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Abstract and Faraday cups. The effective length of a dipole mag-

The linac system is the first part of the injector net is 40 cm, and its bending angle is 13.7 °. The colli-
for the Advanced Photon Source (APS) 7-GeV stor- mators and Faraday cups are outside of the vacuum. The
age ring. The determination of beam emittance, op- positron diagnostic line differs somewhat from the elec-
timization of beam energy and energy spread, focus- tron diagnostic line in that it uses a single quadrupole
ing condition, and other parameters is important for magnet instead of a triplet in front of the dipole mag-
positron production and for injection of positrons from net. There are two Faraday cups in the positron line for
the linac into the positron accumulator ring (PAR). measuring positron and electron beam intensity simulta-
Diagnostic lines have been incorporated into the linac neously. Thirty-five pm titanium foils are used to ter-

minate the vacuum. The slit widths are adjustable, and
design to allow measurement of critical beam param-
eters. Commissioning of the linac system began in the collimators are isolated from ground, enabling cur-
October 1993. Beam parameter measurements have rents on the two parts of the collimator to be measured

separately. The distances between the dipole magnets
been made, and the results are discussed in this paper, and the fluorescent screens were made as large as possible

without exceeding the fidicial area of the screens. The

Introduction fluorescent screen material is a chromium-doped alumina
ceramic commonly known as CHROMOX. The beam pro-

The linac system [q of the Advanced Photon Source files on the screen (as shown in Figure 2) are captured and

(APS) consists of an electron linac and a positron linac, analyzed by the video system [2]and their widths are then
The positrons are produced by a 200-MeV electron beam used to calculate the beam emittance and energy spread.
impinging on a 7-mm-thick tungsten conversion target.
The design goal for the electron beam spot on the target Emittance Measurement
is ¢ _< 3-mm in diameter. The positrons emitted from the

target are captured by a pulsed solenoid coil which pro- It method for measuring beam emittance has been
duces a 1.5-T axial magnetic field. The accepted positron developed based on beam matrix calculations using
emittance from the target is e = 1.5 mm * 220 mrad. TRANSPORT [a]. The beam matrix or(2) at any desig-

The positron linac accepts positrons with energy of S=i:l.5 nated point (2) of a beam transfer system can be calcu-
MeV and accelerates the beam to 450 MeV; the beam is lated from a beam matrix tr(1) at a point of origin (1) by
then injected into the positron accumulator ring (PAR). the formula:

The positron beam is required to have an emittance of tr(2) = R _(1) R T (1)
e = 6.6 7r. mm.mrad in both planes and an energy spread
of AE/E < :t=1% at the end of the positron linac. The where R is the transfer matrix from point 1 to point 2
injection efficiency will be affected if the beam emittance and R T is its transpose. The simplest transfer system
and energy spread at the output of the positron linac are for beam emittance measurement includes a quadrupole

larger than the design goals. Reliable and simple meth- magnet at point 1, a drift space, and a beam profile mea-
ods are needed to determine the beam emittance, beam surement device at point 2. In this case, the beam profile
energy, energy spread, and beam intensity for both accel- measurement device is a fluorescent screen. From Eq. (1)
erated electrons and positrons, we have

Diagnostic Lines o_t(2) = R2t_11(1) + 2RllRt2_rl.,(1) + R_2_'._'_,(I) (2)

There are two diagnostic lines in the APS linac sys- where trll(2) is the square of the horizontal or vertical
tem as shown in Figure I. The diagnostic lines consist of half beam profile width measured on the screen. Mea-

quadrupole and dipole magnets, fluorescent screens, slits, surements of the beam profile as a function of quadrupole
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( ) ( )( )s all, R_l, 2Rll,Rt2, Ri2 , o'Ll direction of the b_am befi)re it enters the dipole mag-
o'lt_ R_I 2 2Rll_Rl2_ RL% _t2 (3) net for energy measurement. Tile beam exits from the
all., 2 R_l_ 2Rll3Rt2_ R_3 tr22 l dipole magnet, passes through adjustable slits, and then

the charge is collected in a Faraday cup. The bending ra-
The beam emittanee at point I is determined by: dius and angle can be ascertained from the me_urement

of beam energy.= (4)

Figure 3 shows the measured emittanee for a 230-MeV The beam intensity in the electron linac is monitored
electron beam at the entrance to the third triplet in the by wall current monitors. However, it is more difficult
electron linac. The accuracy of the measured emittance is to monitor beam intensity using these monitors in the

positron linac, since the electron-gamma shower producesmainly dependent on the beam profile measurement accu-
racy. Previous experience and simulation [41indicate that electron-positron pairs. Electrons are also captured by the
it is possible to keep the emittanee measurement error be- pulsed solenoid coil and are accelerated. The only way one

can distinguish the e+/e - ratio in the mixed beam is bylow 5%. Care must be taken during the measurements to
using the dipole magnet. We monitored the e+/e - ratioreduce the saturation and noise background on the screen.

The analysis and understanding of camera saturation el- during commissioning and are still improving this ratio
fects is still ongoing, by tuning the positron [inac. Figure 4 is the measured

beam intensity of electrons and positrons at the Faraday

Energy Spread cups after the dipole magnet in the positron linac.

When a dipole magnet is included in the transfer line, Focusing on the Target
the square of the half-horizontal beam profile width is:

The positron yield from the conversion target is in-
_r11(2) = R_1t711(l) + 2RllR12_12(I) + versely proportional to the beam spot size on the target[5];

R_2_2(I) + R2str66(l). (5) however, we currently have no direct way to measure the
beam spot on the target. We use three fluorescent screens,
one upstream and two downstream of the target, to de-

The dispersion at the screen position is: termine the best focusing conditions for positron produc-
tion. Since the target is 1 meter downstream from screen

R16 = p(l - co.sO) + LasinO (6) FS'_, the required focusing current on the target is about

where 0 is the bending angle of the dipole magnet. L3 5 A less than the current for focusing the beam on FS2.
Measured focusing conditions have been compared with

is the distance from the point where the beam exits the the calculated results based on the measured beam emit-
dipole magnet to the fluorescent screen, p, the bending

tance. Both results agree quite well. The final focus isradius, equals L3/O. All these values are known, and the

values of trtt(1), o't2(l), and tr22(1 _ have already been ultimately optimized by maximizing positron yield into a
determined in the emittance measurement. The energy Faraday cup.
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