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NUCLEARDATAANDMEASUREMENTSSERIES

The Nuclear Data and Measurements Series presents results of
studies in the field of microscopic nuclear data. The primary
objective is the dissemination of information in the comprehensive
form required for nuclear technology applications. This Series is
devoted to: a) measured microscopic nuclear parameters, b)
experimental techniques and facilities employed in measurements_
the analysis, correlation and interpretation of nuclear data, and
the evaluation of nuclear data. Contributions to this Series are
reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication, but it does provide the more extensive
information required for technological applications (e.g., tabulated
numerical data) in a timely manner.
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A LEAST-SqUARESCOIPUTATIONAL"TOOLKIT"a

by

Donald L. Smith

EngineeringPhysics Division
Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439
U.S.A.

ABSTRACT

The information assembled in this report is intended to offer a
useful computational "tool kit" to individuals who are interested in a
variety of practical applications for the least-squares method of
parameter estimation. The fundamental principles of Bayesian analysis
are outlined first and these are applied to development of both the
simple and the generalized least-squares conditions. Formal solutions
that satisfy these conditions are given subsequently. Their
application to both linear and non-linear problems is described in
detail. Numerical procedures required to implement these formal
solutions are discussed and two utility computer algorithms are
offered for this purpose (codes LSMOD and GLSMOD written in FORTRAN).
Some simple, easily understood examples are included to illustratethe
use of these algorithms. Several related topics aze then addressed,
includingthe generation of covariancematrices, the role of iteration
in applicationsof least-squaresprocedures,the effects of numerical
precision and an approach that can be pursued in developing data
analysis packages that are directed toward special applications.

a This work was supported by the U.S. Department of Energy, Energy
Research Programs, under contract W-31- 109- E._g-38.





1. INTRODUCTION

An important aspect of data analysis is the derivation of
best-estimate values for certain desired parameters, after having been
provided with a set of data and, possibly, some prior information on
the parameters themselves. An important technique used for this
purpose is the method of least squares. This approach was first
suggested by K. Gauss many years ago. Today, elementary versions of
the least-squares method are commonly taught in mathematics and
physics courses. They are widely applied by investigators. Frequently,
these are incorporated into sophisticated computer software packages
which also offer many options for handling and plotting data. However,
there are more advanced and less frequently considered formulations of
this method that ought to be considered. These offer possibilities for
manipulation and utilization of data which are generally not
appreciated adequately by the scientific community. In particular, it
is possible to address non-linear problems, to include weighted and
correlated data, to allow for the existence of prior information about
the parameters being sought, and even to introduce constraints.
However, it is rather difficult for the casual user (who has limited
time available to develop the skills) to conveniently extract from the
plethora of bewildering information in the literature !much of it
highly mathematical in nature) exactly what is needed in order to
address specific problems ,sing advanced least-squares techniques_, As
a consequence of this "knowledge barrier", these advanced formulations
of the least-squares method tend to be largely ignored by most
investigators. This is unfortunate because they really are not that
difficult to understand or formidable to apply, and the rewards of
doing so are well worth expending extra effort to learn the skills.

The objective of this report is to gather conveniently in one
place that information which is needed to correctly apply some of the
more useful advanced least-squares methodologies. Although this goal
is a practical one, some attention is given also to the theoretical
foundations of the least-squares method. This report aims to bridge
the above-mentioned "knowledge barrier". Since no new ground is broken
here, this report does not target those investigators who are already
experienced in the use of these techniques. However, researchers who
routinely employ existing computer codes which incorporate
least-squares analysis techniques, but do not possess a well-developed
understanding of the underlying subject, will also profit from a study
of this report. It will help them to utilize these various codes in a
proper and effective manner.

Section 2 explores the foundations of the least-squares method
from a Bayesian viewpoint and discusses models used to relate the
sought-after parameters to the available data. It is shown that the
"simple" least-squares algorithm results when there is no prior
knowledge of the parameters sought (Section 3). The "generalized"
least-squares algorithm is required when prior knowledge of the
parameters and their uncertainties exists and must be combined with



new data to provide revised estimates for these parameters
(Section 4). Versions of the least-squares method which allow for
constraints between the parameters to be considered will not be
treated in this report. Sections 3 and 4 have been prepared to serve
as more or less self-contained instructional packages. _n each
section, the corresponding formalism is discussed, r_umerical
procedures are described and some illustrative examples are presented.
For example, a reader who is interested mainly in simple least-squares
analysis could focus his attention principally on Section 3 _nd
Appendix A. However, such a shallow approach to this subject is not
recommended. Both the simple and generalized least-squares techniques
are widely applicable. The experienced researcher ought to become
conver_ant with both techniques and, therefore, able to discern which
of them is most suitable for dealing with any particular problem he
might encounter.

In order to gain proficiency in the use of these methods, the
user will benefit from a study of the supplementary topics discussed
in Section 5. Some thoughts are offered there on the generation of
covariance matrices, on the role of iteration in use of least-squares
methods, on the effects of numerical precision and on an approach
toward the development of user-customized analysis packages derived
from two basic algorithms (LSMOD and GLSMOD).

Two FORTRAN programs are provided here (LSMOD and GLSMOD),
complete with test problems. The reader can, with some ingenuity, put
these directly to use in solving problems without any further
modifications.However, the reader need not be limited to using these
codes. For example, there exist sophisticated commercial software
packages which permit the use of symbolic expressions to evaluate
functions, to carry out matrix operations, etc. These can also be
employed profitably in solving least-squaresproblems. To this end,
the fundamental equations upon which such analyses are based are
clearly indicatedin the text of Sections 3 and 4.

A few comments concerning notation are in order. Most of the
equationswhich appear in this report involvematrices. The convention
of denoting matrices by boldface letters will be followed here (e.g.,
A, ¥, p, etc.). A vector is simply a matrix with unit dimension in at
least one direction. A scalar is just a degenerate matrix with unit
dimension in both directions. However, mathematical quantities which
are always scalar in nature are never indicated using boldface
symbols.

No attempt has been made to provide an exhaustive collection of
references in this report. The reference list here is limitedto a few
documents which might prove of some interestto those readers who wish
to explore the subject beyond the confines of this report.



2. FUNDUENTALPRINCIPLES

2.1 Bayesian Analysis

Least-squares conditions are generally introduced ad hoc in
classical statistics. These conditions lead to algorithms that provide
"estimators" for the parameters sought (e.g., Zeh70). Such estimators
may possess some desirable properties, e.g., minimum variance [Zeh90].
It can be shown that these least-squares conditions result from very
fundamental principles (e.g., Fro86 and Smi91). Their development
involves consideration of conditional probability, Bayes theorem and
the principle of maximum entropy. In view of the insight provided, it
is worthwhile devoting some attention to these basic ideas. The logic
is outlined below (see Smi91 for further details).

This discussion begins with conditional probability. First, we
define the notation. Assume that E is an exhaustive collection of
events (equivalent to sets) associated with a particular sampling
procedure. Suppose that X and Y are arbitrary, non-trivial events
(non-empty sets) belonging to E, i.e., X E E and Y E E. _e shall
employ P to signify probability. Let P(XlY ) denote the conditional
probability of X given that Y has occurred _hile P(X) is the
unconditional probability of X. It is clear that P(X) = P(XlE ) since E
is the certain event which always occurs. Probability must be
normalized, thus P(E) = P(EIE ) = 1, P(X)< 1 and P(XIY) < 1. Now, let
lk (k=l,n) be a collection of non-trivial events (non-empty sets)
belonging to .E (Ak E E). Suppose that these events Ak are mutually
independent, _.e., that Ak and Q have no elements in common for all
j # k. Finally, suppose that E = Zkfl,n _k, i.e., that E can be
considered as formed by the union of all these Ak. Such a collection
of events Ak is known as a partition of E. It is not unique since many
partitions of E can be conceived with these properties. Then, let D be
another arbitrary, non-trivial event belonging to E. It can be shown
quite easily that

P(Ak[D) = P(D[Ak)P(Ak)/[Zj =I ,n P(DIAj)P(Aj) ]. (2.1)

This formula is known as Bayes theorem. The validity of Eq. 2.1 is
beyond question. However, there exists controversy in mathematical
circles concerning interpretation of the various quantities which
appear in this equation. Ye shall adopt the Bayesian interpretation.
Then, Ak is an hypothesis (e.g., the proposition that certain values
for a collection of parameters sought represent the best possible
ones) and D represents an experimental data set. Thus, P(AklD) is the
posterior conditional probability that Ak is true given that the data
set D has been acquired. On the other hand, P(D[Ak) is the conditional
probability (or likelihood) that the data set D would be generated if
Ak were indeed true. Finally, P(Ak) is the unconditional probability
that Ak is true, based on our knowledge prior to the experiment which
produced data set D. Note that the factor in the denominator serves to
normalize the posterior probability, i.e., P(E[D) = 1.



Often, we must treat event spaces which are essentially infinite
in extent. Then, Eq. 2.1 is not an appropriate form of Bayes theorem
to consider. However, we can reformulate this equation by resorting to
probability density functions, p. Then, Bayes theorem becomes

p(plD) = L(Dlp)pa(p)/[] L(Dlp')pa(p')dp' ]. (2.2)

Here, p represents a collection of parameters (in some contexts it
signifies a set of specific values for these parameters). These
parameters are random variables which represent events. Then, p(plD)
is the posterior probability density for p, given that data set D was
acquired in an experiment, L(DIp ) is the probability (likelihood) that
parameter set p would yield data set D, and Pa(P) is the unconditional
probability density function for p, based on our knowledge of the
situation prior to the experiment which produced data set D. Again,
the factor in the denominator serves to normalize the posterior
probability. For convenience, we can simply express Eq. 2.2 as

p(plD) = CL(D:p)pa(p), (2.3)

where C represents the required normalization constant which can
always be determined by integration.

It should be understood quite clearly that prior knowledge of the
situation is characterized by an unconditional probability density
function. After an experiment has been performed, and data are
available, this probability density function must be revised. Eq. 2.3
gives us a procedure for carrying out this refinement process. The
analysis can be repeated whenever a new data set is obtained. Such an
iterative approach is consistent with common understanding of how
knowledge grows out of experience. The Bayesian method simply offers a
computational algorithm for the application of a common sense
approach. Probability distributions provide the means for executing
this process.

The problem is that we really don't care much about these
probability distributions themselves. What we want to know are the
parameter "best values" (or "results") to be deduced from such a
"learning" exercise. Statistics provides us with a formal prescription
for addressing this concern. If we have a probability distribution
which describes a set of parameters, then best values for the m
parameters Pk are just expected values, namely, those values <Pk>
defined by

<Pk> = YP(P'ID)pkdp' (k=l,m). (2.4)

Furthermore, the uncertainties (and their correlations) for these best
values can be obtained from the covariance matrix Vp whose elements
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are obtained from the formula

(¥p)kq = <(Pk-<Pk>)(Pq-<Pq>)>
(k_q:l,m). (2.5)

= J(pk-<Pk>)(pq-<pq>)p(p'[9)dp'

llthough this approach is completely rigorous, the calculations
indicated by Eqs. 2.4 and 2.5 can be extremely cumbersome when the
number of parameters is large. Therefore, this direct method for
finding best values is generally impractical. What can be done about
this? We continue to pursue the above line of reasoning. So far, we
have said nothing about the likelihood function L which appears in
Eqs. 2.2 and 2.3. For convenience, suppose that the data set
represented by 9 consists of a collection of values y. Furthermore,
suppose that we also possess a covariance matrix ¥y for these values.
Then, suppose that f represents a collection of functions fi (i=l,n)
such that li(p) is the calculated equivalent of yi, given the
parameters p. By applying the principle of maximum entropy proposed by
Shannon (e.g., Sha48), Jaynes (e.g., Jay78) showed that L takes the
form

L(DIp ) _ exp{(-1/2)[y-f(p)]*Vy-l[y-f(p)]}. (2.6)

The symbol " + " indicates matrix transposition and Vy-1 is the
inverse matrix corresponding to Vy. Eq. 2.6 indicates that knowledge
of a set of data values and their covariance matrix suggests that the
likelihood function should take the form of a normal distribution.
However, observe that this distribution is not necessarily normal in
the parameters p! This issue rests upon the nature of f. It is very
important to recognize that Eq. 2.6 is a consequence of the existence
of a data set an__ddits covariance matrix. If only the data were
available (with no uncertainty information provided), then this
formula would not be appropriate.

Ve combine Eqs. 2.3 and 2.6. This leads to the expression

p(plD) = Cexp{(- 1/2)[y-f(p)] +Vy-t [y-f(P)]}Pa(P), (2.7)

where C is the required normalization constant. Assumptions about the
prior probability determine whether the analysis will involve the
simple least-squares method or the generalized least-squares approach.
This matter is discussed in Sections 3 and 4, respectively.

2.2 Linear and Non-linear llodels

The nature of the model which relates the data y to the
parameters p determines whether the least-squares condition is exactly
comparable to the rigorous approach based on probability and
expectation, as described above, or is an approximation which is
actually equivalent to the maximum likelihood method of parameter
estimation (e.g., Zeh70). This point is addressed in some detail in
both Sections 3 and 4.



First, we discuss what is meant by a "linear" model. Suppose that
each of the functions fi can be expressed in the form

li(p) = _k=l,m aikPk (i=l,n). (2.8)

If each aik is a fixed constant which does not depend on p, then the
model f(p) vhich relates the data y to the parameters p is said to be
explicitly linear. If A is defined as the matrix of these constants
aik (i=l,n; k=l,m), then Eq. 2.8 takes the form

f(p) - ip. (2.0)

A is known as the design matrix or sensitivity matrix for the problem
under consideration. Since the data y are assumed to be approximated
by f(p), one can also write the expression

y _ Ap. (2.10)

The symbol _ is used to emphasize the fact that a parameterized model
always provides only an approximation to real data, owing to both
errors in the data and model imperfections.

If no relationship akin to Eq. 2.8 is applicable, then the model
is said to be "non-linear". However, if one is given prior values Pa
for p, or can make reasonable initial guesses for their values, then a
non-linear model can be linearized by means of first-order Taylor
series expansions. This leads to the approximate expression

fi (p)-fi (Pa) = Zk-x ,m aik(Pk-Pak) (i=l,n). (2.11)

The equivalent to Eq. 2.!1, in matrix form, is

f(P)-f(Pa) = A(Vpa)" (2.12)

This expression can be compared with Eq. 2.9, which is applicable in
the case of an explicitly linear model. For non-linear problems, the
parameters ai k are obtained from the expression

aik : [Ofi(p)/OPk]a (i:l,n; k:l,m). (2.13)

So, the elements of I are partial derivatives of the functions fi with
respect to the parameters Pk, evaluated at p = Pa. The matrix elements
ai k are no longer constants which are independent of the parameters p.
For such non-linear problems, it would be more precise to denote the
matrix I in F,q. (2.12) by la to indicate explicitly that its elements
depend upon Pa, but we will not take this step. Let Ya = f(Pa). Since
the data y are approximated by f(p), we can write the expression

y i(vu ). (2.14)



For convenience, let z = Y-Ya and r = l_Pa. Then, we have

At, (2.15)

which is quite comparable to Eq. 2.10.

In some cases it is possible to linearize a problem without
resorting to Taylor series expansions. Usually, this involves
transformation of the data and corresponding model to another
reference frame where a linear relationship exists. The following
example demonstreLtes the procedure.

Example 2.1: Exponential decay

Suppose tha'_ the data value yi corresponds to measurement of the
activity of a radioactive sample at time tj. The model fi(p) =

_;ti) = p_exp(-p_ti) is selected to represent these data. Then,f(Pl,yi_ _ Pl,P2;ti). This problem is clearly non-linear. So, let us carry
out the transformation wi = In yi, ql = In Pl and q2 = -ps. Then, we
obtain the expression wi _ ql + q_ti which Ls a linear relationship,
and we can apply the formalism described above. Keep in mind that such
a "trick" cannot, be found to deal with most of the non-linear problems
encountered in physical research.

In this report, we treat only least-squares problems where the
model that relates the data to the parameters is explicitly linear or
can be linearized by the procedures described above. Therefore, for
non-linear problems to be tractable, it is assumed, implicitly, that
the region of significant probability density near Pa, associated with
the parameter set p, is sufficiently small so that the first-order
Taylor series approximations involved in Eqs. 2.11 - 2.13 are adequate
(i.e., the higher-order terms of these expansions can be neglected).



3. SIXPLE LEAST-SQUARESANALYSIS

3.1 Formalism

Consider Eq. 2.7. An expression for the likelihood function L has
been provided but nothing has been stated concerning the prior
probability function Pa. As indicated above_ the simple least-squares
method is appropriate for dealing with problems where there is
essentially no prior information on the parameters. Then, Pa must be a
non-informative prior probability function, i.e., it is essentially a
constant independent of p. For simplicity, we assume that Pa(P) = 1.
Then, we can write Eq. 2.7 as

p(plD) : Cexp{(-1/2)[y-f(p)]*Vy -l[y-f(p)]}. (3.1)

It is absolutely essential that the matrix Vy be positive definite in
order to represent physically reasonable uncertainties for data (e.g.,
GS88). Then, its inverse Vy-1 will also be positive definite and, as a
consequence of the definition of positive definiteness, it follows
directly that the quantity [,-f(p)]+Vy-'[y-f(p)3 is always a positive
scalar. The principle of maximum likelihood (eg. o, Zeh70) states that
the best choice for the parameter set p is the one which maximizes the
posterior probability. Given the nature of Eq. 3.1, this translates
into the requirement

[y_f(p)].Vy-l[y_f(p)] : minimum, (3.2)

which is a manifestation of the least-squares condition, expressed in
matrix notation. Suppose that the model which relates the data y to
parameters p is either explicitly linear (Eq. 2.9) or has been
linearized (Eq. 2.14 or 2.15). Then, we can write Eq. 3.1 as either

(y-lp).Vy-l(y-lp) : minimum (3.3)

or

(z-lr)*Vy-'(z-Ar) = minimum. (3.4)

Since it does not matter for the formalism whether we choose to use y
and p or z and r, no generality is lost by considering the former in
addressing this mathematical problem. Therefore, we concentrate on
finding a solution that satisfies Eq. 3.3. The details are discussed
in Smi91. The results are sun_arized by following equations:

p : Vpl+Vy-ly, (3.5)

Vp = (A+Vy-'A) -t, (3.6)

X2 : (y- Ap).Vy -! (y- Ap). (3.7)
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It is to these equations that reference must be made in all numerical
calculations involving the simple least squares method. The matrix Vp
serves as the covariance matrix for the solution parameters p. It
provides their uncertainties and correlations. The scalar X2 is to be
evaluated using solution values for parameters p (Eq. 3.5). It forms
the basis for a chi-square test (e.g., see Smi91). In particular, the
number of degrees of freedom f for the least-squares problem is given
by the formula f = n-m. Obviously, the number of input data values n
must exceed the number of parameters m to be determined or the method
will fail. It is assumed that (X2)norm = x2/f follows a chi-square
distribution with one degree of freedom. This is strictly true only if
the data set y is normally distributed. However, for large data sets
and modest numbers of parameters (i.e., if f is considerably larger
than unity), these problems can be treated as asymptotically normal.
If it happens that (X2)norm is significantly larger than unity, then
either the data are discrepant or the model used to represent these
data is flawed. The origins of any data discrepancies need to be
sought, and consideration should also be given to the validity of the
model (e.g., see Smi91). If these investigations fail to identify the
problem, an approach of last resort is to multiply the errors of all
the solution parameters by the factor (x2/f) 1'2. This is actually
equivalent to multiplying all the errors for the input data by the
same factor.

Another point to note is that so long as the model which relates
the data y to the parameters p is linear, or has been linearized as
discussed in Section 2.2, the solution provided by Eqs. 3.5 - 3.7 is
entirely equivalent to what would have been obtained by the
calculation of expected values directly from the posterior probability
distribution, i.e., from Eqs. 2.4 and 2.5. This happens beca)lse the
posterior probability distribution is then normal in the parameters p,
and is therefore completely symmetric about the solution for p. This
very important result conveniently ties together certain diverse
aspects of the theory.

If we are required to treat a non-linear problem which has been
linearized, it is easy to derive the solution p from r, i.e.,
p = Pa + r. What is the corresponding relationship between Vp and Vr?
This question can be addressed by using the law of error propagation.
This states that

Vp : T+VrT, (3.8)

_here T is the matrix involved in a transformation from variable set r
to p (e.g., see Smi91). The elements of T are given by the expression

(T)kq : Dpk/Orq : _kq (k,q:l,m), (3.9)
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since Pa is treated merely as a convenient constant for linearization
in simple least-squares analysis. Therefore,

vp: v,. (3.lo)
In order to handle non-linear problems, it is assumed that one is

able to identify a good starting point for linearization, i.e., to
select a set of parameter values Pa close enough to the final best set
p which is consistent with the data provided. This can be a challenge
if the parameter space involves several local least-squares minima,
where the investigator may become inadvertently trapped in his
analysis. If one begins near to any minimum of the chi-square surface,
local or otherwise, the procedure described above will tend to
converge to a solution at that closest minimum, in the neighborhood of
pa. This is a generic problem of all non-linear fitting exercises. One
possible remedy for this problem is to eventually make random jumps in
parameter space to new starting points Pa'. One thereby explores other
possible minima, in order, hopefully, to eventually locate the
"deepest" minimum which can then be assumed to correspond to the best
solution. Another possibility is to introduce constraints which make
it more likely that a reasonable solution will be obtained. As
indicated previously, we have chosen to avoid consideration of
constrained least-squares problems in this report. In my opinion,
prior experience and intuition will generally serve an investigator
well in selecting an initial parameter set Pa which is appropriate for
application of this method. Of course, if this is possible, then it
may also be feasible to provide reasonable estimates of the
uncertainties for this prior set, i.e., to introduce a covariance
matrix Va. Whenever this is actually the case, one probably ought to
employ the generalized least-square method in the first place, and
avoid the simple least-squares formulation altogether.

3.2 Numerical Procedures (LSIliOD)

Code LSMOD offers a "bare-bones", simple least-squares
computational tool. Figure 1 is a block diagram which shows the basic
components of this code. Two versions of FORTRANstatements for this
code plus the input and output for a test problem appear in
Appendix A. The input must be sufficiently comprehensive to carry out
the calculations indicated by gqs. 3.5 to 3.7. If the problem has been
linearized, then z replaces y and r replaces p in the input, as
discussed in Section 3.1. There is no provision in LSMOD for
preparation of this input from more-basic, problem-specific
information. For example, the elements of t must be introduced
explicitly. In some problems, these elements can be derived from
specific functions. Thus, if the fitting model is a polynomial, these
elements will originate from terms of that polynomial. However, all
such calculations associated with preparation of the input must be
done externally by the user of LSMOD. The same general characteristics
hold for the output. A powerful feature of advanced least-squares
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methods is that they offer the possibility to calculate uncertainties
and their correlations for various quantities that can be derived from
the fitted parameters. This is accomplished by employing the law of
error propagation (see the discussion leading to Eq. 3.8 and 3.9). The
user of LSIIOD must take the direct output of this code and employ it
externally to carry out such analyses. LSHOD could be tailored for
special problems by altering both the input and output sections of the
code, while leaving the computational portions largely untouched. This
issue is discussed further in Section 5.

Finally, there is no provision in LSHOD(as presently written) to
carry out iterations of the least- squares procedure. However,
alterations could be made to this code that would allow this to be
accomplished with insignificant modifications to the computational
segment. This is an important consideration since the choice of prior
parameters may be somewhat arbitrary in simple least-squares problems,
and iteration might well be advisable in order to obtain reasonable
solutions (see Section 5.2).

Key to Code Parameters Found in the Input and Output of LSIIOD:

N ¢=_ n

li ¢=_ m

Y(I) ¢=} Yi

EY(I) ¢_ (Vy)._i 1 '2

VY(I,J) ¢_ (Vy) ij

CY(I,J) ¢=_ (Cy)ij = (Vy)ij/[(Vy)iilt2(Vy)jj 1'2]

P(I) ¢=} Pi

EP(l) ¢=} (rp)ii 1'_

VP(I,J) ¢_ (rp) ij

CP(I,J) ¢=_ (Cp)ij = (Vp)ij/[(Vp)iit'2(Vp)jj 1'2]

CII12 _ _2

CltI2Nll ¢=} (X2)norm = x2/f : X2/(n-m)
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Input Formats for LSMOD:

Record 1.1: N,M (215)

Record 2.1 + ...

(Y(I) ,I-1,N)(6E12.6)

Record 3.1 + ...

VY , ,VY ,
VY , ,VY , ,VY(3,3) (6E12.6)

VY(N, ... ,vY(N,N)
Record 4.1 + ...

A1
'A 1,21: ,," AI2'M: ,,/

A(N,1),A(N,½i: ... ,A(N,M)

Output Formats for LSMOD:

The output is well-labelled and self-explanatory.

Operation of Code LSMOD:

The input and output operations involve files, usually stored on a
computer hard disk. The input is assigned to Unit 4 and the output is
assigned to Unit 5. The output file to which the results are written
must be a pre-existing (STATUS='OLD ') file. The I/O file identifiers
are requested from the keyboard upon execution of the code.

3.3 Examples

Examples of least-squares calculations are available in a number
of other reports (e.g., Man81 and Smi82). Here we shall consider three
examples which should help in understanding the application of simple
least-squares analysis to physical problems. Each of these examples
has been analyzed using both single-precision (REAL*4 v 32 bits) and
double-precision (REAL*8 v 64 bits) arithmetic on an IBM-compatible
personal computer. The differences observed in the numerical results
are negligible in these particular cases, but this will not be be true
as a general rule. To be on the safe side, one should probably choose
to always use double-precision arithmetic in such calculations, so
long as there is no limitation of computer memory. However, in the
present report only the single-precision results are shown.
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Example 3.1: AveragJ_.g of unweighted data

Let us suppose that we have 10 equally weighted values and wish
to average them. Of course we know how to do this without resorting to
any least-squares methods. Ve can use a hand calculator and write down
the answer. Nevertheless, it is beneficial to apply the methods of
this report in order to gain some insight for a problem whose answer
appears to be obvious. Kere is the data set to consider:

i yi

1 10.48
2 11.02
3 9.97
4 10.31
5 10.79
6 11.20
7 10.55
8 11.10
9 9.92

10 10.63

The simple average of these values is 10.597. If we use the
statistical option available in a scientific calculator, it will give
us two values for the standard deviation, depending upon whether the
population number is taken to be n or n-1. These values are

o. -respectively_ = [t_(Yi-_)2/n]l'2Next, --1. 422328us applyandtShe [I_(Yi-P)2/(n-1)]l'2 = 0.445173,• present method. Ve are seeking
one parameter, p (m=l). There are n=lO data values. Each data value is
an approximation to this parameter, so our model states that yi _ p

i=l,lO/. Therefore, the design matrix 1 has elements ai1 = 1i=l,lO The method requires a covariance matrix as input. This
causes a problem because no error information is available• However,
we do know that each data value is to be weighted equally. Ve can
accomplish this by introducing a dummy covariance matrix Vy. in which
the absolute errors are unity and are uncorrelated. Thus (Vy)ij = _ij.

This completes preparation of the input for LSllOD.

The input file for LSIIODtakes the following form:

10 1
10.48 11.02 9.97 10.31 10.79 11.20
10.55 11.10 9.92 10.63
1.0
0.0 1.0
0.0 0.0 1.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
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1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

The output obtained by running LSMODis as follows:

Y
.104800E+02 .110200E+02 .997000E+01 .103100E+02 .107900E+02
.112000E+02 .105500E+02 .lllO00E+02 .992000E+01 .106300E+02
EY
.IO0000E+O1 .IO0000E+O1 .IO0000E+O1 .lO0000S+Ol .IO0000E+O1
.IO0000E+O1 .IO0000E+O1 .IO0000E+O1 .IO0000E+O1 .IO0000E+O1
VY
.IO0000E+O1
.O00000E+O0 .IO0000E+O1
.O00000E+O0.000000E+O0 .IO0000E+O1
.O00000E+O0.000000E+O0.000000E+O0 .IO0000E+O1
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0 .IO0000E+O1
.O00000E+O0.000000E+O0.000000E+O0.000000E.O0.000000E+O0
.IO0000E+OI
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0
.O00000E+O0 .IO0000E+01
_O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0
.O00000E+O0.000000E+O0 .100000E+01
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0
.O00000E+O0.000000E+O0.000000E+O0 .IO0000E+O1
.O00000E+O0.000000E+O0.000000E.O0.000000E+O0.000000E+O0
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0 .IO0000E+O1
CY
.IO0000E+OI
.O00000E+O0 .IO0000E+01
.O00000E+O0.000000E+O0 .100000E+01
.O00000E+O0.000000E+O0.000000E+O0 .I00000E+01
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0 .IO0000E+OI
.O00000E+O0.000000E+O0.000000E.O0.000000E+O0.000000E+O0
.IO0000E+O1
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.O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0

.O00000E+O0 .I00000E+01

.O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0

.O00000E+O0.000000E+O0 .100000E+01

.000000_+00.000000E+O0.000000E+O0.000000E+O0.000000E+O0

.O00000E+O0.000000E+O0.000000E+O0 .100000E+01

.O00000E+O0.000000E+O0.000000E+O0 .000000_+00.000000E+O0

.O00000E+O0.000000E+O0.000000E+O0.000000E+O0 .I00000E+01
A
.I00000E+01
.I00000E+01
.100000E+01
.100000E+01
.100000E+01
.I00000E+01
.I00000E+01
.100000E+01
.100000E+01
.100000E+01
e
.105970E+02
EP
.316228E+00
VP
.IO0000E+O0
CP
.100000E+01
CHI2,CHI2NM
.178361E+01 .198179E+00

Clearly we get the same answer for p (the unweighted average) of
this data set as was obtained using a very simple method. It would
appear that the rest of the output is without significance since our
choice for Vv was quite arbitrary. It is easy to show that X2 is
simply E(yi-p)2. Therefore, if we divide CHI2 by n=lO and take the
square root we do find that it equals 0.422328 which is the same as
obtained with a calculator. Analogously, if we divide CHI2 by n-l=9
and take the square root we obtain 0.445175 which is the same as s
obtained with a calculator. Note that this latter value is also equal
to the square root of CHI2NMas it should be. How should we interpret
EP as provided by LSMOD? In this ca!culation we assume that the
absolute error of each data value is unity. According to the law of
large numbers (e.g., see Smi91), the error in an average ought to be
less than the error in any single value of the collection being
averaged. In particular, the error in a simple average of a set of

values each having the same absolute error should equal that fixed
error divided by the square root of n. In the present case, this
translates to an error value of 1/3.1622777 = 0.3162277, which is
exactly what LSMODyields for EP. EP clearly differs from both a and s
provided above. What do the data tell us that the true error for the
derived result p should be? Since the value obtained for CHI2N_ is
significantly less than unity, we are led to the conclusion that the
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error estimate of unity for each value yi was probably too large. That
is, the scatter in these values is, on the average, significantly
smaller than unity. If we multiply each input error value by the

square root of CHI2NM, i.e_, if ve assume that (Vy)ij = (0.198179)_ij,then I_SiOD will generate smaller value for EP. Without exhibiting
all the details, the values obtained by carrying out this exercise are
EP = 0.140776 and CHI2NI = 1.000000. In other uords, if ve reduce the
errors in the yi by the amount indicated ve obtain a result uhich is
consistent with the actual scatter of the given data. This has been
done without compromising the original mandate that all input data
points be equally weighted.

In many ways, the least-squares method, as embodied in code
LSIOD, is too cumbersome for dealing vith this simple problem. Of
course, it does generate the same values for p, s and _ as the
statistical option of a cslculator normally provides. In a_dition, it
yields information about consistency of the data and incorporates the
law of large numbers in deriving an error estimate for the average
based on the given input errors. Ve conclude that the advanced
least-squares algorithm incorporated in LSkOD offers the user vith
opportunities for acquiring considerable insight into the nature of
the data points being analyzed and the quality of fit provided by the
particular model he has selected to represent them.

Examule 3.2: Evaluation of cross sections

Let us suppose that our data set consists of six (n=6) neutron
cross section values _s follous:

Neutron Energy Cross Section yi Error in yi
i (keV) (millibarn) (millibarn)
.................................................

1 7.25 23.6 1.5
2 7.25 25.2 1.7
3 7.25 24.8 1.6
4 7.25 23.9 1.5
5 10.87 198.1 8.9
6 10.87 189.5 9.2

Ve also suppose that the errors are 50_ correlated for _ll points
measured at the same energy and 20_ correlated othervise. Since there
are tvo distinct energies, we seek tvo distinct cross sections (m=2)
for our evaluation, p_ at 7.25 kev and p2 at 10.87 keV. This problem
is definitely beyond the scope of most hand calculators, although it
could probably be treated by those units having the capacity to be
programmed. The input data are cross sections and the solution
parameters are also cross sections. Therefore, the design matrix 1
consists of the folloving elements: ali = 1 (i=1,4), ai1 = 0
(i=5,6), ai_ = 0 (i=1,4) and ai_ = 1 (i=5,6). The input required for
LSkOD can be derived from this information.
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The input file for _SlOD takes the following form:

6 2
23.6 25.1 24.8 23.9 198.1 189.5
2.25
1.275 2.89
1.2 1.36 2.56
1.125 1.275 1.2 2.25
2.67 3.026 2.848 2.67 79.21
2.76 3.128 2.944 2.76 40.94 84.64
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
0.0 1.0
0.0 1.0

The output obtained by running LSMOBis as follovs:

Y
.236000E+02 .251000E+02 .248000E+02 .239000E+02 .198100E+03
.189500E+03
EY
.150000E+O1 .170000E+O1 .160000E+O1 .150000E+O1 .89000GE+OI
.920000E+01
VY
.225000E+01
.127500E+01 .289000E+01
.120000E+01 .136000E+01 .256000E+01
.I12500E+01 .127500E+01 .120000E+01 .225000E+01
.267000E+01 .302600E+01 .284800E+01 .267000E+01 .792100E+02
.276000E+01 .312800E+01 .294400E+01 .276000E+01 .409400E+02
.846400E+02
CY
.IO0000E+OI
.500000E+O0 .I00000E+01
.500000E+O0 .500000E+O0 .IO0000E+01
.500000E+O0 .500000E+O0 .500000E+O0 ,100000E+01
.200000E+O0 .200000E+O0 .200000E+O0 .200000E+O0 .I00000_+01
.200000E+O0 .200000E+O0 .200000E+O0 .200000E+O0 .500000_+00
.IO0000E+01
A
.IO0000E+OI .O00000B+O0
.IO0000E+OI oO00000E+O0
.IO0000E+OI .O00000E+O0
.IO0000E+01.000000E+O0
.O00000E+O0 .I00000E+01
.O00000E+O0 .IO0000E+01
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P
.241816E+02 . 193813E+03
EP
.123362E+01 .782780E+01
VP
.152181E+01
.280291E+O 1 .612744E+02
CP
• IO0000E+O1
.290261E+00 . 100000E+01
CHI2,CHI2NU
•210839E+01 . 527099 E+00

This is a very reasonable solution. Both evaluated cross-section
values are obviously consistent with the input data. Based on
X2/f = 0.527099, it is clear that the input data are consistent and
the model assumed for the evaluation is a valid one. The solution
uncertainties are somewhat smaller than those for the input data and
these errors are modestly correlated (about 297,). Recall that in the
preceding example we argued, on the grounds that X2/f was
significantly smaller than unity, that the error for the solution
ought to be reduced. In that situation we had no explicit knowledge of
the data uncertainties, and based our analysis entirely on the
proposition that the errors should be equal so that the data values
are equally, weighted. Is it reasonable to do the same here since
x2/f < 1, 1.e., should the data errors be reduced? The answer,
generally, is that it is no___!tthe right thing to do. First, we note
that while x2/f is indeed less than unity, it is not so by a very
great amount. Furthermore, in realistic problems such as this one _e
have to assume that the error estimates provided are quite reasonable.
The conservative approach is to let matters stand as they are and not
decrease the errors.

Example 3.3: Fit of an harmonic function to data

In this example we fit an harmonic function to a set of six (n:6)
data points yi (i:1,6). The model is given by li(p): plcos(p20i),
i.e., there are two parameters (m=2) to be determined. These are Pt
(an amplitude parameter) and p2 (an angular-scaling parameter). The
model is linear in Pl but not in p2. Therefore, we need to linearize
the model. The quantity Oi is the angle to which the data point yi
corresponds. The input data are as follows:

i Oi (degrees) yi Error in yi

1 5 24.1 1.7
2 15 22.4 1.4
3 40 7.65 1.0
4 60 - 7.8 0.9
5 75 - 17.1 1.8
6 85 -22.0 1.6
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We assume that the errors in these data are uncorrelated. The
linearization process is carried out by assuming that Pal = 25.0 and
pas = 1.8 are values close to the solution we seek. Thus, the
formalism embodied in code LSlOD is used to obtain a solution for r
given z as input (in place of y). Then, p is computed from the formula
p = pa+r, as described in Section 3.1. In order to calculate z, we
need to evaluate Ya = f(Pa). These calculations lead to the following
table:

i Yai Zi

1 24.692209 - O.592209
2 22.275_63 0.124837
3 7.7254248 - O.0754248
4 - 7.7254248 - O.0745752
5 - 17.67767 O.57767
6 - 22.275163 0.275163

The elements of the design matrix i can be calculated from the
formulas ai! = cos(pa20i) and ai2 = -PalOisin(pa_Oi), (i=1,6). These
are given in the following table:

i ai 1 ai 2

1 0.9876883 -0.341287
2 0.8910065 - 2.9713609
3 0.3090169 - 16.599068
4 -0.3090169 - 24.898601
5 -0.7071067 -23.140015
6 -0.8910065 - 16.837712

This provides all that is needed to analyze this problem using LSMOD.

The input file for LSMODtakes the following form:

6 2
-0.592209 0.124837 -0.0754248 -0.0745752 0.57767 0.275163
2.89
0.0 1.96
0.0 0.0 1.0
0.0 0.0 0.0 0.81
0.0 0.0 0.0 0.0 3.24
0.0 0.0 0.0 0.0 0.0 2.56
0.9876883 -0.341287
0.8910065 - 2.9713609
0.3090169 - 16.599068
-0.3090169 -24.898601
-0.7071067 -23.140015
-0.8910065 -16.837712
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The output obtained by running LSMODis as follows:

Note: In the output, "Y" is to be interpreted as "Z" and "P" is
equivalent to "_" in the context of the formalism.

Y
-.592209E+00 .124837E+OO-.754248E-OI-.745752E-OI .577670E+00

.275163E+00
EY _
.170000E+OI .140000E+OI .IO0000E+OI .900000E+O0 .180000E+OI
.160000E+01
VY
.289000E+01
.O00000E+O0 .196000E+01
.O00000E+O0.000000E+O0 .IO0000E+OI
.O00000E+O0.000000E+O0.000000E+O0 .810000E+O0
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0 .324000E+01
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0
.256000E+01
CY
.IO0000E+O1
.O00000E+O0 .100000E+01
.O00000E+O0.000000E+O0 .100000E+01
.O00000E+O0.000000E+O0.000000E+O0 .100000E+01
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0 .100000E+01
.O00000E+O0.000000E+O0.000000E+O0.000000E+O0.000000E+O0
.IO0000E+O1
A
.987688E+OO-.341287E+O0
.891007E+OO-.297136E+O1
.309017E+OO-.165991E+02

-.309017E+OO-.248986E+02
-.707107E+OO-.231400E+02
-.891007E+OO-.168377E+02

P
-.263394E+00 .853362E-03

EP
.885254E+00 .290236E-01
VP
.783675E+00

-.819147E-02 .842371E-03
CP
.IO0000E+O1

-.318818E+00 .IO0000E+O1
CHI2,C_I2NM
.181133E+00 .452834E-01

The adjustments to the parameters Pa to obtain p are quite small
and the quality of the fit to the data is very good as judged by the
value of x2/f obtained. In fact, the errors assigned to the data
points seem to be too large considering the actual deviations from the
fitted model. Ve make no decision on this point for the exercise.
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4. GENERALIZEDLEAST-SQUARESANALYSIS

4.1 Formalism

Consider Eq. 2.7. An expression for the likelihood functiop L has
been provided but nothing has been stated concerning the prior
probability function Pa. The generalized least-squares method is
appropriate for dealing with problems where there exists prior
information on the parameters p. In particular, one is given a set Pa
and a corresponding covariance matrix Va. Once again, we apply the
principle of maximum entropy, just as was done in the case of the
likelihood function. Then, we have that

Pa(P) _ exp[(-1/2)(P-Pa)+Va'l(P-Pa)] • (4.1)

Then, we can write Eq. 2.7 as

p(p]D) = Cexp{(-1/2)[y-f(p)] .Vy-t [y_f(p)] (4.2)
+ (-1/2)(p-pa).¥al(l>Pa)}.

It is tacitly assumed that the new data are independent cf the
information that led to the prior knowledge of the pa:cameters.
Otherwise, Eq. 4.2 is not correct. It was shown in Section 2.1 that
since Vy should be considered as positive definite ¥ -t must also be
positive definite. Consequently, the quantity [/_f(p)]+Vy-l[y_f(p)]
is always a positive scalar. Similar arguments lead us to suggest that
Va and Va-i are also positive definite. Thus, (l>Pa)+Va-i(l_Pa) is
also a positive scalar. The principle of maximum likelihood (e.g.,
Zeh70) states that the best choice for the parameter set p is the one
which maximizes the posterior probability. Given the nature of
Eq. 4.2, this translates into the requirement

[y_f(p)] +¥y-t [y_f(p)] + (Fpa)+Va-l(p-pa) : minimum, (4.3)

which is a manifestation of the generalized least-squares condition,
expressed in matrix notation. We will deal with a model that has been
linearized (Eq. 2.12). Thus, the elements of A are computed as
described in Section 2.2 and Ya : f(Pa). Then, we can write Eq. 4.3 as

[y_ya_l(Fpa)]+Vy-l[y-ya-A(p-pa)l + (p-pa)+Va-t(l_Pa) : minimum. (4.4)

The solution is given by the following four formulas:

p : Pa + VaA+(q+Vy)-l(Y-Ya), (4.5)

q : AVaA+, (4.6)

Vp : Va- VaA+(q+Vy)-lAVa, (4.7)

(X2)min : (y-ya)+(q+Vy)-l(y-ya). (4.8)
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It is to these equations that reference is made in all numerical
calculations involving the generalized least squares method. The
matrix Yp serves as the covariance matrix for the solution parameters
p. It provides their uncertainties and correlations. It is interesting
to note that the expression for the chi-square parameter which can be
employed for chi-square testing is actually independent of the
solution! It depends only on the experimental data and prior values
for the parameters (used in conjunction with the model to calculate
ya). This is a useful consequence of the theory for the treatment of
large problems because it enables the input information to be tested
for consistency before pursuing the analysis any further. The number
of degrees of freedom f in generalized least-squares analysis just
equals the number of input data points n. There is no constraint to
the effect that the number of data points n must exceed the number of
parameters m to be determined, as was the case for the simple
least-squares method. One of the strengths of this formalism is that
it can be applied even when only a single piece of new information is
introduced, regardless of the number of parameters involved. We assume
that (X2)norm = x2/f follows a chi-square distribution with one
degrees of freedom. This is strictly true only if the data set y is
normally distributed. However, for large data sets and modest numbers
of parameters (i.e., if f is considerably larger than unity), such
problems can be treated as asymptotically normal. One will probably
not be led too far astray in interpreting the results of least-squares
fitting in the context of a chi-square test even when f is of modest
size. It is customary to do so. Let us suppose that (X2)norm is
significantly larger than unity. Then, it is the case that either the
data are discrepant, the model used to represent the data is flawed,
or the prior knowledge of the parameters is defective. The origins of
any discrepancies in the data or prior parameters need to be sought
and consideration should be given to the validity of the model (e.g.,
see Smi91). If these investigations fail to identify the problem, one
possible approach is to increase the errors in the solution parameters
by the factor (x2/f) 1'2 This is equivalent to increasing all the
errors in the input data "by the same factor.

Another notable characteristic of the theory is that so long as
the model which relates the data y to the parameters p is linear, or
has been linearized as discussed in Section 2.2, the solution provided
by Eqs. 4.5 - 4.8 is completely equivalent to what would have been
obtained by calculation of expected values directly from the posterior
probability distribution, i.e., from Eqs. 2.4 and 2.5. This happens
because the posterior probability distribution is then normal in the
parameters p. This is a very important result which conveniently ties
together several diverse aspects of the theory.

Finally, although it was mentioned in Section 1 that a
least-squares formalism with explicit constraints would not be
considered here, it is possible to introduce and preserve certain de
facto constraints within the generalized least-squares formalism by
means of a clever selection of the elements in the prior-parameter
correlation matrix, Va. In particular, one can prevent certain
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parameters from experiencing significant adjustment by simply
assigning them small prior errors. Strong prior correlations (positive
or negative) also serve to constrain the adjustment process (e.g.,
Smi87a).

4.2 Numerical Procedures (GLSiOD)

Code GLSMODoffers a "bare-bones" generalized least-squares
computational tool. Figure 2 is a block diagram which shows the basic
components of this code. Two versions of FORTRANstatements for this
code plus the input and output for a test problem appear in tppendix
B. The input must be provided as required to carry out the
calculations indicated by Eqs. 4.5 to 4.8. There is no need to make a
distinction between linear and non-linear problems, other than to
consider the impact on generation of the design matrix 1. In
generalized least-squares analysis, one always deals with prior
estimates of the parameters as the starting point. There is no
provision in GLSMODfor preparation of the input from more basic,
problem-specific considerations. For example, the elements of I must
be introduced explicitly. In some problems, these elements can be
calculated from specific functions. Thus, if the fitting model is a
polynomial, these elements will originate from terms of that
polynomial. However, all such calculations associated with preparation
of the input must be done externally by the user of GLS_OD. The same
general characteristics hold for the output. A powerful feature of
advanced least-squares methods is that they offer possibilities to
calculate uncertainties and their correlations for various quantities
that can be derived from the fitted parameters. This is accomplished
by employing the law of error propagation (see the discussion leading
to Eqs. 3.8 and 3.9). The user of GLSMODmust take the direct output
of this code and employ it externally to carry out such analyses.
GLSHODcould be tailored for special problems by altering both the
input and output sections of the code, while leaving the computational
portion largely untouched. This issue is discussed further in
Section 5.

While iteration may play a useful role in simple least-squares
analysis, it does not make any sense from a fundamental point of view
in applications of generalized least squares. Why is this true? In
generalized least-squares problems, one possesses prior knowledge of
all the parameters, including their uncertainties. One must do a
reasonable job of obtaining this prior information and then accepting
its viability. To tamper with the process via iteration would violate
the basic concepts upon which the theory rests. However, there is an
exception to this edict. One may wish to use an approximate solution
in order to better evaluate the errors in the input experimental data.
One should then iterate to convergence to get a reasonable final
solution that avoids the problems associated with Peelle's Pertinent
Puzzle (e.g., see CS91). See Sections 5.1 and 5.2 for further
discussion of this topic.
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Key to Code Parameters Found in the Input and Output of GLSMOD:

N ¢_ n

! ¢=_ m

Y(I) ¢:_ Yi

EY(I) ¢:_ (Vy)ii t'2

VY(I,J) ¢=_ (Vy) ij

CY(I,J) ¢=_ (Cy)ij = (Vy)ij/[(Vy)ii I t2(Vy)jj 1/2]

n(I) ¢_ y_

_(I,J) ,_ (l)_j : a_j

P(I) ¢¢ Pi
. -,-,

EP(I) ,_ (rp)ii ''2

VP(I,J) ¢_ (Vp)ij

CP(I,,]) 4=:} (Cp)ij = (Vp)ij/[(Vp)iill2(Vp)jj 112]

PA(I) _ Pai

EA(I) ¢:_ (Va)ii t'2

YA(I,J) ¢=} (Va)ij

CHI2 _ X2

CHI2NM_ (X_)norm: X2/f : X_/n
Input Formats for GLSMOD:

Record 1.1: N,M (215)

Record 2.1 + ...

(Y(I),I=I,N) (6E12.6)

Record 3.1 + ...

(YA(I) ,I:I,N)(6E12.6)
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Record 4.1 + ...

'. ,vY(3,3) 2.vY(3, ,vY , (6z_ 6)
vY(N,_),ViiN,2),... ,VY(N,N)
Record 5.1 + ...

(PA(I) ,I=I,M)(6E12.6)

Record 6.1 + ...

VA(2, ,VA ,
VA(3, ,VA , ,VA(3_3) (6E12.6)

VA(M,1),ViiM,2), ... ,VY(M,M)

Record 7.1 + ...

, , , , "...
A(N,I),A(N,½): ... ,A(N,M)

Output Formats for GLSMOD:

The output is well-labelled and self-explanatory.

Operation of Code GLSMOD:

The input and output operations involve files, usually stored on a
computer hard disk. The Input is assigned to Unit 4 and the output is
assigned to Unit 5. The output file to which the results are written
must be a pre-existing (STATUS='OLD") file. The I/O file identifiers
are requested from the keyboardupon execution of the code.

4.3 Examples

Examples of least-squares calculations are available in a number
of other reports (e.g., Man81 and Smi82). Here we shall consider three
examples which should help in understanding the application of
generalized least-squares analysis to physical problems. Each of these
examples has been analyzed using both single-precision (REAL*4 v 32
bits) and double-precision (REAL*8 _ 64 bits) arithmetic on an
IBM-compatible personal computer. The differences observed in the
numerical results are negligible in these particular cases, but this

27



will not be be true as a general rule. To be on the safe side, one
should probably choose to always use double-precision arithmetic in
such calculations, so long as there is no limitation of computer
memory. However, in the present report only the single-precision
results are shown.

Example 4.1: Re-evaluation of a 14-MEV cross section

This problem is drawn from Ref. Smi91 (pp. 221-222). The only
difference is that here we employ a somewhat different approach to
calculate the input data covariance matrix, in order to avoid
suffering the consequences of Peelle's Pertinent Puzzle (e.g., see
Section 5.1 and Ref. CS91). The prior value for a single 14-MEV cross
section (m=l) is available, namely, Pa = _a = 1095 • 52 mb (_ 4.7_
error). The cross-section units "mb" signify millibarn. There are two
new data values (n=2), namely, yl = _1 = 1000 i 30 mb (_ 3.0_ error)
and y2 = _ = 1102 • 60 mb (_ 5.4_ error). We shall assume that these
data are completely independent of each other, and are also
independent of the prior result. Here, _a, _1 and _2 signify
quantities which are equivalent to the revised evaluated cross
section, p = Ce, we seek to determine by this method. Consequently,
the design matrix, A, is quite simple. It has dimension 2 x 1 and the
elements all = a21 = 1. The covariance matrix, Va, for the prior
result has dimension 1 x 1 (a scalar), and the value of its single
element is (52)2 = 2704. The data covariance matrix, Vy is 2 x 2. Its
off-diagonal elements are (V_)I_ = (Vy)21 = O, since the input data
are uncorrelated. For the given input results, one would normally
derive the values (Vy)ll = (30) 2 = 900 and (Vy)22 = (60) 2 = 3600. This
is based upon use of the given absolute errors (in cross section
units) in the calculation. However, there is an alternative approach,
as discussed in Ref. CS91, whereby one employs fractional errors for
the data and the same cros_ section value to calculate absolute
errors. These reflect a more consistent weighting of the input data
than emerges from use of the conventional approach. An obvious initial
choice for this common cross section value is the prior value,
Pa : _a : 1095 mb. Consequently, (V)11 = [(0.03)(1095)] 2 : 1079.1225
and (¥y)_2 = [(0.054)(1095)]2 = 349_.3569. This completes preparation
of the input for GLSMOD.

The input file takes the form:

2 1
1000.0 1102.0
1095.0 1095.0
1079.1125
0.0 3496.3569
1095.0
2704.0
1.0
1.0
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The output obtained by running GLSMODis as follows:

YA
.109500E+04 .109500E+04
Y
.lO0000E+04 .110200E+04
EY
.328498E+02 .591300E+02
VY
.107911E+04
.O00000E+O0 .349636E+04
CY
.IO0000E+O1
.O00000E+O0 .IO0000E+O1
A
.IO0000E+O1
.IO0000E+O1
PA
.109500E+04
El
.520000E*02
VA
.270400E+04
CA
.IO0000E+OI
P
.I04064E+04
EP
.251377E+02
VP
.631903E+03
CP
.IO0000E+OI
CHI2,CHI2NM
.370020E+01.185010E+01

This analysis yields 1040.6 • 25.1 mb for the revLsed evaluated
cross section. Since X2/f = 1.85010, there are clearly some
inconsistenciesconcerning the new data and prior value. Since these

are modest _ choose to simply enhance the solution error by the
factor IX2/j)I,2= (1.85010)I,2= 1.36018. Thus, p = _e =
1040.6 • 34.2 mb (_ 3.2Z). This result does not differ significantly
from the one given in Ref. Smi91. The consideration of two new data
points does lead to a change in the cross section relative to the
prior value, and to some reduction of error. The latter was modest,
however, because the new data were not very accurate and there are
some inconsistenciesthat impact upon the error-reductionpotential of
the new information. Ve could consider another pass at this
calculation, using the first-pass solution, 1040.6 mb, to calculate
the elements of the covariance matrix, Vy. We shall not do so here in
order to avoid cluttering this report with details. Also, the
anticipated change in the solution is expected to be small.

29



Example 4.2: Re-analysis of Example 4.1 with a larger prior error

It is very interesting to see what happens if we assume that the
error in the prior cross section Pa = _a = 1095 mb is quite large, say

30_ (i.e., 328.5 mb). Then, the single element of Va is equal to
(328 5)2 = 107912.25. qualitatively, we would conclude that the prior
value should have little influence on the re-evaluation. Furthermore,
since the two new data points are uncorrelated, we might expect that
the solution would be approximately be the weighted average of these

two values, i.e., 1024.1 mb, with an error of i 2 6_ (i..e.., 26.6 mb).

This error follows from the expression 2.6 wen_h[(1/_2) + (1/5.42)]-t 2,as discussed in Ref. Smi81. In other words, the prior information
is very uncertain (an uninformative prior), the generalized
least-squares problem essentially reduces to a simple least-squares
problem. To check this out, we carry out a {LSlOD calculation with
revised input.

The input file takes the form:

2 1
1000.0 1102.0
1095.0 1095.0
1079.1125
0.0 3496.3569
1095.0
107912.25
1.0
1.0

The output obtained by running GLSMODis as follows:

Ii
.109500E+04 .109500E+04
Y
.100000E+04 .110200E+04
EY
.328498E+02 .591300E+02
VY
.107911E+04
.O00000E+O0 .349636E+04
CY
.100000E+01
.O00000E+O0 .100000E+01
A
.100000E+01
.100000E+01
PA
.109500E+04
nA
.328500E+03
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VA
.107912E+06
CA
.100000E+01
P
.I02459E+04
EP
.286057E+02
VP
.818284E+03
CP
.I00000E+01
CHI2,CHI2N_
•232015E+01 .ll6008E+Ol

We see that the GLSMODsolution is 1024.6 • 28.6 mb (_ 2.8_).
Since (x2/f)l'2 = (1.16008)t'2 = 1.07707, we should apply a slight
enhancement factor to the error, thereby obtaining t 30.8 mb (t 3 .0_).
This analysis yields results reasonably close to what was obtained
from a very simple hand calculation, thereby confirming our
expectations for this problem.

Example 4.3: Evaluation of a cross section at two energies

Let us suppose that we are interested in the values for a
differential cross section at both 2.2 and 14.7 MeV. Furthermore, we
have prior values for these as follows: Pal = 210 mb (_ 77,) and
Pas = 40 mb (i 8_). The errors are assumed to be 50_-correlated. The
covariance matrix Va can be determined in a straightforward manner
from this information.

Next, we assume that we have two new data values as follows:
Yl = 205.6 mb (_ 8_), corresponding to a direct measurement of the
cross section at 2.2 MeV; ys = 0.209 (i 6_), corresponding to
measurement of the ratio of the cross section at 14.7 MeV to that at
2.2 MeV. We assume that these data are only 20_-correlated. In order
to avoid the Peelle's Pertinent Puzzle problem, as discussed in
Example 4.1 and Section 5.1, we determine the elements of the

ovariance matrix yy as follows: (Vy)ll = [(0.08)(210)]2 = 282.24,
Vy)22 = [(0.06)(40/210)]_ = 0.0001306 and (Vy)lS = (Vy)21 =
(0.2)(0.08)(210)(0.06)(40/210)] 2 = 0.0384. Inother words, we use the

prior values of the parameters and fractional errors in the data to
evaluate the data covariance matrix.

Calculation of the design matrix elements, aij (i,j=l,2), is a
bit more complicated. In terms of the parameters Pl and p2, they are
given by ali= 1, a12 = O, as1 = -ps/pl 2 and a2 = 1/pl. Actually, l
must be evaluated by using the prior values _f these parameters
namely, Pal = 210 mb and pas = 40 mb.
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The input file takes the form_

2 2
2O5.6 O.2O9
210.0 0.1904761
282.24
0.0383999 0.0001306
210.0 40.0
216.09
23.52 10.24
1.0 0.0
-0.000907 0.0047619

The output obtain_ by running GLSMODis as follows:

YA
.210000E+03 .190476E+00
Y
.205600E+03 .209000E+00
EY
.168000E+02 .114280E-01
VY
.282240E+03
.383999E-01 .130600E-03
CY
.IO0000E+O1
.200009E+00 .lO0090E+O1
A
.IO0000E+O1.000000E+¢O

-.907000E-03 .476190E-02
PA
.210000E+03 .400000E+02
EA
.147000E+02 .320000E+01
VA
.216090E+03
.235200E+02 .I02400E+02
CA
.IO0000E+OI
.500000E+00 .IO0000E+OI
P
.204600E+03 .414010E+02
EP
.I04885E+02 .255028E+01
VP
.110010E+03
.190223E+02 .650393E+01
CP
.I00000E+01
.711146E+00 .I00000E+01
CHI2_CHI2NM
.102432E. 01 .512158E+00

32



The solution of this problem is Px = 204.6 (_ 5.2Z) and P2 :
.4 • 6.2Z). The solution covariance matrix indicates a correlation

of 7 between these values. Since X2/f < 1, there is no need to
enhance the error. In this example, the data and prior values are
mutually consistent and the new information leads to some reduction in
the uncertainty of the evaluated result. For interest, this problem
was subjected to an additional iteration, employing the solution
values from the first pass to re-calculate only the elements of ¥y.
Nothing else was altered. The result of this analysis was Pl =
204.7 (i 5.1Z) and ps = 41.3 (_ 6.2_), with a correlation of 69Z.
These results differ insignificantly from those obtained from the
first pass, demonstrating the point that such iteration is seldom
needed in practice. Nevertheless, it is relatively simple to carry
through, if only to satisfy curiosity.

Example 4.4: A variation of Example 4.3

In this problem, we start with the same prior information as was
available in Example 4.3. The difference here is that we choose to
introduce new values for the cross sections at 2.2 and 14.7 MeV,
rather than one cross-section and one cross-section ratio. This
assumption simplifies the design matrix, A. Its values are now
all = a_2 = 1 and al_ = a21 = O. The new data are as follows:
Yl = 205.6 mb (_ 8_) and y2 = 42.3 (e 6_). Ve again assume 20Z
correlation between these values. This time, however, we choose (for
no particular reason) to compute the elements of Vy directly from the
new data, thus: (Vy)lx = [(0.08)(205.6)]_ = 270.5367," (Vy)_ =
[(0.06)(42.3)] 2 = 6.441444 and (Vy),2 = (Vy)2, =
[(0.2)(0.08)(205.6)(0.06)(42.3)] 2 = 8.3490048.

The input file takes the form:

2 2
205.6 42.3
210.0 40.0
270.5367
8.3490048 6.441444
210.0 40.0
216.09
23.52 10.24
1.0 0.0
0.0 1.0

The output obtained by running GLSMODis as follows:

YA
.210000E+03.400000E+02
Y
.205600E+03 .423000E+02
EY
.164480E+0_ .253800E+01
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V¥
.270537E+03
.834900E+01 .644144E+01
CY
.IO0000E+O1
.200000E+O0 .IO0000E+O1
A
.lO0009E+O1.000000E+O0
.O00000E+O0 .IO0000E+O1
PA
.210000E+03 .400000E+02
EA
.147000E+02 .320000E+01
VA
.216090E+03
.235200E+02 .102400E+02
CA
.IO000CE+O1
.500000E+O0 .IO0000E+O1
P
.209708E+03 .413301E+02
EP
.106827E+02 .197923E+01
VP
.114120E+03
.749131E+01 .391734E+01
CP
.IO0000E+O1
.354308E+00 .IO0000E+O1
CHI2,CHI2NM
.498765E+00 .249383E+00

This analysis yields the solutions Pl = 209.7 (_ 5.1Z) and
p2 = 41.3 (_ 4.8Z), with a correlation of 35Z. What is interesting in
comparing this result with that from Example 4.3 is that the solution
correlation is much weaker. It appears that ratio data with good
accuracy (Example 4.3) introduces strong correlations.
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5. RELATEDTOPICS

5.1 Generation of Covariance |atrices

Application_ of the least-squares procedures described in this
report call for the generation of various types of covariance matrices
as input to the calculations. For applications of generalized least
squares, one requires the matrix Va for the prior parameters. There is
little ambiguity in obtaining this matrix. Either it is given
specifically, or it can be generated from the available prior values,
their errors and their correlations, as described elsewhere (e.g.,
Smi81). Provision of the data covariance matrix, Vy, for both simple

. and generalized least-squares analysis is another matter. The errors
in experimental data are often comprised of several distinct
components, each with its own special correlation pattern. Generation
of the covariance matrix for total errors involves error
superposition, as discussed in Ref. Smi87b. These ideas will not be
discussed further in this report since the reader can easily refer to
the literature for guidance on the combination of partial errors in
constructing a covariance matrix.

There is another issue, which has come to be known as Peelle's
Pertinent Puzzle, which does need to be considered here. It was
mentioned in conjunction with some of the examples presented in
Section 4. The topic is explored in much greater detail in Ref. CSO1.
The basic idea is the following: Suppose that a collection of

equivalent data values and their errors are provided, i.e., (yi,E_!
for i=l,n. Also, there is knowledge of the correlation matrix,
Conventionally, one derives the elements of the covariance matrix, Vy,
from the formula (Vy)ij = EyiEyj(Cy)ij.

However, it happens that in least-squares analyses a data point
yi tends to be weighted by the corresponding factor Eyi "2. Let

fyi _i/yi be the fractional error in yi. When authors quote errorsfor experimental values they report, they often give absolute
errors (in units of the quantity reported) when, in fact, they
probably ought to provide fractional errors as more consistent
indicators of the true errors of their experiment. A fractional error
is independent of the outcome, i.e., the specific value deduced for
the physical quantity in question. For the sake of the present
discussion, we suppose that all the fractional errors are the same for
a particular set of equivalent data, i.e., that each reported value
was considered to be measured to essentially the same degree of
precision. In spite of this, it is inevitable that the various yi will
differ from each other, even when they are understood to be entirely
equivalent. Then, the weighting factors Eyi "2 will also differ, so
that the lower values of Yi will be more heavily weighted. If the data
scatter considerably, and there are significant error correlations,
least-squares analyses can often produce results which are intuitively
quite unreasonable (one aspect of Peelle's Pertinent Puzzle). The main
point from Ref. CS91 is that this problem can be mitigated by
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calculating the elements of Vy in a modified fashion, i.e., by using
the formula (Vy)ij = fiYifj y_(Cy)ij • The quantity y is an
approximation to the experimental value y which is more consistent
with the underlying expectation for this physical quantity, i.e., a
"universal" or "true" value. Since we do not know what this true value
is at the outset, this introduces a dilemma. In the case of
generalized least-squares analysis_ it is quite reasonable to employ
an equivalent value Yai deduced from the prior parameters of the
problem. For simple least-squares problems, there is no obvious choice
and one is left to improvise. However, in both types of least-squares
problems, it is possible to iterate the solution (see Section 5.2) in
order to achieve consistency and avoid, to some extent, the
arbitrariness associated with determination of Vy.

5.2 Some Thoughts about Iteration

The subject of iteration has already been mentioned in Sections
4.3 and 5.1. The purpose of this section is simply to present a few
basic rules that ought to be followed in applying iterative techniques
to least- squares problems.

Rule 1:

For both simple and generalized least-squares problems, it is
quite reasonable to iterate any number of times in derivation of the
covariance matrix Vy, until convergence is achieved, i.e., until the
solution values for the parameters sought are essentially equal to
those used in the calculation of Vy. Convergence will normally occur
after very few iterations in most practical situations.

Rule 2:

In simple least-squares analysis applied to non-linear problems,
it is reasonable to iterate any number of times in the calculation of
any other quantities which are based on the choice of prior parameters
used to linearize the problem, e.g., the design matrix elements. The
point here is that the initial selection of these parameters is
usually quite arbitrary, in the absence of concrete prior information.
These prior values are chosen for convenience and because it is
thought that the true solution might be found somewhere in that
vicinity of parameter space. Actually, it is not unreasonable to
consider some rather large jumps in the trial parameters along the
way, just to make sure that one is not trapped near a local minimum of
parameter space which is not the true minimum for the problem.

Rule 3:

In generalized least-squares one ought never to iterate the prior
parameters or adjust those quantities derived from them, e.g., the
design matrix elements (except as described under Rule 1 above). The
prior parameter values are treated as "givens" in the problem. Their
uncertainties are taken into consideration through the corresponding

36



covariance matrix. In other words, one should never re-introduce as
prior information the results from any generalized least-squares
calculation. The solution of a generalized least-squares problem takes
on the status of "prior" information only when a new set of data is
obtained which calls for a re-evaluation of the parameter set.

These rules are basically a reflection of ordinary common sense.
Still, in this age of computers people are often tempted to manipulate
data beyond a point that is fundamentally justified, simply because it
is so easy to do. In my experience, faithful application of these
rules will avoid many of the pitfalls that arise in typical
least-squares calculations.

5.3 Numerical Precision

The calculations involved in applications of simple and
generalized least-squares methods are quite involved. There are matrix
multiplications, matrix inversions, etc. Clearly, there i_ a potential
for error to be introduced by limited arithmetical precision. This is
usually not a problem when the calculations are done on large
computers, or even on work stations, where one typically encounters
48- to 64-bit arithmetic as the norm. However, even then it is
worthwhile checking to see if there is a potential for such a problem
to arise in calculations involving very large matrices, etc. Our
concern here is mainly for calculations done on personal computers.
For example, the standard single-precision arithmetic for real-numbers
in FORTRANprograms compiled on an IBM-compatible PC is REAL*4 (i.e, 4
bytes or 32-bit arithmetic). Double-precision is generally also
available, denoted REAL*8 (i.e., 8 bytes or 64-bit arithmetic). For
all of the examples considered in Sections 3 and 4 (and Appendices
A and B) this was found to not be a problem. Each of these examples
was investigated with both single- and double-precision arithmetic.
Any differences observed between the results were totally negligible.
However, one cannot assume that this will always be the case. To
demonstrate this, an example drawn from Smi82 (pp. 2-10) is presented
here. This problem was addressed many years ago on a computer which
employed 48-bit arithmetic (see results on pp. 9-10 of Ref. Smi82).
Here, we will observe the results obtained using both 32- and 64-bit
arithmetic.

Without going into the details (the reader who is interested can
refer to Ref. Smi82), ten calibration data points (n=lO) are fitted
with a polynomial expansion involving m parameters. This analysis has
been carried with a program named LLSFIT which is closely related to
LSMODbut differs somewhat in the details of the input and output
routines. Each data point consists of three values, namely,
(xi,yi,Eyi), where xi is an independent variable (no error), yi is the
measured calibration value and Eyi is its corresponding error. It is
assumed that these data are uncorrelated. The data set is fitted by
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the polynomial y-- _kfl,m pkxk'1• Thus, for each data point, yi
_k=l ,m pkxik'1. The fit was carried out with five parameters (m=5).

Input data:

xi yi Eyi

31.9 565.0 4.0
35.9 813.0 4.0
37.6 930.0 4.0
39.6 1047.0 4.0
42. I 1205.0 4.0
54.4 1925.0 4.0
57.17 2078.0 4.0
74.25 3008.0 4.0
98.2 4220.0 4.0
117.4 5125.0 4.0

Solution parameters :

Single precision (REAL*4)

P,EP
-.17809E+04 .95140E+02
.85280E+02 .61376E+01

-.41358E+00 .13905E+00
.23470E-02 .13163E-02

-.67543E-05 .44263E-05
CP
.IO000E+01

-.99628E+00 .10000E+01
.98560E+00-.99638E+00 .IO000E+OI

-.96998E+00 .98672E+00-.99688E+00 .I0000E+01
.95164E+00-.97314E+00 .98878E+00-.99746E+00 .IO000E+OI

CHI2,CHI2NM
.77737E+03 .15547E+03

Double precision (REAL*8)

P,EP
-.17893D+04 .97311D+02
.84925D+02 .62835D+01

-.424279+00 .14245D+00
.254809-02 .13489D-02

-.70070D-05 .45359D-05
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CP
.IO000D+01

-.99642D+00 .IO000D+01
.98620D+00 -.99653D+00 .lO000V+O1

-.97129D+00 .98731D+00 -.99701B+00 .10000D+01
.95378D+00 -.97435D+00 .98929D+00 -.99756D+00 .10000D+01

CHI2,C_I2NM
.49475D+01 .98950D+00

Only those portions of the input and output that are significant
for the present discussion are presented above. The parameters of the
output can be interpreted the same as for LSIOD and GLSIOD. Clearly
there are noticeable differences in the results. The solution
parameters (P) and their errors (EP) are qualitatively similar, but
certainly distinct in detail. The same can be said for the correlation
matrix (CP). However, the differences for CHI2 and CHI2NI are very
large. Based on single-precision arithmetic, we would conclude that a
five-parameter fit gives a very poor representation of these data.
When the calculation is done in double precision, a totally different
picture emerges. The double-precision results here agree quite well
with those first reported in Ref. Smi82 based on 48-bit arithmetic.

Therefore, we can conclude that whenever there is a likelihood
that arithmetic errors might develop from using single-precision
arithmetic on a small computer it is advisable to run the problem
using double precision. Since the speeds and memory capacities of
small computers are growing very rapidly, this should present the user
with few problems in practice.

5.4 Development of Routines for Special Applications

As indicated previously, both LS_OD and GLS_OD are "bare-bones"
computer routines for the application of simple and generalized
least-squares analysis, respectively. In that sense, there are two
serious drawbacks in relying solely on these codes - as flexible as
they may be - for routine analysis.

The first limitation is inconvenience. So long as the dimensions
of a problem are small (a few data points and even fewer parameters),
it is not too difficult to prepare the input for these codes
externally, either using separate computer routines or even hand
calculations. When the number of data points is large and there are
several parameters, it can be very cumbersome to prepare the input.
Also, if one chooses to iterate the solution process, as described in
Section 5.2, it is also very inconvenient. Finally, one often wishes
to proceed with further analysis once the best-estimate values for the
parameters and their errors have been obtained. So, in practice, one
will generally imbed the routines of LSIOD and GLSIOD in other
programs designed for specific applications, thereby trading off
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generality for convenience. This is not too difficult to do. For
example, code LLSFIT (employed in the example discussed in Section 5.3
but not exhibited explicitly) is a typical extension of LS_OD. All
that is required is modification of the input and output sections. The
core of each code can be based on either LSMODor GLSMOD,depending on
the nature of the analysis.

The second limitation in using LSMODand GLSMODdirectly for
applications has to do with arithmetical precision. This is
fundamentally a more serious consideration than the convenience factor
mentioned above. Among those quantities which must be introduced

explicitly into LSMODor GLSMODare the data covariance matrix (VY!,
values equivalent to the experimental data which are calculated fruiu
the prior parameters (YA), the prior parameter covariance matrix (VA)
and the design matrix (A). There is a practical limit to the precision
alloued by the code data-input formats (generally no more than 6-8

• significant figures). This limitation may be fatal in certain
applications. Therefore, there is a great advantage from the point of
view of precision to limiting the actual input to only the prior
parameter values (PA), with associated error information, and the
experimental data (Y), with its error information, and calculating
everything else internally to assure adequate precision.
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6. CONCLUSIONS

The following conclusions can be drawn from the present
investigation:

1. The methods of simple and generalized least-squares analysis are
applicable to many important problems in the physical sciences.

2. The algorithms incorporated in the generic codes LSMODand GLSMOD
are very convenient for addressing problems of modest size which
involve simple and generalized least-squares analysis,
respectively. Because of the general nature of their input, these
codes can be applied to a variety of problems without regard to
the specific physical features. However, extensive analysis
external to these codes is required to prepare this input.

3. In practical applications of a larger scale, it is advisable to
incorporate the algorithms of these codes into more specialized
computer routines that are designed to deal with specific
problems. There are two important reasons for this: i)
convenience, and ii) avoidance of loss of precision.

4. For simple problems with few data and parameters, it is often
adequate to employ single-precision arithmetic (e.g., REAL*4) on
small computers. For larger problems with extensive data sets and
several parameters, it is usually imperative to employ the higher
precision afforded by the double-precision option (REAL*8) when
performing calculations on small computers. To be on the safe
side, one can opt to always use double precision. This choice
demands greater memory capacity and longer running times, but
this is seldom a problem for modern computers.

5. Care is required when calculating the data covariance matrix for
least-squares problems, particularly when the data scatter
considerably or show some inconsistencies (Peelle's Pertinent
Puzzle phenomenon). To minimize this problem, the procedure
described in Section 5.1 can be employed.

6. The technique of iteration can often be applied to advantage in
least-squares analysis, but it is important to adhere to the
three simple rules described in Section 5.2.
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APPENDIXA: LSIOD

This code has been compiled and used routinely on an
IBll-compatible personal computer by the author. The source listing(s),
executable program(s) and some test problems (input and output) can be
obtained on a floppy disk by contacting the author.

A. 1 FORTKANSource

Original Version (D.L. Smith)

C
C LSMOD
C
C IBM PC - D.L. SMITHANDR.T. MAINARDX- 17 JULY 1988
C
C REVISED12/18/92. ALTEREDI/O ANDLEAST-SqUARESROUTINE.
C

DIIENSIO_.Y(SO),EY(50),CY(SO,SO),VY(SO,50),VY!(50,SO),
1P(10), EP(10), CP(10,10), VP(10,10),VPI(lO,lO),A (50,10),
2QN(50),VN(50,51) ,QM(IO),VM(i0, II)

C
C INITIALIZATION ANDCONTROL
C

WXITE(*
1 FOUAT( | 1_SMOD'/)

VRITE(,2)
2 FOUAT' ENTERINPUTFILENAmE(UNIT4)'/)

OPEN(4 FILE=' ' ,STATUS='OLD')
VRIT_(,3)

3 FORMAT' ENTER OUTPUTFILE NAME(UNIT 5)'/)
OPEN(5 FILE=' ',STATUS='OLD ')

C
C READINPUT FROMFILE (UNIT 4)
C

READ(4,10) N,M
10 FORMAT(1615_ .

READ(4:12) (Y(I) ,I=I,N)
12 FORIIAT(6EI2.6)

DO 17 I=I,N
17 READ(4,12) (VY(I,J),J=I,I)

DO 18 I:I,N
DO 18 J:l,I

18 VY(J,I)=VY(I,J)
DO 19 I:l N

19 READ(4,12i (A(I,J),J=I,M)
C
C ORDINARY LEAST-SqUARESANALYSIS
C

DO 1004 I:I,N
1004 EY(I)=SqRT(VY(I,I))
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PO 1005 I=I,N
DO 1005 J=l N

1005 C¥(I,J)=VY(I_J)/EY(1)/EY(J)
CALLIATINV _,VY,VYI,VN,NTEST,N,50,51)IF(NTEST.Eq.i GO TO 1009

10(_7 VRITE(*, 100811008 FORMAT(' NO N7'/)
STOP

1009 DO 1010 l'-l,M
DO I010 J-I,M
VPI(I,J)--O. 0
DO 1010 K2=I,N
DO 1010 KI=I,N

1010 VPI(I,J)-YP!(I,J)+A(K2,I)*YYI(K2,K1)*A(K!,J)
CALL IATINV(q!,VPI,VP,IflI,NTEST,I,10,11)
IF(NTEST.Eq.O)GO TO 1007
DO 1011 I=I,M

 IIl-°°Oli K3=1,Z
DO 1011 K2=I,N
DO 1011 KI=I,N

)=P(I)+VP(I *A(K2,K3)*VYI (K2,K1)*_i'(K1)PlI1012 I=IM

1012 EP(I)=SqRT(Vi'(I,I))
DO 1013 I=I,M
DO 1013 J=I,M

1013 CP(I,J)=VP(I,J)/EP(I)/EP(J)
DO 1014 I--1,:_
qN(I)-Y(i)
DO 1014 KI=I_M

1014 qN(I)-qN (I)- A(I,K1)*P (Zl)
CHI2=O.O
DO 1015 K2=I,N
DO 1015 KI=I,N

1015 CHI2=CHI2+qN(K2)*yYI (K2,K1)*QN (K1)
CHI2NM=CHI2/FLO,_T(S- M)

C
C PRINT OUTPUTTO FILE (UNIT 5)
."1
_J

VRITE(5.14040 FORMAT( )
41 I/RITE(5,12 (Y(I),I=I,N)

VltlTE(514_ l
410 FORMAT( !vm_.(5,_2 EY(I),I-_,N)

VRITE(5_4_ I \411 FORMAT( ) \
DO 412 I=I,N \

4_2VmE(5,_2)(W(I,J),J-_,I)
VmE.(5,43)43_OUAT('CY')
DO 44 I=I,N

44 VRITE(5,12) (CY(I,J),J:I,I)
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MRITEt5,441)
441 FOUA'. (' A')_

DO 442 I=I,N
442 VRITE(' ,12 (A(I,J),J-I,M)

45 FOlmlT
VRITE ,12 (P(I),I=l,i)

VRITE 5,451 FOUA'. 14
VRITE ,i2 tEP(I),I-I,i)
I/kiTE ,451 )

452 FOHA'' V _)
DO 453 I=I,M

453 VRITE(5,12) (VP(I,J),J:I,I)
VRITE(5,47)

47 FORMAT(' CP')
DO 48 I-1,M

48 VltlTE(5,12) (CP(I,J),J--1,I)
VRITE(5,4O)

49 Ii'OUAT(' CHI2,CHI2NM')
VRITE(5,12) CHI2,CHI2NM
STOP
END
SUBltOUTINEMATINV(BtD, Q,E,NTEST,NS,NAltA,NMAX)
DIMENSIONB(NlltA) ,D(NARA,NARA),q(NARA,NAltA),E(NARA, NMAX)
IP=NS+1
BIG=O.O
DO 555 I=I,NS
DO 555 J=I,NS
ABD-ABS(D(I,J))
IF(ABD- BIG) 555,555,554

554 BIG=ABD
555 CONTINUE

FACT=SqRT(BIG)
1=1

1 IF(I-NS) 2,2,20
2 J=l
3 IF(J-NS) 4,4,8
4 K=I

5 It(K-NS ) 6,6,7
6 E(J,K)=D(K,J)/FACT

K=K+I
GO TO 5

7 J=J+l
GOTO 3

8 L=I
9 IF(L-NS) 10,10 14

10 IF(L-I) 11,13,11
11 E(L,IP)-O.O
12 L=L+I

GO TO 9

13 _I L'IP)=I'OTO12
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14 CALLJORDAN(B,E,NTEST,NS,NARA,NMAX)
"rF(N EST)15,15,18

15 RETURN
16 I1=1
17 IF(l-NS) 18,18,19
18 q (I,li) =E(li, IP)/FACT

li=li+l
GOTO 17

19 I-I+1
GOTO 1

20 RETURN
END
SUBROUTINEJORDAN(B, C, INDEX,N,NARA,NIAX)

SUBROUTINEJORDANSOLVESA SYSTEli OF LINEARNONHOIOGENEOUS
EQUATIONSBY THEMETHODOF GAUSS-JORDANIEDUCTION. IF THE SYSTEM
FAILS TO HAVEA SOLUTION,A FLAGIS SET VHICHSIGNALS THE MAIN
PROGRAM.

DIMENSIONB(NARA),C(NARA,NMAX)
K:I

1 IF(K-.N) 2 2,222 IF(C(K,Kji 10,3,10
3 L=K+I

4 IFIL-N), ,155,21
5 IF_C_L,K)) 7,6,7
6 L=L+I

GOTO 4
7 li=l
8 IF(li- N-l) 9,9,2
9 B(M)=C(K,M) .

C(K,II) =C(L,II)
C(L,M)=B(M)
I=l.l
GO TO 8

10 J=N+I
11 IF(J-X) 13,12,12
12 C(K,J)=C(K,J)/C(K,K)

J=J- 1
GOTO 11

13 I=l
14 IF(I-N) 16,16,15
15 K=K+I

GO TO 1
IF(I-K) 18,17,8

17 I=I+l
GOTO 14

18 II=N+1
19 IF(II-K) 17,20,20
20 c(I, c(i,x)*c(x,H)

II=II- 1
GO TO 19

21 INDEX=D
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GO TO 23
22 INDEX=I
23 RETURN

END

Alternative Version (A.H. Novick)

C LSMOD
C
C IBM PC - D.L. SMITHANDR.T. MAINARDI- 17 JULY 1988
C
C REVISED 12/18/92.ALTERED I/O AND LEAST-SqUARESROUTINE.
C

DIMENSIONY(5Q), EY(5O), CV(50, 50.), VV(.50, 50)., VVI(.50, 50),
* P(IO), _p(10), C_(10, 10), Pp(lO, _0), VPI(t0, 10),,  (5olO),,N(5o)vN(5o, 11)

C
C INITIALIZATIONAND CONTROL
C

VRITE ( _ I)
1 FORMAT LSMOD'/)

WRITE ( _ 2)2 FORMAT ENTER INPUT FILE NAME(UNIT 4)'/)
OPEN (_ FILE=' ', STATUS='OLD' )
WRITE( , 3)

3 FORMAT ' ENTEROUTPUTFILE NAME(UNIT 5)'/)
OPEN (5 FILE=' ', STATUS='OLD')

C
C READINPUT FROMFILE (UNIT 4)
C

READ (4, IO).N, M
FORIAT( 6IS)
READ(4, 12) (Y(I), I = 1, N)

12 FORMAT(6E12.6)

DO 17I: _IN17 READ (4, 1 (VY(I, J), J : 1, I)
DOI8I=I,N
DO 18 J = I, I

18 VY(J, I) : VY(I, J)
DO 19I: 1 N

19 READ (4, 121 (k(I, J), J : 1, M)
C
C ORDINARYLEAST-SqUARESANALYSIS
C

DO 1004 I = 1, N
1004 EY(I) = SqRT(VY(I, I))

DO 1005 I = 1, N
DO 1005 J = 1, N

1005 CVCI, J) : VYCI, J) / EY(I) / EY(J)CALLMATINV(QN.VY, VYI, WN, NTEST, N, 50, 51)
IF (NTEST .Eq. 1) GOTO1009
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1007 VRITE (* 1008)
1008 FORMAT (_ NO INV'/)

STOP
1009 DO 1010 I = 1, M

DO 1010 J = 1, M
VPI(I, J) = 0.0
DO 1010 K2 = 1, N

DO 1010 K1 = 1, N
, , K1) A(K1, J)1010 VPI(I, J) = VPI(I, J) + A(K2 I) * VYI(K2 *

CALLMATINV(qM,VPI, VP, VM, NTEST, M, 10, 11)
IF (NTEST .Eq. O) GOTO1007
DO 10111 = 1, M

P(I) = 0.0
DO 1011 K3 = 1, M

DO 1011 K2 = 1, N
DO 1011 K1 = 1, N

1011P(I) =2p(I)I= + VP(I, K3) * A(K2, K3) * VYI(K2, K1) * Y(K1)DO 101 1, M
1012 EP(I) = SqRT(VP(I, I))

DO 1013 I = 1, M
DO 1013 J = I, M

1013 CP(l, J) = VP(I, J) / EP(I) / EP(J)
DO 1014 I = I, N
qN(1) = Y(1)
DO 1014 KI = i, M

1014 QN(1) = QN(1) - A(I, K1) * P(KI)
CHI2 = 0.0
DO 1015 K2 = i, N
DO 1015 K1 = i, N

1015 CHI2 = CHI2 + QN(K2) * VYI(K2, K1) * QN(K1)
CRI2NM= CHI2 / FLOAT(N- M)

C
C PRINT OUTPUTTO FILE (UNIT 5)
C

WRITE (_ 4040 FORMAT I y,
41 WRITE(s, 12 (Y(I), I : 1, N)

WRITE(5, 410)
410 FORMAT(' EY')

WRITE (5, 12) (BY(I), I = I, N)
WRITE (5 411)

411 FORMAT(_ VY')
DO 412 I = 1, N

412 VRITEwRITE(_(5' ii l (VY(I, J), J = 1, I)43 FORMAT _ )
DO 44 I = 1, N

44 WRITE (5, 12).(CY(I, J), J = 1, I)

VRITE (_ 441)441 FORMAT _ A')
DO 442 I = I, N

442 WRITE (5, 12) (A(I, J), J = 1, M)
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WRITE (5451
45 FOHIAT (_ P'

VRITEvRITE/_', 45112I(P(I)' I = 1, M)451FOHIAT (' EP'

VRITEVRITEli ,, 45212)I(EP(I)' I : I, M)452 FORMAT ' VP'

DO 45311_ -1 (I J) J 1, I)

453 VlITE 5, (7P , , =
WRITE 47)

47 FOUAT ] CP')
DO 48 I = i,

48 VRITE (5, 12) (CP(I, J), J = 1, I)

VRITE (5, 49!49 FOUAT.(' eH 2,eHI2NI')
WRITE (5, 12) CHI2, CHI2NM
STOP
END
SUBROUTINEMATINV(B, D, Q, E, NTEST, NS, NARA, NMAX)
DIMENSIONB(NARA), D(NARA, NARA), q(NARA, NARA), E(NARA, NMAX)
IP = NS + 1
BIG = 0.0
DO 555 I = l, NS

DO 555 J = i, NS
ABD : ABS(D(
IF (ABD .GT.IBI_I)THEN

554 BIG : ABD
ENDIF

555 CONTINUE
FACT : Sq_T(BIG)
I:l

1 IF (I .LE. NS) THEN
2 J=l
3 IF (J .LE. NS) THEN
4 K: 1

5 IFEI _ .LE. N_I THEN6 , K) K, J) / FACT
K : K + 1
GOTO5

ENDIF
7 J = J + 1

GOTO3
ENDIF

8 L: 1
9 IF (L .LE. NS) THEN

10 IF (L .EQ. I) GOTO13
11 E(L, IP) : 0.0
12 L=L+I

GOTO9
13 E(L, IP) = 1.0

GOTO12
ENDIF
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T4 CALLJORDAN(B, E, NTEST, NS, NARA, NMAX)
IF (NTEST .LE. O) THEN

15 RETURN
ENDIF

16 M = 1
17 IF (S .LE. NS_ THEN
18 q(I, Z) = E(M, IP) / FACT

M:M+I
GOTO17

ENDIF
19 I=I+1

GOTOI
ENDIF

20 RETURN
END
SUBROUTINEJORDAN(B, C, INDEX, N, NARA, NMAX)

SUBROUTINEJORDANSOLVESA SYSTEMOF LINEARNONHOMOGENEOUS
EQUATIONSBY THEMETHODOF GAUSS-JORDANREDUCTION.IF THE SYSTEM
FAILS TO HAVEA SOLUTION, A FLAG IS SET VHICH SIGNALSTHE MAIN
PROGRAM.

DIMENSIONB(NARA), C(NARA, NMAX)
K=I

1
IK .LE. _I THENIFI (C(K, .Eq. O) THEN2

3 L:K+I

4 IF /_ GT. N)GOTO 215 IF _(L, K) .Eq. O) THEN
6 L=L+I

GOTO4
ENDIF

7 M : 1
8 IF _M - N - i .GT. O) GOTO2

C(K,M) M)C(L, M)
M:M+I
GOTO8

ENDIF
10 J = N + 1

11 IF /_ .GE.:K_ THEN12 C , J) (K, J) / C(K, K)
J:J- 1
GOTO11

ENDIF
13 I : 1
14 IF (I .GT. N) THEN
15 K : K + 1

GOTO1
ENDIF

16 IF (I .NE. K) GOTO18
17 I = I + 1
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GOTO14
18 II = N + 1

IF 'LT'cU(IGOTO20 C(I, II) - , II) - C(I, K) * C(K, II)
II = II --I
GOTOlg

21 INDEX = 0
ELSE

22 INDEX = 1
ENDIF

23 RETURN
END

k.2 Test Problem Input

See Section 3.2 for a description of the input parameters and format.

2 1
1.85 1.04
0.01232
0.008614 0.02400
1.0
1.0

A.3 Test Problem Output

See Section 3.2 for a description of the output parameters.

Y
.185000E+01 .194000E+01
EY
.110995E+00 .155210E+00
VY
.123200E-01
.861400E-02 .240900E-01
CY
.IO0000E+O1
.500013E+00 .IO0000E+O1
A
.IO0000E+O1
.IO0000E+O1
P
.186739E+01
EP
.107722E+00
VP
.116040E-01
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CP
•IO0000E+O1
CHI2,CHI2NM
•422271E+00 . 422271E+00
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APPENDIXB: GLSMOD

This code has been compiled and used routinely on an
IBM-compatible personal computer by the author. The source listing(s),
executable program(s) and some test problems (input and output) can be
obtained on a floppy disk by contacting the author.

B.1 FORT_N Source

Original Version (D.L. Smith)

C GLSMOD
C
c IB! PC- D.L.SIITU 2_D_CEIBER1092
C

VIIENSIONy(40_,Ey(40),VY(4Q,40),CY(40,40),q(40,O/,qVy(40,40,
4o )

jPA(_o),
/

2EA(IO),VA(IO,IO),CA(IO,IO),A(40,IO),qN(40),VN(40,41
C
C INITIALIZATION ANDCONTROL
C

1 FORMAT(_ GLSMOD'/)
VRITE(* 2)

2 FORMAT(_ ENTERINPUT FILE NAME(UNIT 4)'/)
OPEN(4,FILE:' ',STATUS='OLD ')
VRITE(*,3)

3 FORMAT('ENTEROUTPUTFILE NAME(UNIT 5)'/)
OPEN(5,FILE=' ',STATUS='OLD ')

C
c READINPUTFROMFILE (UNIT4)
C

READ(4_IO) N,M
_oFORMAT(_6IS)

aEAD(a_2)(Y/I),I:_,N)

a_V(4,_) (Y_(I),I:_,N)
DO 17 I=I,N

17 READ(4,12) (VY(I,J),J=I,I)
DO 18 I=I,N
DO 18 J=l,I

18 VY(J _I!:VY(I,JIREAD(4 12) (PA(I),I=I,M)
DO 19 I=I_M

19 READ(4,12) (VA(I,J),J=I,I)
DO 20 I=I,M
DO 20 J=l,I

20 VA(J,I):VA(I,J)
DO 30 I=l,N

30 READ(4,12) (A(I,J),J=I,M)
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C
C GENERALLEAST-SQUARESANALYSIS
C

DO 1040 I=I,N
1040 EY(I)=SqRT(VY(I,I))

DO 1050 I:I,N
DO 1050 J=I,N

1050 CY(I,J):VY(I,J)/EY(I)/EY(J)
DO 10511=I,M

1051EA(I)=SQRT(Vt(I,I))
DO 1052 I:I,M
DO 1052 J=I,M

1052 CA(I,J)=VA(I,J)/EA(I)/EA(J)
DO 1053 I=I,N
DO 1053 J:I,N

1053 K2=I,M
DO 1053 KI=I,M

1053 _II,J) =Q(I,J)+A (I,K2)*VA (K2,K1)*A(J,K1)1054 I=I,N
DO 1054 J=I,N

1054 QVY(I,J)=Q(l,J)+VY!_,J)CALL MATINV(qN,qVY VYI,WN,NTEST,N,40,41)
IF(NTEST.EQ.1)GOTO1090
WRITE(*_1080)

I080 FORMAT(' NO INV'/)
STOP

1090 CONTINUE
O0 1100 I=I,M
DO 1100 J=I,M
VP(I,J)=VA(I,J)
DO II00 K4=I,M
DO ii00 K3=I,N
DO ilO0 K2=I,N
DO IlO0 KI=I,M

1100 VP(I,J)=VP(I,J)-VA(I,K4)*A(K3,K4)*QVYI(K3,K2)*A(K2,K1)*VA(K1,J)
DO 1110 I=l,N

1110 qN(I)=Y(I)- YA(I)
DO 1200 I=I,M

1200 K3=I,M
DO 1200 K2=I,N
DO 1200 KI=I,N

1200 _II)=P(I)+VA(I,K3)*A(K2,K3)*QVYI(K2,K1)*QN(K1)1300 I=I,M
1300 EP(I)=SQRT(VP(I,I))

DO 1400 I=I,M
DO 1400 J=I,M

1400 CP(I,J)=VP(I,J)/EP(1)/EP(J)
CHI2=O.O
DO 1600 K2=I,N
DO 1600 KI=I,N

1600CHI2:CHI2+QN(K2)*qVYI(K2,Ki)*qN(Ki)
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CHI2NM:CHI2/FLOAT(N)
C
C PRINT OUTPUTTO FILE (UNIT 5)
C

VRITE(5,17001
1700 FORMAT(' YA'

VRITE(5,12) YA(I) ,I:I,N)

WRITE(5 _!)40 FORMAT( _4
41VmE(5,_2',.(Y(I),I:_,N)

VRITE(5,4_C)
410 FORMAT('E_ ')

VRITE(5,12',. (EY(I) ,I=I,N)
WRITE(5,4__)

411 FORMAT(' W ')
DO 412 I=I,N

412 VRITE(5,12) (VY(I,J),J=I,I)
VRITE(5. 4

43 FORMAT(_ ')
DO 44 I:I,N

44 VRITE(5,12). (CY(I,J),J=l,I)
WRITE(5,441 )

441 FORMAT(' A')
DO 442 I=I,N

442 VRITE(5,12) A(I,J),J=I,M)
VRITE(5,4000

4000 FORMAT(' PA'
WRITE(5,_2)PA(I),I:_,I)
WRITE(5,4_O0

4100 FORMAT(' hA'
VRITE(5,12)EA(I),I:I,I)
VRITE(5,4200

4200 FORMAT(' VA'
DO 4300 I=I,M

4300 VRITE(5,12)_RITE(54400}VA(I'J)'J:l'I)4400 FORMAT(_CA'
DO 4500 I=I,M

4500 VRITE(,12) (CA(I,J),J=I,I)
_/RITE 5,45)

45 FORMAT' P')
WRITE, ,12)(P(I),I=I,M)
VRITE, ,451)

451 FORMA'.' EP'
VRITE ,12) _EP(I),I=I,M)
VRITE ,452)

452 FORMA',' VP')
DO 453 I=I,M

453 VRITE(5,12) (VP(I,J),J=I,I)WRIIE(5,47)
47 FORIAT('CP')

DO 48 I=1 ,M
48 VRITE(5,12) (CP(I,J),J=I,I)
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WRITE(5 49)
49 FORUAT(;CHI2,CHI2NtI')

¥RITE(5.12) CHI?.CHI?NM
STOP
END
SUBROUTINEMATINV(B,D, q,E, NTEST,NS,NARA,NMAX)
DIMENSIONB(NARA),D(NAItA,NARA),q(NARA,NARA),E(NAItA,NMAX)
IP=NS+I
BIG=O.O
DO 555 I=I,NS
DO 555 J=I,NS
ABD=ABS(D(!,J))
IF(ABD- BIG) 555,555,554

554 BIG=ABD
555 CONTINUE

FACT=SqRT(BIG)
I=1
IF(VNS)2,2,2O

2 J=l
3 IF(J-NS) 4,4,8
4K=1
5 IF(K-NS) 6,6,7
6 E(J,K)=D(K,J)/FACT

K=K+I
GO TO 5

7 J=J+l
GO TO 3

8L=1

9 IF(L-NS) 10,10,14
10 IF(L-I) 11,13,11
il E(L,IP)=O.O
12 L=L+I

GO TO 9
i3 E(L,IP)=I.O

GO TO 12

14 CALLJORDAN(B,E,NTEST,NS,NARA,NMAX)
IF (NTEST) 15,15,16

15 RETURN
16 M=I

17 IF(M-NS) 18 18,10
18 Q(I,MI=E(M,IP)/FACT

M=M+I
GO TO 17

19 I=I+l
GO TO I

20 RETURN
END
SUBROUTINEJORDAN(B, C, INDEX,N,NARA,NMAX)

SUBROUTINEJORDANSOLVESA SYSTEMOF LINEAR NONHOMOGENEOUS
EQUATIONSBY THE METHODOF GAUSS-JORDANREDUCTION. IF THE SYSTEM

58



FAILS TO HAVEA SOLUTION, A FLAGIS SET WHICHSIGNALS THE MAIN
PROGRAM.

DIMENSIONB(NARA),C(NAKA,NMAX)
K=I

1IF(K-N) i2,222 IF(C(K,K 10,3,10
3 L=K+I

4 IF/L-N),,,5 5,21
5 IF,CtL,K)) 7,6,7
6 L=L+I

GOTO 4
7|=i

8 IF(I-N-I) 9,9,2
9 B(M)=C(K,M) .

C(K,M):C(L,M)
C(L,M)=BCM)
I-I+t
GO TO 8

10 J=N+I
tt IFQ-K)13,2,2
12 C(K,J)=C(K,J)/C(K,K)

J:J- I
GOTO 11

13 I=l
14 IF(I-N) 16,16,15
15 K=K+I

GOTO 1
16 IF(I-K) 18,17,18
17 I=I+I

GOTO 14
18 II=N+I

19 IF(II-K) 1 20,_2_(I,K),C(K,II)_20c(i,ii)-c( :II)
II=II- 1
GO TO 19

21 INDEX=O
GOTO 23

22 INDEX-I
23 RETURN

END

Alternative Version (A.H. Novick_

GLSMOD

IBM PC - D.L. SMITH 21 DECEMBER 1992

DIMENSIONY(40), EY(40), VY(40, 40), CY(40, 40), q(40, 40),

* qVY(40, 40), qVYI(40, 40), YA(40_._ P(IO), EP(lO),
* VP(IO, 10), Cp(lO, lO), PA(tO), -,:(10), VA(lO, 10),
* CA(lO, 10), A(40, 10), qN(40), WN(40, 41)
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C
C INITIALIZATION ANDCONTROL
C

1 FORilAT SMOD'/)

Un.ITZ(", 2)2 FOUAT ENTERI,'_PUTFILENAXE(UNIT4)'/)
FILE:' ', STATUS='OLD'OPEN(4 )

WRITE ( 3)
3 FOUAT _ ENTEROUTPUT_r:LENAME(UNIT 5)'/)

OPE_ (5 FILE=' ', STATUS:'OLD ')
C
C READINPUT FRet FILE (UNIT 4)
C

READ (4, IO).N, M
_oFORnT(_615)

READ(4: (YCI),I: N)
12 FORMAT (6E1.2. 6)

READ (4, 12) (YACI), I = 1, N)

DO 17 I =1 (VY(I J), J = 1 I)17 READ(4, , ,
DO 18 I-= _, N

DO 18J : 1,
18 VY(J, I) : VY(I, J)

READ(4, 12) (PA(I), I = 1, M)
DO19I=l,M

19 READ(4, 12) (VA(I, J), J = 1_, I_
DO 20 I = 1_ M
DO 20 J : i, I

; 20 VA(J, I) : VA(I, J)
DO 30 I : I, N

,),j:1 w)30 READ(4, 12) (A(I, ..
C
C GENERAL LEAST-SqUARESANALYSIS
C

. DO 1040 I : i, N
1040 EY(I) = SQRT(VY(I, I))

DO 1050 I : i, N
DO 1050 J = i, N

1050 CY(I, J) : VY(I, J) / EY(I) / EY(J)
- DO 1051 I : I, M
: 1051 EA(I) : SQRT(VA(I, I))

DO 1052 I : I, M
DO 1052 J = i, M

1052 CA(I, J) : VA(I, J) / EA(I) / EACJ)
DO 1053 I : I, N

DO 1053 J = i, N
q(l,J)= o.o
DO 1053 K2 = i, M
DO 1053 K1 : I, !!

1053 q(I, J) : q(I, J: + A(I, K2) * VA(K2, Xl) * A(J, Xl)
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DO 1054 I = I, N
DO 1054 J = I, N

1054 qVY(I, J) = q(I, J) + VY(I, J)
CALLMATINV(qN, qvY, qvYi, VN, NTEST, N, 40, 41)
IF (NTEST .NE. 1) THEN

WRITE (*, 1080)
o8o FOUAT(' NOINr'/)

STOP
ENDIF

1090 CONTINUE
DO 1100 I = i, M
DO ii00 J = I, M

VP(I, J) = VA(I, J)
DO 1100 K4 = 1, Z

DO II00 K3 = I, N
DO ii00 K2 = I, N

I, i
DO 1100 _1, =V ,II' K4)* A(K3, K4) * qVYI(K3,K2) *vP(I J): vP(I,,v• I(K2, K1) Xl, J

DO 1110 I I, N
1110QN(I) = Y(;)- YA(I)

DO 1200 I = 1, M

;II): PA(I)1200 K3 = 1, M
DO 1200 K2 = I, N

DO 1200 K1 = 1, N
1200 P(I) = P(I) + VA(I, K3) * A(K2, K3) * QVYI(K2, K1) * QN(KI)

DO 1300 1 = I, M
1300 EP(I) = SQRT(YP(I, I))

DO 1400 I = i, i
DO 1400 J : i, M

1400 CP(I, J) VP(I J) / EP(I) / EP(,])
CllI2 = 0.0
DO 1600 K2 : I, N

DO 1600 K1 = 1, N
1600 CHI2 = CHI2 + qN(K2) * qVYI(K2, K1) * QN(K1)

CIlI2NM = CllI2 / FLOAT(N)
C
C PRINT OUTPUTTO FILE (UNIT 5)
C

WRITE(5,  7oo)
1700 FORMAT(' YA')

WRITE (5, 12) (YA(I), I = 1, N)

WltITE (5, 40 /
40 FORIIAT(' Y'
41 WRITE (5, 12 (Y(I),I : 1, N)

WRITE (5, 410)
410 FOlUiAT(' EY')

WRITE (5, 12).(EY(I),I : I, N)
WRITE (5, 411)

411 FORMAT(' VY')
DO 412 I = 1, N

412 ¥IITE (5, 12) (VY(I, J), J : 1, I)
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VRITE (5 43
43 FORi[AT(_ CYl)

DO 44 I - 1, N
44 I/RITE (5, 12)(CY(I, J), J = 1, I)

VRITE(_ 441)441 FOHAT _ A')
DO 442 I - 1,

442 VRITE (5, 12) _(ACI, J), J = 1, M)
I/RITE (5 4000)

4000 FOUAT (_ PA')
I/RITE (5, 12) .(PA(I), I = 1, M)
I/RITE (5 4100)

4too FOUAT(_ EA')
vmi. (5, _2) .(EA(I),I t, l)
I/RITE (5 4200)

4200 FOUAT (] VA')
DO 4300 I = 1, Z

4300 t/RITE (5, 12).(VA(I, J), J- 1, I)

I/RITE (_ 4400
)

4400 FOHAT ] Cb')
DO 4500 I = 1, li

450OI/RITE (5' i_} (CA(I' J)' J " 1'I)45I/RITEFoHAT(5(_
I/RITE (5, 12). (P(I), I = 1, M)
I/RITE (5, 451)

451 FORMAT.(' EP')
I/RITE(5, 12).(EP(I), I = I, M)
I/RITE(5 452)

452 FORMAT(_ VP')
DO 453 I - 1, li

47 FORMAT _ )
DO 48 I = 1, M

48 I/RITE (5, 12) (CP(I, J), J = 1, I)
I/RITE (5 49)

49 FORMAT (_ CHI2,CHI2N]i )
I/RITE(5, 12) CHI2,CHI2NM
STOP
END
SUBROUTINEMATINy(B D, q, E, NTEST, NS, NARA, NMAX)
DIIENSIONB(NAU),_(NAn,NASA),Q(NAn,NARA),E(NAn,NIAX)
IP -- NS + 1
BIG : 0.0
DO 555 I = 1, NS
DO 555 J = 1, NS

ABD= ABS(D(I_iJ/)THENIF (ABD .GT.
554 BIG = ABD

ENDIF
555 CONTINUE

FACT= SQRT(BIG)
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I=1
IF (I .LE. NS) THEN

2 J=1

3 IF (J .LE. NS) THEN
4 K = i
5 IF (K .LE. NS_ THEN
6 E(J, K) = D(K, J) / FACT

K=K+I
GOTO5

ENDIF
7 J=J+l

GOTO3
ENDIF

8 L = I
9 IF (L .LE. NS) THEN

10 IF (L .Eq. I) GOTO13
11 E(L, IP) = 0.0
12 L=L+I

GOTO9
13 E(L, IP) = 1.0

GOTO12
ENDIF

14 CALLJORDAN(B, E_ NTEST, NS, NARA, NMAX)
IF (NTEST .LE. O) THEN

15 RETURN
ENDIF

16 M= I
17 IF (M .LE. NS_ THEN
18 q(I, M) = E(M, IP) / FACT

M=M+I
GOTO17

ENDIF
19 I = I + 1

GOTOi
ENDIF

20 RETURN
END
SUBROUTINEJORDAN(B, C, INDEX, N, NARA, NMAX)

SUBROUTINEJORDANSOLVESA SYSTEMOF LINEARNONHOMOGENEOUS
EQUATIONSBY THE METHODOF GAUSS-JORDANREDUCTION.IF THE SYSTEM
FAILS TO HAVEA SOLUTION, A FLAGIS SET VHICHSIGNALS THE MAIN
PROGRAM.

DIMENSIONB(NARA), C(NARA, NMAX)
K=I

1 IF (K LE. _/ THEN2 IF (C(K, .] .EQ. O)THEN
3 L=K+I
4 IF (L .GT. N) GOTO21
5 IF (C(L, K) .Eq. o) THEN
6 L=L+I

GOTO4
ENDIF
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7 M=I

8 TF .(l - N - 1 .GT. O) GOTO2
9 B(,) = C(K, W)

C(K, ,)= cl_1 ,)C(L,W) B
M=M+I
GOTO8

ENDIF
I0 J=N+I

11 IF IJ .GE.=KI THEN12 C , J) (K, J) / C(K, K)
J=J- 1
GOTOII

ENDIF
13 I=I
4 IF (I .GT. N) THEN
15 K=K+I

GOTOI
ENDIF

16 IF (I .NE. K) GOTO 18
17 I=I+l

GOTO14
18 II = N + I

19 I F (II .LT. K) GOTO17

20 C(I, II) =lC(I, II) - C(I, K) * C(K, II)II = II-
GOTO 19

21 INDEX = 0
ELSE

22 INDEX = I
ENDIF

23 RETURN
END

B.2 Test Problem Input

See Section 3.2 for a description of the input parameters and format.

2 I
1000.0 1102.0
1095.0 1095.0
1079.1125
0.0 3496.3569
1095.0
2704.0
1.0
1.0
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B.3 Test Problem Output

See Section 3.2 for a description of the output parameters.

YA
.I09500E+04 .I09500E+04
¥
.IO0000E+04 .II0200E+04
EY
.328498E+02 .591300E+02
VY
.I07911E+04
.O00000E+O0 .349636E+04
CY
.IO0000E+O1
.O00000E+O0 .IO0000E+O1
1
.IO0000E+O1
.IO0000E+O1
PA
.109500E+04
Et
.520000E+02
VA
.270400E+04
Ct
.IO0000E+O1
P
.104064E+04
EP
.251377E+02
VP
.631903E+03
CP
.IO0000E+O1
CHI2,CHI2NM
.370020E+01 .185010E+01
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I I

I I
[ INPUT [ n m, y, Vy AI I ' '
I _ I
I I

1
I I

I I Ey, C V p, mp,
I COMPUTATION I Cp, X_' X_I I ' J

I _ I
I I

l
I _ I

I OUTPUT I Ep, '_p, _p, X' }' lAI I '
I _ I
I I

Figure 1: Flow diagram for the code LSMOD
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I I

I I n, m, y, Ya_
[ INPUT [ Vy Pa Va l

I _1
I I

l
I I

I COMPUTATION I ' '
l I p, Ep, Cp, X X
I I
I I

L
I _1

I I Ya_ y_ Ey_ Vy_ Cy_
I OUTPUT I A, Pa, Ea, Va, Ca, p,
I I Ep Vp Cp X 2I I ' ' ' ' x2/f
I I

Fibre 2: Flow diagram for the code GLSMOD
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