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Abstract

The problem of finite pressure plasma equilibrium in a system with closed mag-

netic field lines consisting of quadrupole mirrors linked by simple toroidal cells with

elliptical cross-sections is analyzed. An appropriate analytical procedure is developed,

that uses conformal mapping techniques, which enables one to obtain the magnetic

field structure for the free boundary equilibrium problem. This method has general

applicability for finding analytic solutions of the two-dimensional Dirichlet problem

outside of an arbitrary closed contour. Using this method, the deformations of the

plasma equilibrium configuration due to finite plasma pressure in the toroidal cell are

calculated analytically to the second order in A-expansion, where A -_/3/_E , j3 is the

ratio of plasma pressure to the magnetic field pressure, e is the inverse aspect ratio and

E is the ellipticity of the plasma cross-section. The outer displacement of the plasma

column is shown to depend nonlinearly on the increase of plasma pressure, and does

not prevent the achievement of substantial 3 "_ 1070 in the toroidal cells.

PACS 5'2.55ttc

_'Permanent address: Institute of Nuclear Fusion, Russian Research Centre "Kurchatov Institute".
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I Introduction

Toroidal linkage is expected to decrease the particle loss level from mirrors and increase

the electron temperature of confined plasma, l' 2 These features are the basis of the neutron

so_lrce project recently suggested. 3 In this last reference the neutron source is composed of

two parallel pairs of minimum-B mirrors linked by simple toroidal cells. The special features

of this design are the enhanced plasma pressure in mirrors with respect to toroidal cells, and

the high ellipticity ( E __ 10) of the magnetic flux tube cross-sections in the toroidal cells. This

high ellipticity is a favorable feature 3 which enhances the permissible toroidal/3 (the ratio of

plasma pressure to magnetic field pressure), and reduces neoclassical transport. Compared

tt_ open-ended systems, the closed field line feature leads to an increase of neutron source

cflicicncy in 10-90 times. Further, like mirror systems, operation at high/_ _ (1/2- 1) in the

mirror regions is possible. 4' s It is important to emphasize that the value of/3 in toroidal cell

is a crucial quantity to provide attractive parameters of a neutron source such as achieving

a desired neutron fluence in the shortest time.

The presence of finite pressure plasma in the toroidal cells can result in the appearance

,_t" the additional _lisplacement (nonuniform along the torus axis) of the plasma column.

"File value of such a displacement was estimated in Ref. 3 in linear-/3 approximation under

an assumption of very high ellipticity E )> 1. However, to be sure that the estimates a

can really be used, more accurate calculations of the equilibrium plasma configuration are

needed. The additional question to be solved is the character of the flux surface deformation

clue to multipole currents. Generally speaking, in the case of finite-fl equilibrium, such a

_teformation can be more important than the simple displacement of the plasma column,

_Lr_dhence, be a more crucial factor limiting maximum plasma pressure in toroidal cells.

In this work we presen' ather accurate calculations of the finite pressure plasma equi-



librium configuration for the Linked Mirror Neutron Source device (LMNS) suggested in

Ref. 3. All the magnetic fields and constant pressure surfaces are calculated analytically

up to second order in a 13-expansion for arbitrary values of ellipticity. It is shown that the

nonlinear deformation of the flux surfaces due to finite plasma pressure reduces the strong

influence of the 3-increase on the convex shape of the plasma column within toroidal cells.

To obtain the correct analytical solution for the magnetic fields, a relatively simple method

of how to solve the Dirichlet's problem on the outside of an arbitrary closed ordinary curve in

the cross-sectional plane, is also developed. This method is briefly described in Appendix A.

"File equilibrium configuration obtained can be a basis for subsequent stability analysis.

II Linked Mirror Geometry

"File schematic view of the Linked Mirror device magnetic configuration is presented in Figure

i. Each mirror cell, closed between cross-sections 11-1-3 and 5-7-9, looks like a pair of

q_adrupole mirrors such as in 2XII-B 6 with high pressure sustained, for example, by neutral

beam injection. The magnetic field line linkage is provided by means of simple toroidal ceils

(cross-sections 3-4-5 and 9-10-11).

In accordance with Ref. 3 we shall begin our considerations from a vacuum magnetic

c:_)iltiguration, whictl can be described in toroidal cell by the following magnetic field com-

ponents:

Bx = By = 0 ; Bs = Bo ; B = B0/(1 + krX) . (1)

We have introduced here the coordinates {X, l_, S} in the toroidal cell, where S is a lon-

gitudinal coordinate along the toroidal axis with curvature /CT, and X and Y are cartesian

coordinates in the plane perpendicular to that axis. The corresponding metric tensor gij has

the components: 9,3 = 0 (i # j); gtr = g22 -" l-; g33 -- (1 + _TX) 2. Below we shall use the

dimensionless coordinates: X/a _ x; Y/b _ y; kTS ----,_ where a and b are the minor and



major axes of the boundary magnetic flux tube with the ellipticity E = b/a >_ i. Instead

of dimensional curvature kT we introduce the dimensionless parameter e = kTa. Vv'e assume

the parabolic distribution of initial plasma pressure p in toroidal cells:

p = po(1 - *),

where po is the pressure on the torus axis z = y = O, and

_ z_ + ,V2 (2)

is the label of the flux tube surface which is constant along the magnetic field line. The

ellipse qJ = 1 corresponds to external boundary of the plasma column. For the above

pressure distribution the parameter/3 is defined as"

2[dp[ 2po=B-7

III Description of the Method

..\ plasma equilibrium irl the closed magnetic system can be achieved under the following

condition:

j. de(B. V)B x B. V(pll + p±)ff: = 0. (3)

"I}:e s:lbscripts "']]" and ".k" correspond to the magnetic field direction, and the integration is

carried out along any closed magnetic field line (in particular, along the axis of the system).

\Vithout rotational transform, condition (3) can be satisfied by means of an appropriate

choice of the curvature and magnetic field magnitude along the axis. Although the geometry

of the toroidal cell is prescribed as a simple toroidal field (see Sac. II), it is easy to show

tt:at the global equilibrium condition (3) can always be satisfied by an appropriate choice

of plasma parameters in the mirror regions. In particular, to leading order in the paraxial

('t • .".xpanslon, condition (3) is satisfied by a specified shift of the plasma column with respect to
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the geometric axis in mirror cell, or(and) by bending the mirror cell axis (it corresponds to

the closing of dipole currents). 3 To the next order in the expansion (the closing of quadrupole

currents) condition (3) can be satisfied by a slight elliptical deformation of constant pressure

surface in the mirror midplane, and so on. Therefore, below we shall assume that the

condition of global equilibrium given by Eq. (3) is always satisfied, and consider in more

detail the equilibrium plasma configuration in the toroidal cells. As boundary conditions

for this consideration we shall fix the form and position of constant pressure surfaces in

cross-sections 3, 5, 9, and ll (see Fig. 1) between toroidal cells and mirrors. Although this

is only approximate, and the increase of the plasma pressure in the toroidal cells is able to

change the plasma configuration in the mirrors as well, such a change is weak due to higher

plasma pressure in the mirrors with respect to toroidal cells.

Let us roughly estimate the effect of the presence of a finite-j3 plasma in toroidal cell. To

provide the needed equilibrium the perpendicular current

j_ = [B x rp] Bo
a

is generated together with corresponding Pfirsch-Schlfiter current

Jll _ 3 B0 ,

aE

S_l_:tlan estimate can be made because the main part of the gradient of the magnitude of the

_nagnetic field is in the x-direction. This toroidal current generates the additional poloidal

magnetic field f3j..,. 3Bo/E, and in its turn the perpendicular current generates an addition

6Bs _.. 3Bo to the toroidal field.

Although the above currents appear due to toroidal curvature, the toroidicity parameter

e does not appear immediately (the curvature comes here in the combination ( = krS only).

It means that the 3-deformations of the field structure (and hence, of flux surfaces) appear

earlier than toroidal corrections, and are the principal ones. Therefore, it is reasonable to

analyze 3-corrections to lowest order in the e-expansion.
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The first 3-correction to qJ should be found from the equation

B.V_=O. (4)

Seeking _ as the sum _ _ _0 + _1 where _ = z 2 +9 2 ]_1] _< ]g0], we find from our

estimates of Bi and Eq. (4) that

.

I|ence. the magnitude of _l appears to be of order ~ Ago, where A _ /3/_E. From this

it follows that A is the real expansion parameter rather than _. Hence, we should seek

_[J as an expansion series in powers of A. To find the second order correction to _ it is

necessary to repeat the procedure of solving the equilibrium equation, i.e. to find the next

orcter corrections to currents, magnetic field components, and so on.

The value of .\ can be estimated from the simple topological consideration. Indeed, to

provide the L.kINS geometry drawn in Fig. 1 it is necessary to satisfy to the inequality

l

: b +,_, 5 kT (5)

where _, is the thickness of magnetic coils and shield. Condition (5) guarantees the presence

of some gap between cross-sections 1 and 7 of LMNS. Supposing &, ,_ (0.5 - 1.0)b, we find

easily from (5) eE <_ (0.5-0.7) < 1, and hence _ >__(1.5-2.0)/3 > /3. In addition to E it

is convenient to introduce E = E + 1 (such a quantity appears in the detailed calculations)

and to determine _ as

Below we shall convert from a set of parameters {e,/3, E} to another set {e, _,/_}, assuming

the following ordering

e<<A<l

forarbitraryE>'2(E_>I).
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IV General Formalism

In accordance with the consideration given in the above section, we shall consider the plasma

equilibrium configuration parameters as series in A:

n--O

3Bo A"_,,(z,v,() + _ ,
Bx- _ ...

)By = }3Bo£, A"T,.,(x, y, () + _... , (6)

( )n'-0

Neglected terms are denoted here by dots.

Tile components _,_ of the function _ should be found from Eq. (4) which, to lowest

order in e. takes the form:

No £ I i
_o + _ A_ _, + x.,a_ + a_ _,-m-_ = 0. (7)

a n=l m=O

Here and below the prime denotes the partial derivative with respect to (.

To solve this equation up to the certain order n, the function _0 must be given, and com-

ponents '(m, T,_ where m = 0, 1,..., (n - 1), must be calculated. The currents determining

the nlagnetic field should be found from the equilibrium equations:

Bx_rp

J'_- B2 ' (8)

B. _7 jl_[ - 2_7B xB
B - B3 rp. (9)

Expanding the parallel current in a series

oo

Jll = 3Bo _ ,_"J,,(z,y,() ,
a

n--O



we can rewrite (9) in the following form:

i _ , i
n--I

rn'-0

The Poisson's brackets for scalars S, Q are defined as

IS,Q]= O.Q- .

Tlm magnetic field components should be determined from Maxwell's equations

rot B=j ; divB=0. (ll)

To leading order in e the last equation (11) can always be satisfied by specifying the poloidal

field through a single S-component of vector potential As, that gives

1 1

Bx _-_O_As ; Br _--O_As.a

If we take

E

As = a/3/3o -_ _ A"A. ,r_=O

we find

k',, = OA,, , T ,_ = OA,, E,
Oy Ox

and then we can express

Jlt _ a-l(O_,Br - E-lO_Bx)

through As as weil. This procedure leads to the Poisson's equation

A_ J_+=AIA,, =0 (12)
rL=O E '

where 'k± = 0210x _ + E-_O'_/Oy _ is dimensionless 2D Laplacian operator.



In accordance with Eq. (8), the perpendicular current determines the toroidal field"

-- A 0xA,_ ,E OuBs = 2 _ O_@, - e/3Bo _ _ 'n=O n=O

,2Bo A" _3Bo
,.,=o E ,.,=o "_" TM " (1.3)

The last item on the right side of both these equations is always the quantity of order e

with respect to first one, therefore it should be omitted here. Then the systems of equations

defined by (13) can be easily integrated'

1 oo

Bs = ; 3Bo E _'"'#', + F(C). (t=_)n----0

The arbitrariness of a function F is removed by the boundary condition. Taking into account

the absence of induced field at infinity and that asymptotically Bs ---*Bo as )_ ---,0, we find

frolu Eqs. (6) and (14) that Z,_ = _, and, hence,

tgs = /30 1 + .5-(_- 1)+ ... (15)

Thus we have determined one set of variables (Z,,). In addition, using (12) we can also

eliminate the currerlt components J, from Eq. (10). Then the set of equilibrium equations

/li. (S). (9), and (11) results in two independent scalar equations:

q9o + _ ,\" @',.,+ [Am, _P,-,-m-,] = 0", (16)
n=l rn=0

1 0utp °- EAa_A_+_A" 1 E ,

+ -0. (tw)
m--O

To these equations it is necessary to specify boundary conditions. In regards to the longitu-

dinal dependence (on (), we may use the above assumption that @(z,y) is given at the ends

of tl_e toroidal cell, that is

(w>o);



A.(_"= _r/2)= 0 (V. > 0). (IS)

The second condition (18) was a consequence of the symmetry of the system being considered.

As regards the dependence on perpendicular coordinates (x,y) let us note that Eqs. (16)

and (17) describe the equilibrium configuration inside the plasma, therefore, Eq. (17) is

valid tlp to the external plasma boundary @ = 1. Outside the plasma there is no reason to

introduce the @-function, and instead of Eq. (17) we should use the equation

_ _LA,_ --0. (19)

"Ftle solution of the vac" lmEq.(19) must bematche, o the solution of internal region given

by Eqs. (16) and (17) at the boundary surface • = 1 together with partial derivatives of A,_

(Vr, >_ 0) (ttle to the continuity of the magnetic field components. In addition we must take

iilt.o account tile absence of an induced magnetic field at infinity. Finally, these conditions

can be formalized as

iq*=l+O I
Vn > 00.,vA,, = 0 ; O,_,_A,, _ 0. (20)

• =1-0 x_+y 2-.,oo

IE¢t_lations (16). (17), and (i9), together with boundary conditions (18) and (20), entirely'

,tctcrt,line the plasi_a equilibrium problem being considered.

V Iterative Solution

\\e shall find the solution of Eqs. (16) and (17) to different orders of A.

A. First order

Starting from the given form (2) of magnetic surface, we obtain to the leading order of

l';q. (17)
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or, integrating over ( with condition (18),

AxAo=2y_'_" (- 2/ "

The internal solution for Ao can be found as a power series, and due to symmetry of LMNS

configuration with respect to the horizontal plane y = 0, we need only keep the terms with

odd powers of y,

Ao = aoly + a11xy + a21x2y "4-a03Y 3 • (22)

The quantities a,j in (22) do not depend on perpendicular coordinates x,y. By satisfying

Eq. (21) we find the relation

a2, E 2 + 3a0z = E(q"- 7r/2) . (23)

The other coefficients must be determined by matching to the external solution.

It is more convenient to carry out this matching directly for field components than for

their potential, because they are continuous at the boundary _ = 1, and must disappear at

the infinity (20). Then, instead of (22) we can write

ko = aol + allx -t- a21x2 + 3ao3Y2 ,

To = -Eally - 2Ea_.lzy (24)

irisi,t,, t t_e plasrl_a. Outside the plasma _0, To, as well as .4o, are also harmonic functions,

b_at d_e to quite di%:rent behavior of internal and external solutions, it is usually a difficult

problem to carry out analytically the needed connection except for simple boundaries (e.g. a

circle) or for particular solutions (see, e.g., Ref. 7). Of course, there is no such problem in a

,:ase when the internal solution must vanish at the boundary s and hence, the exterior field

arlalvsis can be omitted. 9' 10

In Appendix A we present a method of how to obtain an external solution which can be

conn_,cted to the internal for an arbitrarily specified boundary curve. It is shown that the
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coordinate transform (x,y) ---, (u, v) separating variables both in Laplacian operator and in

the boundary condition, can always be found by means of implicit Fourier expansion. This

allows us to write the external solution in the universal form

N

X'O = Z Cme-mU c°s my ,
rn._l

N

T0 = Y_ Cme-"_sin my, (25)
rrL--1

where constants C,_ and the number of modes N in (25) are determined to provide the

matching with internal solution (24) at the plasma boundary, which is expressed in terms of

a polynomial of finite order.

Knowing the transform (x,y) ---, (u,v), we can then simply equate the internal and

external solutions expressed through variables (u, v) at the boundary. Two examples of how

to find this transform for a given form of the boundary contour are presented in Appendix

B. In particular, for an elliptical boundary with ellipticity E we have x = cos v, y = sin v

at • -- I (see the first example in Appendix B). Substituting it into (24) and using (25), we

can find from (20) and (23) all the coefficients a,j:

ali = 0; aol = 7r/2 --_" ;

((- 7r/2) 1 + 2E
a2_ = _ ; a03=(_-Tr/2) 3E

It is easy to see that to provide the matching, it is sufficient to keep only the first two terms

in the series (25). Thus, the quantity Ao is determined entirely:

Ao= (-7 y -1+-3 + 3E .......

\Vith Ao known, we are able to find the first order correction to the flux function @ from

(16) an,l (1S). that is

qJl =¢:((-,v)z(1-2y2+ 3y'-z2)/_ (27)
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Let us analyze the form of the boundary flux surface _(x, y) = 1 taking into account the

first order correction (27). The maximum deformation of vacuum surface appears at ¢"= _'/2

(cross-sections 4 and 10 in Fig. 1), where that surface obeys the equation:

- -- -----_xa+y 2 l+Amx 2- = 1 (28)x 2 A 4 x+A4E 4 "

The typical form of the curve (28) at the moderate value of A is presented in Fig. 2b. We

shall consider the equilibria where plasma boundary cannot displace along x-axis more than

the plasma minor radius. This limits the quantity A"

65
A < Am= = . (29)

- _r2(_ _ 4)

The main difference between the formula (29) and the estimate given in Ref. 3 is in the

accurate calculation of induced poloidal magnetic field which decreases going away from the

plasma center. However, for an ellipticity E = 13 which was chosen in the LMNS proposal, 3

the estimate (29) gives a value of permissible beta just enhanced by a factor (E/E) _ ,_ 1.17.

._lore important is the fact that in accordance with (29) at lower E _< 4 the plasma column

cani:ot displace by such a large distance by any A (the x coordinate of boundary curve (28)

ca_:not exceed V/_). Furthermore, even for E > 4 the factor in front of y_ in (28) appears to

b¢, negative at a ,\ value just lower than the one given by (29). It infers a hyperbolic character

Gr tl:c f)lasma boux_darv instead of an elliptical one. The separatrix between elliptical and

t::,'t_crt)olic ft_:x surfaces appears at A _ A_p"

A._p-4x/2 _ _ _-2 (30)7r_ 2 -3 L'-3

I:or the considered structure of the magnetic field the appearance of such a separatrix is an

artifact which indicates that for A > A,ep we are beyond the applicability region of Eq. (28),

,Li:d l:igtler-order terms neglected during our A-expansion are intrinsically important.

.Si:l(:e the limitation A < A,_p is always stronger than inequality (29), it means that

:ti_pli,:ability of the plasma boundary description given by Eq. (28), is breaking down at a
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smaller value of A than t e value A _ A._x given by (29). Moreover, for/_ < 3.37 Eq. (30)

predicts A,,p > 1, which iadicates a basic limitation of neglecting higher-order terms in the

A expansion.

2o correct our analysis for A > A,,p, higher-order terms obviously need to be taken into

account.

B. Second order

Substituting the first order solutions (26) and (27) into general Eq. and integrating over

q', we find

A.t.A , = f' f l - -_E + --_-E -E-_ , (31)

where for brevity we denoted by f the combination f = (((- _r). fo carry out the above

mentioned procedures of solving Dirichlet's problem outside the plasma and the matching

of internal and external solutions, we need to represent the piasma boundary deformed in

accordance with (2S) in a form of Fourier sum:

x _c, v- Af _'-S 1 -t y) cos 2vF

y[ _sin v+Af/_-2r 2/_2 sin 2v. (32)

It is easy to prove that Eqs. (32) are equivalent to Eq. (28) with an error of order A2. The

dctermination of the needed coordinate transform (x,y) _ (u,v) for such a boundary F is

similar to the second example given in Appendix B. Having found the transformation, we

obtain the solution of Eq. (31) as a polynomial

f'((5) (1)) ( 2 lz2 2 ),41 = ---=6E 2 f 1 2 E" -rc 2 1- -=E x y l - y - -3 + ._ (y2 _ x 2)

14



+ ff'_-Y(_(l+(1- E)Z2)+ (_-1)(_-2)_ (,,1- 2----=--E-ly2))E ' (33)

Substituting (33) into (16), we find the second order correction to the flux function in the

plasma region"

r2{ )2 3 y2)2 4 }_ = ¥ (1- __y_+ _ (_ + + _ (y'(1- 2y_)- _)

+

/_{(_-1)(_-2)(_ _-1 ) _ ( 2)_ x_ }_3 2 -Y_+2Y2"-"_ - (Y2-3x2) + _y2+ 1--_ ( -3y 2) . (34)

The three terms in (34) have different physical origin. The first term is the main one, which

describes the largest shift of the deforraed plasma boundary (32) by the main poloidal field

with potential (26). The second term arises due to additional (_, A2) corrections in B±

found from the equilibrium equation, and the third term arises by accounting for the plasma

boundary deformation in the matching of the internal and external solutions. The third

term arises because, to obtain the correct matching for each new order in A, it is necessary

to substitute simultaneously ali the lower order solutions into the boundary condition (20).

The typical shapes of magnetic flux surfaces • _ ff_0+ A_I + A2ffJ2in the middle cross-

sections of the toroidal cells are presented in Figs. 2 and 3 for different values of A and

L_. Contrary to the first order approximation the invalid separatrix doesn't appear for any

.\ _<1. Therefore, in the area of applicability, ali these calculations give reasonable answers.

l'his is the first reason why we are able to restrict our calculation to second order terms

in A-expansion. The second reason is that, as can be seen from the general equations (16)

and (17), the third order corrections have an additional factor ,_ 1/E, which reduces the

influence of higher-order terms to only slight distortions of the flux surfaces. Thus it appears

that taking into account yet higher-order terms than A2 will not change either the qualitative

flux surface structure or quantitative estimates for the plasma column displacement.
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The dependence of the maximum plasma boundary displacement in the z-direction with

increasing A is presented in Fig. 4. It is interesting that for reasonable values of _7 such a

displacement does not exceed the plasma minor radius (max (z) < 2, where F: @0+ A@1+F

A2_2 = 1) for any A < 1; and for A > 1 the expansion procedure becomes incorrect. The

more favorable and significantly nonlinear dependence of the above displacement on A is the

main difference between present results and the previous first order estimates in A. For a

concrete device in which the plasma boundary displacement could be limited by a number

of physical and technical restrictions which are not obvious a-priori, the permissible value of

.\,,._.__< 1 will be found from Fig. 4, and the corresponding equilibrium beta is given by

'_ £EAmax • (35)

VI Conclusion

The method of solving Dirichlet's problem described in the Appendices allowed us to ana-

lytically obtain the form of the flux surface in the toroidal cell. To calculate the magnetic

ft_lx sLlrfaces and ttle plasma equilibrium configurations for present day stellarators with

tlon-circular cross-sections, advanced numerical codes are usually used. For ,example, the

code \'.kIEC _ operates with 23-mode harmonic spectrum to represent the shape of plasma

boundary (which looks typically like a deformed ellipse) in stellarators ATF, Heliotron-E and

[.ttD. l'' The use of the above-described variable v instead of conventional poloidal angle for

t tie [:ourier expansion seems to be able to decrease the needed number of Fourier modes and

to facilitate the calculational procedure due to the known behavior of the external solution.

It should be emphasized that there is in principal no limitation in making such calculations

to higher order in the A-expansion; either analytically or numerically.

[.ct us mention that although the respective plasma boundary displacements are smaller

irl case of lower ellipticity (see Fig. 4), the equilibrium beta nevertheless increases with
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increase of E (see (35)). Moreover, as can be seen from Figs. 2 and 3, the nonuniformity of

different flux surface displacements appears to be more apparent in the case of low/_.

We have considered the finite [3 distortion of the plasma equilibrium separately in the

toroidal cells. It is clear that had we analyzed the entire closed system, condition (35) could

be changed because

1. the additional flux surface deformation can appear in mirror cell9' 13as weil, and there-

fore, the form of that surfaces in cross-sections 3, 5, 9, and 11 between mirrors and

toroids can differ from ellipses;

2. the unfavorable flux surface distortion must be integrated along the whole system.

The first consideration will also alter the flux surface structure we have presented. How-

ever, such changes are only slight because they appear to next order of the expansion. The

last of the above considerations leads effectively to modification of plasma equilibrium pa-

rameters into the mirrors and, as was mentioned in Sec. III, does not significanly result in

the additional deformations of plasma configuration in the toroidal cells. For the parameters

chosen in L_INS proposal 3 (a _ 2.9cm, kT = 0.5 m -_, _" = 13) the estimate (35) does not

really limit the toroidal beta value.

Thus the preserlted analysis confirms the possibility of the creation of plasma configura-

tion in the Linked Mirror device with equilibrium consideration allowing a moderate plasma

I)ressure (3 _<10%) in the toroidal cells. In the nominal design given in Ref. 3, considerably

lower toroidal beta (-_ 2%) was taken. Hence, the equilibrium of the toroidal linkage of the

proposed neutron source 3 is well within equilibrium restrictions.
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Appendix A: Analytical Solution of Dirichlet's Prob-

lem on the Outside of an Arbitrary Given Curve

A. Problem formulation

Let us introduce the cartesian coordinates X, Y in the plane, where the closed curve F is

given. For definiteness we shall consider the smooth ordinary curve without self-intersections.

The Dirichlet's problem:

To find the function _(X, Y) on the outside of F:

029 02¢p
/x_= OX 2 _ OY _ =0 ; (AI)

_1 = _(.¥,Y) ; (A2)
IF

where _(X, Y) is the given function.

This problem can be solved by using Green's functions. However, by such a method it may

be difficult to carry out the integration explicitly, and obtain the needed solution analytically.

Instead. let us suppose that we have found the coordinate transform (X,Y) ---+(u, v), for

which

1. the lines u(.g, }") = const are closed curves, and u(X, Y) = Uo describes the curve F;

2. Laplacian operator has the similar form

as in cartesian coordinates;

3. Jacobian J doesn't equal zero anywhere outside of F.

18



These three requirements mean that our transform is not degenerate, and allows us to

separate the variables of the Laplacian operator as well as for the boundary curve.

In this case we can immediately expand the solution of Eq. (Al) as the series

oo

_(u,v) = _(_,_e '_" + j3,e-'_)(#,_ cos nv+ v,_sin nv), (A3)
n_O

where c_,,/3,, #, and v, are constant.

Furthermore, we also represent the function _(X, Y) in the following series form

eJO

= cos +
n--O

and use (A2) to determine a relationship for the coefficients:

;_.(_e TM + .a.e-"_°) = g,. ,

v,_(c_,eTM +/3,e -"_°) = _, . (A4)

The relations (A4) don't determine al_ the Fourier's coefficients in expansion (A3), hence,

tile uniqueness of the solution (A3) requires additional boundary conditions (e.g. when the

normal derivative of _ is given at the curve F, or the asymptotic form of _ at tile infinity

i..,sp,'_ified ). .-kt any event, the initial problem (Al) and (A2) is now reduced to finding the

II,:,:(l_',lcoordirlate transform (.\', Y) _ (u, v).

B. Coordinate transform

1 Existence

F'irst of ali we shall demonstrate that the needed transform really does exist for any curve

I'. We can obtain such a coordinate transform by posing a straightforward electrostatic

I)roblem. We imagine a uniform metallic cylinder with the cross-section F, and we put

an electric charge on this cylinder to provide a finite surface charge density'. Outside the

cvlirlder an electric field appears, and its potential _s can be chosen as the effective radial

19



coordinate u. Indeed, tpE(X, Y) is a harmonic function outside of F, _E[r = const and ali

the other equipotential surfaces _E = const are closed around the cylinder. For any such

harmonic function the conjugate function v(X, Y) always exists. Physically the function v

is to within an overall numerical factor the number of electric field lines of force on the given

line u = const. Such a variable v is 2rr-periodic and orthogonal to the variable u, because the

electric field lines of force are orthogonal to the equipotential surfaces u = const. Hence, the

variables (u, v) obviously satisfy requirements 1 and 2 in subsection A. The Jacobian of the

transform (X, Y) ---, (u, v) cannot equal zero anywhere outside of F, because the electrical

field is defined everywhere, and the presence of an x-point on the plane cross-section of the

surface WE = const will be a contradiction of the maximum principle for harmonic functions,

because there is no additional charge anywhere outside of F.

Thus, such an electrostatic analogy guarantees the presence of needed variables (u,v)

for any closed ordinary curve F. In addition, from this analogy we can find that the lines

u = const in any plane perpendicular to the axis of our cylinder tend to be circles at the

infinit.v, and have the asymptotics u .-_ [n R (R = (X 2 + y2)1/_) when R ---, ec.

2 Transform construction

I.ct t_s I_acntiorl that ._iIlce the lines u = const are closed, the variable v is angular-like. Hence

the desired inverse transform can always be expressed as a Fourier series over the variable v:

.X"=
r_--0

Y = _ Y,(u)sin nv. (A5)
n_l

For the simplicity and according to symmetry of LMNS geometry with respect to horizon-

tal plane }'" = 0, we shall restrict here our consideration with symmetric transforms only.

Therefore we have chosen the X in (5) as an even function of v, and Y _ as an odd one (it is

2O



also easy to analyze the case without symmetry). Inverting the transform (AS), we obtain:

Ou 1

0-77= 7 _ '_Y"_o_n,, ;
Ov 1

0.--_= -? _ Y" sin nv ;
Ou 1

OY-"-:= "J _-_ nX. sin nv ; (A6)

Oy 1

07 = 5 I2 x'. _.osn_ ;

where prime denotes the derivative with respect to u, and the Jacobian

J = OX OY -_. _ = (nY.X_'cos nvcos mv + nX.Ym'sin nvsin my).
rl,rrt'--0

(A7)

To provide tile needed form of the Laplacian operator (see the requirement 2 in subsection

A). the Cauchy-Riemann conditions must be satisfied:

Ou Oy Ou Ov

0.g= &--=; 07 = ox (A8)

"Fllese conditions lead immediately to the equations:

'v'n > 0 X'. = n}';, ; Y" = nX. , (A9)

and the general solution of Eqs. (A9) is

X., = C.e"" + C.e-""

II', = C,e"_' - C,,e -'' (Al0)

The constants C,_, C, (n = 0, 1.2,...) must be chosen to satisfy requirements 1 and 3 (see

subsection A). Using (A7) and (A8) we find that the Jacobian is a non-negative function:

,_(0x-b-g) + >o,
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which equals zero only in case when

y_ nX,, sin n v = 0
r_'-'O

nY. cos nv = 0 . (All)
n--O

Remembering the asymptotic structure of the transform of the electrostatic analogy, we find

that all the coefficients

C.>1 =0 . (Al2)

Only with this condition can the lines u = const tend to circles at infinity, and can u(X, Y) be

a single-valued function. Due to (All), if the Jacobian of such a transform is zero anywhere

it will satisfy

X1 sin v = - y_ nX,, sin nv ,
n,-" 2

Y, cos =
n-'2

\Ve will arrange that .k'l, _ > 0 by changing the starting point and/or the direction of the

variable v. Since only the amplitudes .¥1, Yl contain the term that increases with increase

of tL, the positivitv of Jacobian is guaranteed everywhere outside of F, if

X,,Y11 > _ n[.k',l[ (113)F n=2 F

Otherwise,thecurveF can havesome self-intersections.Letusnotethatdue to(A12)being

satisfied on F, condition (A13) has to be valid everywhere outside of F. Thus, all the possible

singular points of our transform have to lie inside the contour F.

Finally, we have to find the coefficients Co, C1, C, (n > 1) by expressing the equation

for the curve F in terms of the Fourier harmonics of the variable v. Examples of how to do

it are presented in Appendix B.
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Appendix B: Transform Examples

Let us demonstrate how to apply the above transform method to obtain the analytical

expressions when [' are simple curves, which contain a small number of modes in their

Fourier expansion.

A. Elliptical border

Let F be an ellipse described by the equation

y2

r. X_ + _-Z = as , (BI)

where a is the minor ellipse axis size, and ellipticity E _> 1. Observe that to provide the

equivalence of Eq. (B 1) to the needed equation u(X, Y) = uo it is sufficient to keep only one

mode in the expansion (A5), i.e. to put all the coefficients C_, C, equal to zero except for

C,'1, Cl (Al0).

Equation (Bi) is rewritten as

( /.v_+_ +cos2_,x, E_ - '
E2 J _-_0 _--_0

an¢l we find

x I1 --a,

_=_o (B2)
I

}_l = Ea .
I1/,_ U O

l:ormula (B2) allows us to obtain the coefficients C1, Cl with certain degree of arbitrariness,

because the quantity Uo is not strongly determined.

Assuming u _ +oe at X, Y ---,_:_, we obtain

E+I
C 1 -- 12 e - uo

2
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- E-1

C1 =-a_e_°. (B3)

If we choose
1 E+I

uo=_ln E-1 '

we get the known semi-elliptical coordinates

X=av/E 2-1sinh ucos v,

(B4)
Y=av/E 2-1coshucoscos v.

These coordinates are known to separate variables for the Laplacian operator that is used for

the solution of the elliptical plasma equilibrium problem. However, they cannot be applied

to the situation when E _ 1.

Having the arbitrariness in the choice of uo, we may put, for example, u0 = 0. In this

case our transform has a form

X =a(E-t) sinh u+ E-1 cos v,

Y=a(E-1) coshuq E-1 sin v, (B5)

which results in usual polar coordinates at the limit E --, 1 (u _ In R).

The Jacobian of the considered transform

1
+ + cos

can be equal to zero only when X1 = YI = O, which is prohibited outside the ellipse 1"due

to (B3).

Thus, the above transform (in particular, (B4) and (B5)) satisfies ali three requirements

mentioned in Appendix A.

B. Moon-shaped border

Let F be described by the equation

(X - e(.¥ 2- y2))2 + (y +2eXY)2_ 1 +e_((1 -2e2)(X 2 +Ya- 1)+e 4- 5e2 +4) = 0. (B6)

2,1



For an arbitrary e < 0.5 this curve is similar to a moon-like deformed circle, which tends to

be a usual unit circle at c _ 0. Substituting the general form (AS) of our transform into

(B6) together with the condition (Al2), and forcing ali coefficients in front of the non-zero

harmonics to equal zero, we find that the transform is

.\. e,,-,,o _(_o-_) 20-- COS V -]- e COS ,

(Br)
K = e_-_° sin v - e2(_°-_) sin 2v .

This describes the curve F given by (B6)at u = Uo (the quantity Uocan be chosen arbitrarily).

Let us prove tile positivity of the Jacobian, which could be equal to zero only when

OvX = OyY = 0

(see :\ppendix A). Using the explicit expressions (B6), we find that the Jacobian equals zero

for u _> uo: e:_(_-_'°)= 2e. That is impossible for _ < 0.5, which corresponds to the general

(:oll,tition (A 13).

C. Re mark

"lh,r analytical solvation of the above-mentioned Dirichlet's problem can be found in the=

f,,rItl ,,f ;m exf),.tlsi,,z_ ,,v,.r ,tiffereIlt eigenfunctions. In particular, the spherical functions, the
al

x:_;Itit,ole ,'barges and other functions can be used as a basis for such an expansion. However,
i

tI_,. pr,:,I,osc,t rlaeTh()d of the implicit Fourier expansion given in Appendix A is often more

a,,_lral_' atl_t _,,I_l);tct in cases when the contour F is a simple curve which contains a finite

, ,_lmber of terms in a series (A5). lt should be noted that most of the boundary contours

appearing in practical problems of electrostatics, or plasma equilibrium, or hydrodynamics

can be usually represented by such a finite sum (precisely or approximately), while the

r,'i)rescntati(m by nleans ()f another basis usually needs many terms of an infinite series to

,)tJraiIl c_)t_ll)arat)lc itccuracy.
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Figure Captions

1. Structure of magnetic field lines in the toroidally linked mirror system.

2. Typical constant pressure contours at the middle of toroidal cells with E = 4

(a) ,\ = 0; (b) _ = O.2;(c) _ = 0.8;

1) plasma boundary, '2) plasma column center.

:3. Typical constant pressure contours at the middle of toroidal cells with E = 13

(a) ,\ = 0.2: (b) ,\ = 0.8

I) plasma boundary, 2) plasma column center.

4. Plasma boundary position

ll ?= 1:13,'2/_ =4.
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