,some associatedwiththerelativistictheory,some withIPA.

The systematicuse ofthe second-orderS-matrixincalculationsofRayleigh
scatteringfrom isolatedatomshas ledtosignificantprogressin understanding
thisprocessand toa wide rangeofagreementw_thexperiment.The energyand
angulardependenceofanomalousfactorsand theimportanceofrelativistic,high-
er-multipoleand bound-boundcontributionsintheircalculationisbetterunder-
stood.However correlationeffectsmust alsobeincludedtoobtainpredictionsfor
the_near-edgeregion;such extensionsofthe presentS-matrixcalculationhave

• been discussed but few results are sofar available. Existing empirical approaches
can be assessed in regard to their success in dealing/with known IPA features.

_ We have recently calculated the relativistic second-order S-matrix element for
Compton scattering and have begun to try to understand this process in different
regions. We can discuss when the more complete calculation confirms the stan-
dard Compton peak. In the softer part of the spectrum impulse approximation
fails. There can be resonant Raman peaks, and in the soft-photon region the spec-
trum is infrared divergent, proportional to the photoeffect angular distribution.
This means the traditional incoherent scattering factor is undefined in the ab-
sence of a low-energy detector efficiency cutoff.

i"Presentaddress:TheoreticalPhysics,TheUniversityofTennessee,200SouthCollege,
Knoxville,TN 37996-1501,USA.



L INTRODUCTION ....

We wish todescriberecentprogressinthetheoreticalcalculationoftheampli-
. tudes and cross sections for elastic and inelastic scattering of photons from atoms.

We will also discuss the extent of agreement with experiment which has been
achieved. This work is largely based on numerical calculations of the relativistic

1 second-order S-matrix element in external-field quantum electrodynamics for pho-
ton-atom scattering within independent particle approximation. We restrict our
consideration to incident photon energies below about I MeV, so that photon-atom
scattering can largely be understood as scattering from the bound electrons of the
atom. We also restrict our consideration to scattering from isolated atoms (or ions),
thereby not dealing with the interesting and important additional features which
arise in scattering from molecules, plasmas, surfaces and solids.

With these new results it is possible to discuss the validity of widely used sim-
pler approaches,to such calculations. For elastic(Rayleigh) scattering from bound
electrons, such approaches have been based on form-factor approximation, or a
modified form-factor approximation, or anomalous-scattering-factor corrections
obtained through dispersion relations and photoeffect cross sections. For inelastic
(Compton)scattering from bound electrons, impulse approximation has been used
to obtain the Compton peak in the spectrum at given scattering angle, and the in-
coherent scattering factor has been used to give the total intensity of scattered ra-
diation as a function of scattering angle.

For more detailed discussion of the S-matrix approach to Rayleigh scattering
we call attention to the initial report of Kissel et al. (1980), the reviews of Kissel
and Pratt (1985) and Kane et al. (1986), the corrected anomalous scattering factors
of Kissel and Pratt (1990), the assessment of the validity of simpler approaches of
Roy et al. (1983) and Zhou et al. (1992b), and works cited therein. The new S-ma-
trix results for Compton scattering from inner-shell electrons were first reported
by Su_ricet al. (1991) and a fuller discussionhas now been presented by Bergstrom
et al. (1992, 1993).

The readei _shouldbe alerted to differing sign conventions that are in common
" use in the hterature. One convention involves the overall sign choice of the scat-

tering amplitude. As the Thomson scattering amplitude is negative, some authors
have explicitly factored out an overall minus sign (see, for example, James, 1965),
while others have not (see, for example, Sakurai, 1967). A second important choice
lies in the direction of propagation of a plane wave. The choice typically made in
the physics literature, exp (iK • r-/cot), differs from that made in the crystallo-

graphic hterature, exp (iK * r + icot), with a consequent difference in the relative
sign of the real and imaginary part of the scattering amplitude. We will not factor
out the overall minus sign in our scattering amplitude A, and will use the plane
wave convention of the physics literature. We will note the differences from the
crystallographic hterature in our final results for the anomalous scattering fac-
tors.

In section 2 of this paper we summarize some of general considerations which
underlie the theoretical description of photon-atom scattering. We discuss the
structure and partitioning of the scattering amplitudes and the dispersion rela-
tions and sum rules they satisfy. We discuss the scattering off a composite system
as a scattering off botmd charges, and the simple classical and quantum mechan-
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ical descriptions of scattering off such systems of charges. We discuss the current
state-of-the-art S-matrix approach and'note'itS limitations. In section 3 we de-
scribe what has been achieved in Rayleigh scattering, the elastic scattering off

. bound electrons, and the extent of agreement with experiment. We review the sim-
pler approaches to Rayleigh scattering and use the S-matrix results to assess their
validity. We summarize the best current approach for the extensive presentation

* or tabulation of data, based on the use of modified form factors with relatively an-
gle-independent anomalous scattering factors. In section 4 we sl_rnrnarize the new
S-matrix results for Compton scattering, the inelastic scattering off bound elec-
trons. In general the spectrum for scattering off inner-shell electrons has three
structural features: the well-known Compton peak, resonant Raman Compton
structure, and an even less well-known infrared rise. For elastic scattering we
show comparisons with experiment. We discuss under what circumstances the
usual impulse approximation provides an adequate description, for scattering off
a given inner subshell and for scattfiring off the wholeatom. In section 5 we review
what has been learned about photon-atom scattering and give some outlook for
further work.

2. MANY-BODY FORMALISM ANDTHE PARTITION OF SCATTERING
AS SINGLE-PARTICLE TRANSITIONS

Elastic and inelastic scattering of photons are two of the main processes of pho-
ton-atom interaction. We can describe such processes in terms of a photon of mo-
mentum and polarization (Ki,fi i) incident on an atom and a photon of momentum
and polarization (Kf,_f.) scattered from the atom. In elastic scattering t_ae initial
and final photon energies are the same, IK i I = IKfl. The interests in scattering
from bound electrons of an atomic structure focus on the information we learn
abo_t the composite structure and its electron distribution. To set these scattering
processes in context we show in.Figures 1 and 2 their contributions tt_ the total

• photon-absorption coefficient of representative atoms. Inelastic scattering is dom-
inant for energies large compared to binding energies but below the pair produc-

, tion threshold; in these situations the absorption is fairly well understood as
absorption from free electrons. Elastic scattering is only dominant for energies be-
low all bound-electron thresholds. The intermediate region is dominated by pho-
toelectric absorption, which however can lead to emission of de-excitation (e.g.,
fluorescence or relaxation) photons and so the same final state as in Compton scat-
tering in the resonance region. Since photoeffect at these energies pro,tides the
dominant absorptive mechanism, it generally dominates the imaginary part of the
elastic photon-atom scattering amplitude. Figures 1 and 2 differ from those used
in the past in giving a more accurate rendition of low-energy elastic scattering
from the S-matrix calculations, showing resonance behavior near photoelectric
thresholds and a trend of decrease for low incident photon energies. At these en-
ergies the picture of inelastic scattering will also need to be modified.

Present state-of-the-art calculations of photon-atom scattering are based on
numerical evaluations of the relativistic second-order S-matrix elements of exter-
nal-field quantum electrodynamics within independent particle approximation
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(IPA).That is,theatom ismodeledas an infinitelymassivenuclearchargeand
electronsmovinginthecommon potentialofthatcharge:andan effectivescreen-
ingchargeofalltheelectrons,withoutany directinteraction(correlations)among
theelectrons.Scatteringinthismodelcanthereforebe describedaselasticandin-
elasticscatteringoffthenucleusand theatomicelectrons.In addition,sincewe
are in a relativistic theory, there will be scattering off virtual pairs in the field

- (Delbrttck scattering) or, in the language of hole theory, off the filled states of the
negative-energy sea. (This is equivalent to allowing a sum over all intermediate
states, filled or not.) In our discussion we will focus on scattering off the bound
atomic electrons, but physically the processes are not entirely separable. In fact,
in elastic scattering the initial and final states from scattering off the different
components of the system cannot be distinguished, so that we must add their scat-
tering amplitudes coherently. (In elastic scattering at x-ray energies, nuclear and
Delbrttck scattering contributions are small.) We shall see that care is also needed
in applying the optical theorem and the dispersion relation connecting, the real
and theimaginarypartsofthescatteringamiMitude.

Photonscatteringfromatomsisphotonscatteringfrommany-particlesystems
ofelectronsand nucleonswhichareheldtogetherby electromagneticand nuclear
forces.Inadditiontotheseparticles,inthelanguageofholetheory,theatomicsys-
tem includesa fillednegative-energyseaforeach kindofparticle.We shallnot
considertheforces(includingthosefromradiationfields)whichcorrelatemotions
oftheseparticles,and sowe willnothavetodealwiththepathologiesofcontinu-
mn dissolution(Brown-Ravenhall"disease",Brown and Ravenhall,1951;Kim,
1993).Thisimpliesthattheinteractionsamong particlesaretreatedattheinde-
pendentparticleapproximationlevel,ofwhichan exampleinatomsisthefamiliar
centralfieldapproximation,ltalsoimpliesthatrenormalizationofparticlestates
due toperturbationsfrom externalfieldquantum electrodynamicsarenotinclud-
ed

The interactionofradiationwiththisatomicsystemofparticlesand seasisde-
scribed by introducing in the many-particle .Hamiltonian the minimal electromag-
netic coupling which for each particle of charge.qreplaces its momentum operator

" p by p - qA/c, with A the electromagnetic field at the coordinate of that particle.
Then scattering of photons from this system of fermions (each satisfying a Dirac

. equation), to lowest non-vanishing order in perturbation theory, will be described
by the second-order S-matrix amplitude

[ " 1A ___ {MIO fIP){PIOi[N) (M[O iIP)(PIO;IN}
= - + E-;-_-o)f---TO: J' (1)p EN-Ep+?i'(°i+]O+ E N-

where/ico i (_/cof) is the energy of the incident (scattered) photon, the operator Oi

(Of) describes the absorption (emission) of the incident (scattered) photon,

i = _2i-, and the states IN), lM) and lP) are solutions ofthe many-particle
Dirac equation
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H Iz>= EzIX>. (2)

(In elastic scattering, the final state lM) is the same as the initial state IN), and

" _coi = _/cof. In inelastic scattering, thefinal state lM) is excited, de-excited, orin
the continuum_) The photon absorption and emission operators are expressed as

._ _ eiKi o rjo, Zo,j ZqJ '
j .1

(3)

* * ^* e-iKf.rj
Of = Z Ofj = Zqj _'Ef

J

with rj. the position in the space of thejth particle. (We will write down some non-
relativistic expressions subsequently. Here we are using relativistic expressions,
so that in elastic scattering we can describe the partitioning of Rayleigh from Del-
brtick scattering.) The sum P in Eq. (1) is over a complete set of many-particle
states for systems of the sp_fied number of particles. Since the particles obey
Fermi-Dirac statistics, in any given many-particle state only one particle is in a
given state of the single-particle central potential. (Given that the set of particles
includes filled negative-energy seas, both E x and these sums are of course formal.)

It is traditional to partition the amplitude for scattering off an atomic system
into amplitudes for scattering off its components - electrons, nucleons, the nega-
tive-energy seas - and in the case of elastic scattering (no energy transferred to the
internal degrees of freedom of the atomic system) call these the component ampli-
tudes for Rayleigh, Delbriick and nuclear Thomson scattering (to be added coher-
ently, since they cannot be distinguished in any observation). Such a partition is
not straight-forward. For example, one can see that for forward elastic scattering
at very high energy off a bound system of two charges, the potential interaction

" between them may be neglected and one obtains scattering off two free charges.
But in reality the scattering is to be described as from one free particle of the total

. mass and charge of the system and one particle of reduced mass and reduced
charge in the presence of the potential interaction, yielding a very different scat-
tering behavior at low energy (Kane et al., 1986). (In inelastic scattering we can
define physical partitions in terms of initial single-particle states not observed in
the final state; these will partition cross sections rather than matrix elements.)

Given the very different masses of electrons and nuclei, it is common in treat-
ing scattering at x-ray energies and below to take the nuclear mass as infinite. In
this case there is no scattering from the nucleus, which serves only to absorb mo-
mentum (but not energy), and our scattering is only from the atomic electrons and
the negative-energy electron sea. It is often supposed that (at higher energies) the
changes due to finite nuclear mass are obtained by adding the amplitude for scat-
tering off a free nucleus (nuclear Thoms0rr scattering, nuclear resonance scatter-
ing etc.). Under this infinite nuclear mass assumption, the atomic system and the
states of Eq. (1), which still applies, are described as states of electrons and an
electron negative-energy sea. In the case of elastic scattering the states IN) and
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I/hi ) are now the same (no recoil of the system in scattering). And in this case of
elastic scattering, we can write down for forward scattering K t = K r :without po-
larization change, ei = el, the familiar optical theorem relating th'e imaginary

. part of the forward scattei-ing amplitude without spin change to the total cross sec-
tion (for absorption and scattering) for photons of the given polarization incident
on the atomic system. We read out directly fromEq. (1)

CD ((_PE (_BBT+ uPP _BPP)- CD a TOT=- + + + (4)ImA (co,0) - 4=--_ 4=c

where _PE is the cross section for photoeffect, (_BBT+ iS the cross section for a tran-

sition from the initial state to a excited bound state of the system, OPP is the cross

section for ordinary pair production with both the electron and positron created in

the continuum, and _BPP is the cross section for bound pair production with the

electron of the pair created in a bound state. In this order of our perturbation the-
ozT, we are relating the forward amplitude for elastic scattering (Rayleigh and
Delbrtlck) to the total cross sections for photoeffect from the bound electrons ofour
atomic system and pair production in the field of our atomic system (including pair
production with the electron produced in an unoccupied bound orbital).

It should be noted that our derivation of the optical theorem assumes that the

state IN) from which we are scattering is the ground state of the system. If not,
there are allowed intermediate states lP ) of lower energy, and the second term of
Eq. (1) will also contribute to the imaginary part of the amplitude, and the optical
theorem (now in the presence of an energy source) becomes

CD (yTOT .. CD (_PE (yBBT+ (yPP (yBPP £TBBT- (_BPA)ImA (CD,0) - 4_c - 4_--_ ( + + + - - (5)

" where (yBBT- is the cross section for a transition from the initial state to a bound

stateoflower energy,and (yBPA isthe crosssectionforbound-electronpairanni-

hilationwherein an initialholein the negative-energysea isfilledby one ofthe
initialbound electrons;we are tosubtracta radiatedfluxassociatedwith the fill-

ingofthevacancy (or,through detailedbalance,with a crosssectionforabsorbing
a photon and creatingavacancy and an excitedstate).As therehas been verylittle
work thus faron scatteringfrom excitedstates,thismay seem an academic mat-
ter.But in fact,when we partitionour elasticamplitude intoRayleigh and Del-
briickcomponents, each ofthem separatelywillhave such a description,and the
opticaltheorems forthese partitionedcomponents willincludesubtractedcross
sections.

Since the interactionoperatorO isa sum ofsingle-particleinteractionopera-
tors,and the statesarewrittenasproductsofsingle-particleorbitals,itispossible
toreducethe second-orderamplitude,expressedin Eq. (i)interms oftransitions
between many-part2clestates,to transitionsbetween single-particlestates.For
elasticscatteringwe willtherebypartitionthe amplitude intoa sum ofRayleigh
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and Delbrilck amplitudes, the Rayleigh amplitude will be partitioned into a sum
• of amplitudes for scattering from each occupied bound-electron state, and we will ., ..

obtain a corresponding partition of the optical theorem. But to do this will require
. a rearrangement and redefinition of the terms, in order that we work with sums

over intermediate single-particle states which form complete sets. Related proce-
dures must be applied for inelastic (Compton) scattering.

t Inserting Eq. (3) for O into Eq. (1), in the case of elastic scattering we obtain

o<<.,=,<>. <_<.ur_°-[<_,_1L_,,_', ' '°'<',TAfIS>><,iA,,o+ln><_nlE,,_E,>__<,>F,O+,%IS>><S>IA;I,,>]
A F.F_.,A-,,-"o":EE ,_.--_.-:7;r..-= ,(6)

n p n p

where the sum is over occupied single-particle states In) and unoccupied single-

particle states lP), and r o = e2/mc. 2 = 2.82 × 10 -15m is the classical electron ra-

dius. The electron states are solutions of the single-particle Dirac equation

Hli) = E_Ii),
(7)

H- c_'p+_c2+V(r) ,

where V(r) is the common central potential. The interactions with the initial and
final photon wavefunctions are

iKi o r
_ = 6_®_i e

(8)
• * ]Kflr

A f -- _ lt _ t, e-

• Note that, to whatever intermediate single-particle state lp) the single-parti-

cle transition operator induced a transition from the single-particle state in}, we
" must have the same single-particle transition back in order to return the same ini-

tial many-particle state that we started from, justifying the single-particle transi-
tion form of Eq. (3). (This would not be true for the .Compton matrix element.) Note

that Anp = -Apn. The sum n is over all occupied states of the atomic system, i.e.
the bound atomic electron orbitals and the negative-energy sea. The sum p is over
all unoccupied states of the system, i.e. the excited bound orbitals and the contin-
uum. Thus in this form we would not be able to derive an optical theorem for the

sum of amplitudes corresponding to scattering from a given atomic orbital in),
since the sum over intermediate states lP) is not complete. But given the antisym-

metry of Anp we have

0C£. OCt.

Z ZAnp = O, (9)
n p
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and hence ,..

w

We may also partition A into Rayleigh and Delbrilck amplitudes as

A = A R +A D (11)9

where

occ.+ ali

A R = _ _ Anp , (12) '
n p

where the sum n is over all positive-energy occupied states, and

occ.- ali

AD = Z Z Anp ' (13) .
n p

where the sum n is over ali negative-energy occupied states (the sea).
Note that we may now write optical theorems for each of these amplitudes sep-

arately. But we are now dealing with circumstances in which downward transi-

tions are allowed. (This would cancel between A R and A D .) For the total Rayleigh
scattering amplitude, summed over scattering from each atomic electron separate-
ly, the spurious resonances associated with bound-bound transitions between

• filled orbitals will cancel and need not be considered in writing an optical theorem

for the total amplitude A R . Real resonant transitions will remain associated with
., transitions to unoccupied states. However there will also be a subtracted cross sec-

tion associated with downward transitions into real unoccupied bound states (this
term survives the sum over occupied bound states only for scattering from excited
states) and into the negative-energy states; the later can be identified with the
cross section for positron annihilation with the electron of the given bound state. •
Thus the optical theorem for the imaginary part of the forward scattering ampli-
tude from the bound atomic electrons will be

ImA R (co,0) - co ((YPE + cIBBT+ _ oBBT - _ GBPA) (14)
4gc

A similar discussion will apply to the Delbrtlck amplitude, in which, in addition to
transitions from negative-energy electrons to the continuum (pair production
cross section) we will have to add cross sections for transitions to the filled and un-
filled bound states (bound pair production).
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In the case of Compton scattering, inserting Eq. (3) for O into Eq. (1), we obtain
analogous terms for achieving a single-particle transition from occupied orbital
In> to unoccupied orbital lm>

..> '">I

However now this is not the only way we can make such a single-particle transi-
tion, beginning with the many body matrix element of Eq. (1); there are additional
terms not included iu the sum above. Thus we can make single-particle transitions
from occupied states lP> (and In)) to unoccupied states lm), and then, leaving

_) occupied, make a single-particle transition from In) to lP)- The correspond-
ing single body transition matrix elements in this amplitude are

OCC. * , *

[ !_,>_<,,I.C,= + . (16)

Ao_ -romcaE,,LE,,_Em+_o_,+i0+Ep-/_._-_o_r-i0+J

Using the energy conservation relation

E m =.E n +l_o)_-Titof, (17)

and noting the over-all minus sign which came from the antisymmetry of the many
body wave function, we see that these terms can be rearranged simply to represent
the extension of the sum over intermediate states lP} in Eq. (15) to a sum over all
intermediate states, empty and filled. Consequently, the amplitude for Compton
scattering is

A c = A C1 + A c2

, (18)

_ -romc_"_]LE_E_+/_%+/0+p

This result was established by Gavrila and Tugulea (1975) at the time they discov-
ered the so-called resonant Raman contributions in L-shell Compton scattering.
Thus we see that in both Rayleigh and Compton scattering it is correct to use sin-
gle electron transition second-order S-matrix elements, with a sum over a com-
plete set of intermediate states, occupied and unoccupied.

In all the S-matrix work to date (except some nonrelativistic analytic point-
Coulomb calculations)one has stunmed or averaged scattering over all magnetic ......
states of a subshell, thereby not considering the magnetic scattering effects that
are possible with a polarized or oriented target.

r
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3. FORMALISM OF SCATTERING AS SINGLE-PARTICLE TRANSI-
TIONS

• The scatteringofradiationby an electroncan alsobe describedinnonrelativ-
isticquantum mechanics.An appropriatenonrelativisticHamiltoniancanbewrit-
ten as

H = H o+Hint, (19)

where

2

H o = 2__ + V (r) (20)2m

is the Hamiltonian describing the interaction of the electron with the static poten-
tial V(r) and

2

Hint _ e A 2 e
2mc 2 - m---cp * A (21)

describes the interaction of the electron with the photon. The corresponding non-
relativistic scattering amplitude involves three kinds of terms, two as in Eq. (12)
or Eq. (18) (but without negative-energy states) and an additional term corre-
sponding to the A2 term of the nonrelativistic interaction Hamiltonian. The non-
relativistic Kramers-Heisenberg-Waller (KHW) scattering amplitude (Kramers
and Heisenberg, 1925; Waller and Hartree, 1929)is written as

KHW -* -iK • r

Anm = -ro<ml (ei ° ef)e In>
a

<ml (e;*P) e-iKf'r IP><Pl({i°p)eiK''r In>-rOmc2 Z En _coip - Ep + + i0+ (22)

<ml (ei'p)e iK''r IP><Pl(_f *P) e-iKr'r In> ]

where K = K i -Kf is the moment transferred by the photon, and the other quan-
tifies are the norrrelativistic counterparts of the corresponding quantities in
Eq. (12) or Eq. (18). The additional term provides the basis for many of the famil-
iar simpler calculations of elastic and inelastic scattering, form-factor and impulse
approximation, and the incoherent scattering factor.

Since the scattering matrix elements are linear in the (complex) polarization
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vectors (_i,fif) which satisfy

• =r.Kf = o,

, thescatteringcrosssectionsarelinearin(i,_z'_2'_3)with

therealStokesparameters,forbothinitialand finalpolarizations.Here coordi-
natesystems(differentforinitialand finalphotons)have been chosensuchthat

= %_ + ey_ with

and (2, y, Ki/f) a complete orthonormal set of unit vectors. For a given photon

=

If_ = 0,we aredealingwitha linearlypolarizedphoton;if_z = _s = 0,we are
de_Jng witha circularlypolarizedphoton.The Stokesparameterscharacterizing
a beam ofphotonsofgivenmomentum may be definedas an averageoverthe
Stokesparametersofindividualphotons.Inthiscase

_2 2"-1/2

• and measuresthedegreeofpolarizationofthebeam.

Incalculationofthematrixelementfrom Eq.(12)orEq.(18),theusualproce-
dureis zmt to perform the infinite sum over intermediate states directly. Instead,
following Brown et al. (1955) and the polarizability calculation of Dalgarno and
Lewis (1955), one calculates numerically the inhomogeneous wavefunctions

_c2f Ip"<pl-_ln) <ml = , (23)_ , _cZf <mlAlP)(Pl

satisfying the inhomogeneous wave equation

(H-En-Ti°)f) In+ > = .-mc2A]n> , (m.I (H-En +Ticoi) = -mc2(mlA, (24)

and the first order expression for the matrix element in terms of those functions
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An - r0[<mlA*In+>.<ro_lA*In>i. , (25)
, .

The S-matrixRayleighscatteringcalculationsof Brown and co-workers
• (Brown et al., 1955; Brenner et ai., 1955; Brown and Mayers, 1956,1957), Johnson

and co-workers (Johnson and Feiock, 1968; Linet al., 1975; Johnson and Cheng,
1976) and Kissel and Pratt (Kissel et al., 1980; Roy et al., 1983); Parker and Pratt,
1984; Kissel and Pratt, 1985; Kaue et ai., 1986; Roy et al., 1987; Smend et ai., 1987;
Zhou et ai., 1990,1992b) and the Compton scattering calculations of Whittingham
(1971, 1981) and Suric and co-workers (Suric et ai., 1991; Bergstrom et ai., 1992,
1993) have all been performed in this way, while the Compton scattering calcula-
tions of Wittwer (1972) were performed by directly summing over intermediate
states.

An important approach to the calculation of the amplitude A (co, 0) for elastic
scattering, not requiring the assumption of IPA but in practice restricted to the
case of forward scattering, utilizes the analyti_ity of the forward scattering ampli-
tude which follows from causality, leading to the dispersion relations

2co2 _ ImA (co', 0) dco',
ReA(co, 0) - _ _ co,(co,9._co_)0

(261

2co _ ReA (co', 0) dm'ImA (to, 0) = ---_-- £0,2 _ co2 '0

so that

Oo

ReA (co, 0) = -__2_ ImAco(co'' 0) dco' , ImA (co, 0) = 0 . (27)
" 0

In nonrelativistic dipole approximation ReA R (co O) = -Nro, with N the number
of bound electrons. This is precisely the Thomas-Reiche-Kuhn sum rule (Thomas,

1925; Kulm, 1925; Reiche and Thomas, 1925), where for the ImA R we insert
Eq. (14). (Note, the single-particle form of this sum rule requires the partition we

have made between A R and A D.) There are, however, small relativistic corrections

to ReA R (co, 0), now understood as the amplitude for scattering off the bound elec-
trons partitioned from the amplitude for Delbrllck scattering. Another form of the
dispersion relation may be written in terms of the real and imaginary parts g' and
g" of the anomalous amplitude referenced to the relativistic high-energy limit.
These real quantities are defined by

A R (co, O) -A R (co, O) = -r o [g' + ig"] . (28)
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These anomalous scattering factors are closely related to the anomalous scattering
factors f' and f" conventionally defined in r_ference to the nonrelativistic high-

. energy limit, -Nro, as

g' = f'+ (N+ ReAR (°°' O)) , g" = f" . (29)r o

The sign of our f" differs from that commonly given in the crystallographic liter-
ature f"CL (see, for example, Cromer and IAberman, 1970b; Henke et al., 1981;
Creagh and McAuley, 1992) as

f"CL = --f"" (30)

As noted in the introduction, this difference has its origins in a sign choice for the
plane wave. This issue has been discussed in the previous conference on anoma-
lous scattering by Ramaseshan et al. (1975) who pointed out problems comparing
neutron and x-ray scattering where differing phase conventions are used.

The anomalous scattering factors satisfy

oo

2 co'g" (co') dco'. (31)
g'(co) = _ _ co,2_co20

In the nonrelativistic case g' reduces to the corresponding f'; the difference be-
tween g' and f' leads to a small constant correction to f' at all energies from non-
relativistic predictions. One now utilizes the optical theorem

• ,, CO oTOT
ImA R (co,0) = -rog"(co)= -rof (co)- 4uc ' (32)

4

which follows from the unitarity of the S-matrix, relating the total cross section for
photon-atom scattering (elastic and inelastic, including absorption) to the imagi-
nary forward elastic scattering amplitude. In fact in the partitioned relativistic
amplitude, ordinary pair production, related to Delbrilck scattering, is omitted
from the total cross section, and pair production with an electron captured in a
bound state of the potential is subtracted (required for convergence of the integral
over the relativistic photoeffect cross section at high energies). As we have already
seen, the total cross section at x-ray energies is dominated by absorption, prima-
rily atomic photoelectric effect, but also includes contributions from bound-bound
transitions (see, for example, Wang and Pratt, 1983), and these contributions
must be included if accurate results are to be 6brained from the dispersion relation
for low-energy scattering. Subject to these qualifications, it should be possible to
use better calculations of absorption (i.e. beyond IPA) or experimental data, and
thereby obtain better predictions for forward elastic scattering.

-13-



Presently, the relativistic anomalous scattering factors computed by Cromer
and Liberman (Cromer and Liberman, 1970a,b, 1976, 1981; Cromer 1974, 1983)
or by others generally following their method (Henke et al., 1981,1982,1992; Cre-
agh and McAuley, 1992) have come to be the most commonly used theoretical data
set in the x-ray regime. But increasing attention is being drawn to the details of
this approach where deficiencies in high-energy-limit values have been identified
(Parker and Pratt, 1984; Smith, 1987; Kissel and Pratt, 1990). Another area of
concern involves the neglect of bound-bound transitions, which will be especially
important for lighter-Z atoms. Other numerical problems are also being reported
(see the accompanying article by Chantler).

Simpler approaches to the scattering of photons from bound electrons begin
with the neglect of electron binding and consider the scattering of photons from
free electrons. The classical scattering of a photon from a free point charge is called
Thomson scattering. The scattering amplitudes for incident photons linearly po-
larized parallel or perpendicular to the scattering plane are

AWl =-roCOS0, A_ =-r o , (33)

leading to unpolarized differential and total cross sections

do T r_ (1 + cos20) (yT 8 2
dfZ - 2 , = _nr o. (34)

The same classical result is obtained for the total scattering cross section from a
single extended particle of charge e described by an extended spherically symmet-
ric charge distribution. However not ali the scattering is coherent, corresponding
to coherent scattering from different portions of the distribution. The coherent
portion is obtained by multiplying the Thompson amplitudes by the real form fac-
tor

OO

f (q) = 4n I p (r) sin (qr) r2dr , (35)qr0

where p (r) would describe the distribution of the charge normalized such that

oO.

4r_I p (r) rg"dr = 1 . (36)
0

Tabulations of the form factor based on nonrelativistic wavefunctions (Hubbell et
al., 1975) and relativistic wavefunctions (Hubbell and Overb¢, 1979) are available.

The remainder of the amplitude would be understood as incoherent, corre-
sponding to inelastic scattering. In Eq (35) we understand
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27_co . 0
:,,_ _q = IK] = K- sm_ (37) ,::,._,,C

• as the momentum transferred by the scattered photon. This momentum transfer
should be small in comparison to mc if we are to suppose the electron has not sig-

, nificantly been set into motion. That is, the Compton relation (Compton, 1923a,b

 cof = ' (38)
Kcoi

1 + _ (I- cosO)
mc

for scattering of a photon (considered as a particle) offa free electron would corre-
spond to inelastic scattering if the momentum transfer is not small. ' ..

Next we may consider the scattering off a collection of such extended particles.
If the scattering is to be coherent, the individual amplitudes are to be added coher-
ently, leading again to Eq (35), but with p(r) now the total charge distribution of
the system of particles, normalized here to Z rather than 1. The momentum trans-
fer is to the system of particles, i.e. to the atom.

The same conclusions are obtained within quantum mechanics, assuming pho-
ton energies large compared to small binding energies and momentum transfers
small compared to mc. In non-relativistic quantum mechanics these approxima-
tions are obtained from the A 2 term of the interaction Hamiltonian. If electron

binding energies are not small in comparison to .mc 2 there are additional relativ-
istic binding effects which persist in the high-energy limit. For elastic scattering,
Franz (1936) took these effects into account by replacing, for each electron, the
form factor of Eq (35) by the modified form factor

OO

me 2
g (q) = 4x _ p (r) r2dr (39)qr E-V(r) '

_ 0

where E is the total energy (including rest mass energy) of the bound electron and
V(r) is the common central potential in which all electrons move. The modification
may be traced to the propagator of the intermediate electron state; a similar rood-
ification may be applied in inelastic scattering. A tabulation of the resulting rela-
tivistic modified form factor for the whole atom has been given by Schaupp et al.
(1983).

4. ELASTIC SCATTERING
,...

The new S-matrix calculations for elastic scattering were first performed for
scattering at T-ray energies. Discrepancies between experiment and previous the-
ory (Brown and Mayers, 1957) at 1.33 MeV were removed (Kissel et al., 1980).
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Contributions to the total scattering amplitude attributed to Delbrttck scattering
¢_)uldb_'dentified in the experiments of Basavaraju et al. (1979) and Milckenheim
and Schumacher (1980). Predictions for the T-ray regime have been tabulated by
Kane et al. (1986) for a variety of elements, energies, and scattering angles. A
more comprehensive tabulation in this regime is feasible, utilizing interpolation
methods.

• Recently more attention has been focused on calculations of scattering at x-ray
energies, including tracing through the regions of substantial anomalous scatter-
ing near edges• In Figure 4 we show an example of the comparisons of such calcu-
lations, and also simpler theories, of the differential cross section for scattering of
59.54 keV photons from Ta with the experiments of Schumacher and Stoffregen
(1977) and of Govinda Nayak et al. (1992). Good agreement is achieved between
experiment and the S-matrix calculation, while form-factor theories are not ade-
quate unless anomalous scattering factors are included. In Figure 5 we show a
comparison of calculationSof%he anomalous scattering factor f' for Ge with. the ::_
experiments of Stanglmeier et al. (1992). Moderate, but not complete, agreement
is achieved. The importance of the correct relativistic high-energy-limit expres-
sions for f' is shown for Si in Figure 6. Agreement is achieved with the experiment
of Deutsch and Hart (1988), clearly distinguished from an earlier result for the
high-energy limit.

However with finer energy resolution, as can now be achieved with synchrotron
radiation (SR) from the new storage rings, these IPA calculations will no longer be
adequate near edges and resonances (even their positions are not correctly calcu-
lated), also for very soft photons. It is a challenge to perform better calculations,
or even to design an adequate procedure for taking into account experimental in-
formatior_ on edge and resonance positions.

It is also a challenge to identify simpler methods, not requiring the extensive
computer time of the S-matrix approach, which can be used to provide needed ex-
tensive data sets in element, energy and angle. Zhou et al. (1992b) have compared
predictions of the S-matrix calculation with predictions in the same potential of .

- simpler approximations_ such as form-factor and modified form-factor approxima-
tions. The next step in such approximations is to include anomalous scattering fac-

, tors, taking g" from photoeffect cross sections cut off at high energy by subtracting
the corresponding bound pair production component, perhaps also including the
bound-bound transition rates, and applying the dispersion relation and optical
theorem to obtain g'. For forward scattering this will be identical with the S-ma-
trix prediction in the same potential. It is found to be a fairly good approximation
at x-ray energies to combine relativistic modified form factors with assumed angle-
independent anomalous scattering factors to give predictions at finite scattering
angle. (It would be a bad approximation to give anomalous scattering factors the
same angle dependence as the form factor. Nevertheless complete angle indepen-
dence is also not quite right. It appears that when these terms matter one can do
better by ass_g the whole anomalous factor has the angular dependence of the
K shell, and that factor is represented by its nonrelativistic form in the point Cou-
lomb potential, which is fairly simple.)

We illustrate in Figures 7 and 8 how well these various approximations repro-
duce the S-matrix results for representative elements. At high energy, form-factor
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results, are good in fight elements, While anomalous factors matter in heavy ele-
ments. At low:_eaergiss¢ form-factor results become constant, while anomalous
terms result in decreasing cross sections. In fight elements, the role of the bound-
bound transitions in the dispersion integral is visible. And, of course, anomalous
terms are essential in reproducing the Uanomalous _ behavior of the threshold re-
gions. In fight elements, modified form factors with angle-independent anomalous

• scattering factors well represent the S-matrix results while, for higher Z, as shown
in Figure 9, there are deviations at higher energies for larger scattering angles
that reflect the need to _ve some angular dependence to the anomalous ampli-
tudes.

Let us 811mmarize then the modified form factor with angle-independent anom-
alous-sca_g-factor prescription (MF+ASF) we presently recommend as a rel-
atively Bimple, relatively accurate scheme for estimating elastic scattering
amplitudes and cross sections. General considerations of rotational invariance
and parity conservation allow the elastic scattering amplitude to be written in the
form

AR (_.i.ef)N(K i.1(f)+ (_ioKf)(el.I_i)M(K ioKf) , (40)

where 9_and 9_ are complex functions of the scattering angle. Note only the first
term contributes for forward scattering or in dipole or form-factor appro_m__tions;
the second term is in general small through the x-ray regime and we will omit it
in this scheme. Then we write the Rayleigh amplitude as

_(co, 0) = -r o [g(q) +g' (co,0) + ig" (co, 0) ] , (41)

where under the assumPtion of angle-independent anomalous factors the reduced
amplitude is written as

. N(co, 8) = -roig(q)+g'(co) +ig"(co)] , (42)

in terms of anomalous factors which vanish at high energy, related to the usual
anomalous factors as

f'(o_) = g' (co) + [g(q=0)-N] , f"(co) = g" (co) . (43)

One obtains g' in terms of g" from the dispersion relation, Eq (31), and g" from
the optical theorem, Eq (32), in terms of the cross sections for photoeffect and
bound pair production and the oscillator strengths for transitions between occu-
pied bound states n and unoccupied bound states m. A complete consistent set of
information (experimental or theoretical) on these processes can be used to obtain
predictions for the elastic scattering amplitudes. (Recall that our sign convention

fS_ f" differs from that cust:omarily found in the crystallographic literature. See
Eq. (30) and our earlier discussion.)

With the advent of SR it is of increased interest to discuss the photon polariza-
tion properties of the elastic scattering amplitude. The general formalism has
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been given by Kane 'et al. (1986) and Roy et al. (1987); the latter paper discusses
experiments in the_ray regime. Contrary to the simple form-factor predictions,
polarization properties in general depend on atomic number and energy. In the x-

• ray regime, as we have indicated, the polarization properties may often be approx-
imated as in Eq (41).

We may expect that correlation effects beyond IPA will have to be included in
" consideration of the anomalous-scattering region very near. edges and the behavior

of cross sections at very low energy. These effects sh_ edge positions and intro-
duce further resonances. Only a few studies of such effects are available. We show
in Figures (10) and (11) results of Zhou et al. (1992a) for Ar 3s photoeffect cross
sections without and with correlations and the corresponding results for the 3s
contribution to g' obtained via the optical theorem and dispersion relations. The
effects of correlations are substantial. However, since elastic scattering is coher-
ent, in this case the contributions from other subshells can substantially mask the
features in a giVen subshe11.

5. INELASTIC SCATTERING

Results from the new S-matrix code (Suric et al., 1991; Bergstrom et al., 1992,
1993) for the calculation of Compton scattering from bound electrons are becoming
available. Thus far, attention has largely focused on the energy spectrum for scat-
tering from a given inner subshell at given scattering angle. (Polarization depen-
dence, whole-atom spectra, and cross sections at given scattering angle integrated
over final energies have also been considered.) The three main possible structural
features of these spectra are illustrated in Figure (12), showing in this case the in-
frared divergence which is always present in the limit of soft final-photon ener-
gies, resonances (resonant P_mou scattering) related to downward transitions
into lower occupied levels, and a Compton peak related to the energy-shifted line
in scattering from a free electron (Compton, 1923a,b). The latter features can be

. (partially) hidden when the kinematic constraints on final energies are consid-
ered; the infrared divergence can sometimes affect such a small region of the spec-
trum that it is not seen within detector resolution or choices of sensitivity. These
three features can be identified with the three terms of the nonrelativistic matrix
element, Eq (22), and it is convenient to discuss them in this context, even though
in fact the actual calculations are relativistic and relativistic modifications can be
identified. Figure (12), like those which follow, in addition to the results of our nu-
merical calculation also shows the results of various simpler approximations
which we will discuss (Gavrila, 1969, 1972a, b, 1974; Costescu and Gavrila, 1973;
Gavrila and Tugulea, 1975; Ribberfors, 1975a,b).

The Compton peak is first understood in terms of the scattering of a photon off
a free electron, giving the line of the Compton relation, Eq (38), and then the
broadening of that line which results if the initial free electron at rest is replaced
by a_momentum distribution of free electrons corresponding to the momentum dis-
tribution associated with the bound electrons. This is illustrated in Figure (13).
The peak is obtained in evaluation of the nonrelativisticA 2 interaction term of the
Hamiltonian, as in the early work of Sclmaidt (1934) using point-Coulomb wave
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functions and much subsequent work. Most commonly, however, the final ejected
electron is represented as a plane w_,_¢.leading to the impulse-approximation rep-
resentation of the spectrum in terms of the Compton profile (see, for example,

. Biggs et al., 1975)

d2a ct2 1 + cos20. --:_°_"lJnl
a/af- ( )NK (P")'
where the Compton profile is

oo

1 Inr(P) dp (45): I-7- "
P.

, . . ..,

with

Inr = lent (p) 12p2. (46)

in terms of the Fourier transform :Z.t of the wave function of the scattering state,
and the projection of bound-electroii momentum on the direction of photon mo-
mentum transfer is

E (_¢o_- _¢of) - 7io)i i'/¢of(1 - cosO)
Pz = 2K . (47)c

Relativistic versions of impulse approximation have also been used (Eisenberger
and Reed, 1974; Manninen et al., 1974; Ribberfors, 1975a,b). It has usually been

• supposed that the impulse approximation is valid when the photon momentum
transfer is much bigger than the expectation value of bound-electron momentum.
Suric (1992) has recently proposed a more sensitive criterion which appears to be
in accord with the numerical calculations. It should be noted that Eq (44), as often
used (see, for example, Biggs et al., 1975), does not recognize that there is a kine-
matic limit on final photon energy associated with the binding energy of the elec-
tron; this can cut the spectrum before the peak. (Usually in total-atom scattering,
where the peak is dominated by scattering from outer-shell electrons, this is not a
problem, as the small outer-shell binding energy does not exclude the peak ener-
gy.) Examples of spectra dominated by the Compton peak are shown in Figures
(14-16). Figure (14) illustrates a situation in which relativistic effects are very im-
portant; relativistic impulse approximation (Ribberfors, 1975a,b) does quite well
in reproducing the peak region of the spectrum. In Figure (15) for a lighter atom
nonrelativistic impulse approximation is adequate. More of the upper side of the
peak is cut off by the kinematic limit, and the soft-photon infrared rise is visible
in somewhat more of the spectrtmx. Figure (16) shows a lighter element at lower
energy and back angles. The peak is now kinematically forbidden and all one sees
is the rise on the lower side of the peak. The soft-photon infrared rise occupies
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nearly half the spectrum. ...... ....
We may expect on general grounds (toW_:;energy_theorem - Low, 1958; Burnet

and Kroll, 1968; Jauch and Rohrlich, 1976) that there must be an infrared rise for
emission of soft scattered photons and that in this case the matrix element for

• Compton scattering (soft final photon) must be proportional to that for photoeffect
(no final photon). In this region the doubly differential cross section for Compton

- scattering may be written in terms of the photoeffect angular distribution

do pe/d_f as

I" ,, ,, 2-1
dg"o" (x Lt - (/_,,,kf) J do.Pe _

d°')td_ f - (2x) 2c "_f f F..... -'_ - - "Z-21 "-_2 d'_2 , (48)L1- •hz)J

where the integral is over the angles fi_ ofphotoeleetron emissi.on (0.2 is the veloc-
ity and/39, is emission direction of the _hotodectron). The infrared rise is associ-
ated with the absorption-first matrix element. It was exhibited explicitly in the
nonrelativistic Coulomb dipole calculations of Gavrila (1969, 1972a,b, 1974). Ef-
forts to observe it experimentally have not yet been successful (Marchetti and
Franck, 1987, 1989, 1990; Basavaraju et al., 1987; Briand et al., 1989, 1990; Lad
et al., 1990; Simionvici et al., 1990). Since it is proportional to the photoeffect cross
section, we can anticipate that in whole-atom scattering it is dominated by the in-
nermost shell that is kinematically allowed. We have already seen illustrations of
the effect in the previous figures. We note that in many cases Gavrila's expression
is quite good, reflecting the fact that inner-shell photoeffect total cross sections can
be well represented by nonrelativistic dipole point-Coulomb cross sections. Fur-
ther results of these kinds are shown in Figures (17) and (18). Note in the latter
case that the spectrum is almost completely dominated by the soi%-photon behav-
ior, well-predicted by the low-energy theorem, and shows only a vestige of the

. Compton peak rise. At back angles there are large differences from Gavri/a's ex-
pressions.

The emission-first matrix element exhibits resonances, as was exhibited ex-

plicitly in calculations of Costescu and Gavrila (1973) and Gavrila and Tugulea

..... _ (1975) for the L shell. When the emitted photon energy is near the transition en-
:, ergy, the resonance dominatesthe spectrum, as was observed by Sparks (1974).

Evidently resonances will occur in scattering from a given subsheU whenever
there is an allowed transition to a lower subshell in the single-particle matrix el-
ement. We illustrate the phenomena in Figures (19, 20), contrasting L1 and L3
spectra at several incident energies going through the K edge. For the L1 spectrum
there are no allowed dipole transitions. With increasing energy more of the Comp-
ton peak is kinematically allowed, though not yet its maximum. (Impulse approx-
imation suggests a fine structure associated with the nodal structure of the wave
function, which occurs only on the high-energy side of the peak in more exact cal-
culations where it is kinematically allowed.) The infrared rise region is still signif-
icant even at the highest energy. Many of these features are still present in the L3
spectrum, though the infrared rise is less significant at the higher energies corre-
sponding to a more rapidly decreasing photoeffect cross section. But there is the
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additional resonance term. For au incident energy well below the K edge it has
only a slight influence on the cross section. For an':incident energy just below the
K edge, the whole spectrum is resonance dominated; the cross section for hard fi-
nal photons is very much larger, often by orders of magnitude, than impulse ap-w

proximation would predict. For an incident energy well above the K edge the hard-
photon region of the spectrum is approaching impulse approximation (the peak is

" not yet kinematically allowed). The resonance is still present, but has shifted to
the middle of the spectrum. In considering Compton scattering from higher shells
there can be a series of resonances in the same spectrum, corresponding to fluo-
rescence transitions in these outer shells.

If we consider Compton scattering from the whole atom, summed over sub-
shells (as in experiments not detecting the ejected electron or the transition radi-
ation filling the vacancy), the Compton peak region is dominated by scattering
from outer (loosely bound) electrons and is generally well described in impulse ap-
proximation. The soft-photon infrared rise will be dominated by the innermost ki-
nematically allowed shell (Bergstrom et al., 1992). In between there will be a
series of resonant peaks; in some cases these will be superimposed on the other
features.

Often one asks for the total cross section for scattering photons (of any energy)
into a given angle; in impulse approximation this is described by the incoherent
scattering factor. One also integrates then over angle to get a total cross section, a
component of the total absorption coefficient. In view of our discussion of the in-
frared divergence of the spectrum it is clear that quantities so described do not ex-
ist. The solution to this problem lies in realizing that one must also consider the
radiative corrections to photoeffect (McEnnan and Gavrila, 1977; Botto and Gav-
rila, 1982), which include that part of Compton scattering below a specified level
of resolution (i.e. the infrared region). With any specified resolution the cross sec-
tions for both processes are finite. And the sum of the cross sections, as in the ab-
sorption coefficient, is independent of the resolution chosen. Numerical
calculations suggest that through the x-ray and soft T-ray regimes the traditional
practice of calculating photoeffect neglecting radiative corrections and Compton

" scattering in impulse approximation is adequate (Bergstrom, 1992).

6. CONCLUSIONS

We have seen that, with S-matrix methods, considerable progress has been
made in providing a mort ,,etailed understanding of photon-atom scattering pro-
cesses and assessing the validity of simpler approaches. One can envisage the pos-
sibility of more systematic tabulation of cross sections, efficient and faster codes
for calculation, and simple prescription schemes for estimates. Agreement with
experiment is encouraging, but not complete.

First principle calculations, particularly near edges, will require the inclusion
of electron correlation effects; a satisfactory alternative scheme incorporating ex-
perimental information (such as edge_positions) would be desirable. There are fun-
damental issues still to resolve in the partitioning of the scattering matrix element
and the consequent partitioning of dispersion relations. Dependence of cross sec-
tions on polarization and of anomalous factors on angle, need to be worked



through.Magneticscatteringhas notbeen addressedatthisS-matrixlevel.In-
elasticscatteringcalculationsneed tobe extendedtoincludecoincidenceswith
ejectedelectrons.Effectsofthephoton-atomscatteringenvironmentopen many
new issues.The atom may beina molecule,plasma,surfaceorsolid;thephoton
may bepartofan intensebeam inwhichmany-photoninteractioneffectsmust be
considered.Therearethusmany opportunitiesforfurtherandinterestingwork in
thisfield.
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Figure Captions

Figure 1. Integrated photon-atom cross,sections for 6C: ELASTIC - Rayleigh
. scattering;, INELASTIC - bound Compton scattering;, PE -

photoeffect; PP - pair production; TOTAL - sum of all cross sections.

• Figure 2. Same as Figure 1 for 82Pb.

Figure 3. Furry diagrams of 2hd-order scattering.

Figure 4. Comparison of theory with experiment for 59.54 keV photons on
78Ta: SM - S matrix; NF - nonrelativistic form factor', RF - relativistic
form factor, MF - modified form factor-, MF+ASF - MF with angle-

. independent anomalous scat_g factors; •-Schumacher and
Stoffregen (1977); D -Govinda Nayak et al. (1992).

Figure 5. Comparison of theory with experiment for f' of29Cu: Q - Stanglmeier
et al. (1992).

Figure 6. Comparison of Cromer and Liberman (C+L- Cromer, 1983) f', with
and without hlgh-energy-limit correction (Kissel and Pratt, 1990),
with experiment of Deutsch and Hart (1988) for 14Si.

Figure 7. Differential cross section for 6C from theory: SM (x) - S matrix; MF
(- - -) - modified form factor, MF+ASF (solid curve) - MF with
angle-independent anomalous scatteringfactors; MF+ASF-BB (- - -)
- MF+ASF without bound,-bound Contributions.

Figure 8. Same as Figure 7 for 82Pb.

Figure 9. Relative error in MF+ASF predictions as compared with SM for 82Ph.

Figure 10. RRPA vs. HFSL predictions of photoeffect for the 3s subshell of 18At.

Figure 11. Same as Figure 10 for g'.

Figure 12. Main spectral features of Compton scattering as seen in the LII
subsheU for 82Pb, 279 keV, O=135" (cross section is per electron). The
following symbols are used for this and all subsequent figures, not all
theories in each figure: x- S matrix; +- Wittwer (1972); O - point-
Coulomb dipole p • A (Gavrila and co-workers); D - low-energy
theorem; (m.__.__)_ relativistic impulseapproximation; (- - -) -

nonrelativistic A 2 (Schnaidt, 1934); (- - -) - impulse approximation
(Biggs et al., 1975).
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Figure 13. Sharp line of free-electron Compton scattering contrasted with
shifted and broadened peak of bound-electron Compton scattering.

Figure 14. Same as Figure 12 for the K shell of 82Ph, 662 keV, e= 135".

Figure 15. Same as Figure 12 for the K shell of 29Cu, 100 keV, e= 135".

Figure 16. Same as Figure 12 for the K shell ofl3A1 , 17.4 keV, e= 135".

Figure 17. Same as Figure 12 for the K shell of6C , 2.94 keV, e= 135".

Figure 18. Same as Figure 12 for the K shell of 79Au, 145 keV, e= 150".

Figure 19. Same as Figure 12 for the LI subshell of 28Ni, e= 120".

Figure 20. Same as Figure 19 for the Lm subshell.
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