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LA UR-9_-..sY%_..

CALCULATION OF HADRONIC MATRIX

ELEMENTS USING LATTICE QCD

Rajan Gupta
T-8, MS-B285, Los Alamos National Laboratory, Los Alamos, NM 87545

I give a brief introduction to the scope of lattice QCD calculations in
our effort to extract the fundamental parameters of the standard model.
This goal is illustrated by two examples. First I discuss the extraction of
CKM matrix elements from measurements of form factors for semileptonic
decays of heavy-light pseudoscalar mesons such as D -+ Keu. Second, I
present the status of results for the kaon B parameter relevant to CP
violation. I conclude tile talk with a short outline of our experiences with
optimizing QCD codes on the CM5.

1. Introduction

Current high energy experiments show that the fundamental building blocks of

matter are quarks, gluons, leptons, photons, weak bosons and the elusive Higgs particle.

The interactions between these particles are described by a set of theories, known collec-

tively as the Standard Model. While this model has been immensely successful, present

data do not demand enhancements to the model or a new theory altogether, it is still

incomplete. Experimentalists have yet to discovery the top quark, the T neutrino and the

Higgs boson. On the other hand it has proven very difficult to extract the predictions

of the Standard Model when the interactions among the elementary particles are strong.

This happens in processes in which quarks interact through the exchange of gluons carry-

ing 4-momenta less than a few GeV. Such processes cannot be calculated reliably using
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perturbation theory as there is no small parameter to expand in. For this reason it has

proven extremely difficult to make precise quantitative tests of the theory, i.e. making

quantitative predictions that can be compared to experiments. Even 20 years after the

formulation of QCD as the theory of strong interactions this state of affairs persists. What

one needs are non-perturbative tools to include strong interaction effects. At present the

most promising approach is to carry out large-scale numerical simulations using a lattice

version of the gauge theory. In this talk I hope to describe the computational challenge

presented by lattice QCD and the progress we have made.

Let me begin by enumerating the 24 parameters of the standard model.

Parameters Number Comments

Masses of quarks 6 u, d, s light

c, b heavy
t> 100GEV??

Masses of leptons 6 e, #, _"

M_., ._, .. = 0 ??

Mass of W + 1 81 GeV

Mass of Z 1 92 GeV

Mass of gluons, 7 1 0

Mass of Higgs 1 Not Found

Coupling as 1 _ 1 for Energy < 1 GeV

Coupling aere 1 1/137

Coupling GF 1 10-5 Gev -2

Weak Mixing Angles 3 012, 023, 013

CP Violating phase 1

Strong CP parameter 1 O = 0 ??

Of these parameters the ones whose determination requires input fl'om lattice QCD

are the masses of light quarks, mu, rod, ms, the strong coupling as, the weak mix/lng angles



and the CP violating phase g, and the strong CP parameter ®. Precise determination of

their values will either validate the standard model or provide clues to new physics.

The weak mixing angles and the CP violating phase g need some introduction.

These parameters arise because quarks are not eigenstates of weak-interactions. Tile mix-

ing between flavors is described by the 3 x 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix
V,

V = Vcd •

ttere, for example, Vub is the strength of b --+ u flavor transformation as a result of charged

W exchange. For 3 generations V -1 = V t and the matrix can be written in terms of 4

independent parameters, the 3 angles 012,0zz and 013 and the CP violating phase 5 as [1]

C12c13 S12¢13 813 e-i_ )

V = -812c23 - c12823813 eM c12c23 - 812823a13 ei¢5 823c13

812823 - c12c23813 eia -c12823 - 812c23813 ei_ c23c13

where cii =cos0ij and sij =sin0ij for i= 1,2,3. Anon-zerovalueofggives rise to

CP violation in weak decays.

The strong CP violating parameter O arises because there is no symmetry or dy-

namical argument to rule out a term like £o = (iOg2/327r2)FF from the QCD Lagrangian.

Even though this term is a total divergence its presence leads to observable consequences

like CP violation because of instanton solutions in QCD. The best bound on this param-

eter ® < 10-9 comes from measurements of the electric dipole moment of the neutron,

dN< 1.2 x 10--25e cm [2]. The crucial matrix element needed in the theoretical analysis is

of the pseudoscalar density _%u + d75d + _75s within the neutron, and lattice calculations

hope to provide a non-perturbative estimate. At present the numerical technology is not

sufficiently well developed to undertake this calculation; what needs to be done is described

in Ref. [3] and I refer to it for details.

To set the stage for the results presente_l later, let me give an outline of how

lattice QCD interfaces with experimental data and theoretical predictions of the standard

model to test the theory. The general form of SM prediction for a process is an expression

(which I will call the master equation) consisting of three parts; know factors times some

function of the unknown parameters times the matrix element of the appropriate operator

sandwiched between initial and final states. Thus for each process for which there exists

accurate experimental data, knowing the value of the matrix element gives an equation

of constraint for the remaining part involving the unknown parameters. Once a certain
number of such calculations are in hand we can extract accurate values for all the unknown
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parameters. Thereafter the standm'd model can be used to make accurate predictions for

other processes. In this talk I will demonstrate this strategy with two examples, semi-
leptonic form-factors and the kaon B parameter, that are discussed in Sections 6 and 7

respectively.

I will assume that the reader is familiar with Monte Carlo methods and Lattice

QCD. Those who are not should, at this point, read the excellent pedagogical introduction

given by D. Toussaint at this meeting or the monogram by Creutz [4].

2. Errors in lattice calculations

Lattice calculations rely on a Monte Carlo sampling of configurations generated on

a discrete space-time grid. Correlation functions are calculated as a statistical average, and

are composed of the gauge variables and quark propagators calculated on these background

gauge configurations. This procedure introduces statistical and systematic errors in the

results, so in order for you to judge progress in the field it is important for me to first
explain these sources of errors.

2.1. Statistical errors

There exist robust, though slow, algorithms for generating independent gauge

configurations. The typical sample size has been at best ,,_ 100 independent configurations.

The quality of the signal depends very much on the observable, however for the best case

of spectrum calculations this sample size is adequate to reduce errors to less than 10%
percent.

2.2. Finite box size errors

The energy E of a state in a finite box with periodic boundary conditions is shifted

due to interactions with mirror sources. Liischer has shown [5] that for large enough L the

corrections are exponentially damped as exp-EL, however the onset of the exponential

regime has to be determined numerically. Present calculations indicate that for Emi_L > 4

the asymptotic relation applies and that the errors are roughly a few percent.

2.3. Finite lattice spacing errors

The continuum action is the first term in a Taylor series expansion of the lattice

action. At the classical level corrections start at O(a) for the Wilson formulation of the

Dirac term and O(a 2) for staggered fermions. They are O(a 2) for the gauge part. In

addition there are O(a) corrections in the operators used to probe the physics. These



corrections can be large on accessible lattices (typically a is in the range of 0.1 -0.05

fermi). There is considerable effort being made in the lattice community to reduce these

errors by improving the lattice action and operators. It turns out that matrix elemeDt

calculations are most severely affected by these O(a) artifacts which are at present the

largest source of uncertainty. In spectrum measurements these errors are much smaller
once a < 0.1 fermi.

2.4. Extrapolations from heavier quarks

The quark propagator is the inverse of the Dirac operator. In the limit mq -+ 0
iterative algorithms used to calculate the inverse face critical slowing down. Since physical

u and d quark masses are very nearly zero, and because over 90% of the time in QCD

simulations is spent in calculating the inverse one has had to resort to extrapolating to

the physical point from heavier masses (typically from O(m_) -+ (m_ + mu)/2 _ m_/25).

The functional form used in the extrapolation is usually derived using just the lowest order

chiral perturbation theory. This procedure introduces systematic errors.

2.5. Effects of dynamical fermions

Simulations with dynamical fermions are prohibitively slow. As a result one works

with the quenched approximation. This is a priori a totally uncontrolled approximation
and I discuss it in more detail in the next Section.

2.6. Relation between lattice and continuum operators

In order to compare lattice results with those in the continuum we have to deter-

mine the relative normalization of the lattice and continuum operators. This is usually

done using 1-loop perturbation theory, which leaves open the possibility that the 2-loop ef-

fects are large or there are large non-perturbative effects. A recent analysis by Lepage and

Mackenzie suggests that 1-loop perturbation theory does a very good job provided one uses

an appropriate definition of the coupling constant and one takes care of unwanted ultravi-

olet fluctuations using mean-field improvement [6]. So far the results from this approach

agree very well with non-perturbative estimates in cases where the latter calculations are

feasible. Further checks are under way.

3. Quenched versus unquenched calculations

In lattice QCD one calculates physical quantities as a statistical average over a set

of background gauge configurations. For any given observable (9,
1

f IIi,_dUi,_ O[U] detM[U] e-Sg (3.1)<o>= 2 J



where Ui,u is an SU(3) matrix defining the gauge field on a link in direction # at site

i. The background gauge configuration, {Ui,l,}, is generated with Boltzmann weight

detM[U] e -SQ. The factor detM[U] is the determinant of the Dirac operator and arisies as

a result of integrating over the quark degrees of freedom. Physically this factor takes into

account the possibility that the QCD vacuum can create and annihilate quark/anti-quark

pairs spontaneously. The determinant is a completely non-local object even though tile

initial Dirac action is only nearest-neighbour, and computationally very hard to include in

the Monte Carlo procedure. It is therefore expedient to make an approximation- called

the quenched approximation - in which one sets detM[U] = 1. This corresponds to alter-

ing the QCD vacuum by artificially turning off spontaneous pair production. The question

to address then is how serious is this approximation.

The quenched vacuum possesses all three unique properties of QCD, i.e. confine-

ment, asymptotic freedom and spontaa_eous chiral symmetry breaking. For this and other

reasons it is expected that setting detM[U] = 1 is a good approximation (on the level

of 10%) for a large number of observables. Present simulations bear out this belief for

sea quark masses roughly > ms. While this is encouraging, it is by itself not sufficient

to validate the approximation as sea quark effects in the same quantities are expected to

be significant only for mq < ms. For this reason one has to proceed case by case, and

eventually check using the full theory.

These checks are made difficult by the presence of statistical and systematic errors

( like finite lattice size and spacing, and extrapolation from heavier quarks) discussed

above. Therefore, to expose the effects of vacuum polarization one needs to first bring these

other errors down to the level of a few percent. Since the methodology for measuring many

quantities is identical with or without the use of the quenched approximation to produce tile

statistical sample of background configurations, the strategy has been to first understand

and control these errors in the simpler case. Thus the quenched approximation should be

regarded as a test of our numerical techniques as well as a very good approximation to

systematically improve upon.

The quenched approximation does have its limitations. Recent analysis, using

chiral perturbation theory, of proton and pion masses show that in the quenched approx-

imation these quantities develop non-analytic terms in addition to the desired physical

behavior [7] [8]. So far it has been hard to exhibit the presence of these unwanted terms

in numerical data; the hope is that the coefficients of these terms become significant only

at much smaller quark masses and extrapolations from heavier masses are still sensible.

Clearly this aspect of the quenched approximation needs more attention.

Let me end this discussion with a rough comparison of simulation time with and



without dynamical fermions. With present algorithms the CPU requirements increase as

L6 for the queuched approximation and as L 1°'5 with light dynamical fermions. Folding

in tile prefactors we find that for two degenerate flavors of quarks with roughly the mass

of the strange quark, full QCD simulations are a factor of 1000 - 2000 times s!ower. For

smaller quark masses this factor will increase according to the above scaling behavior. As

a result it is clear that we need improvements in update algorithms before contemplating

realistic simulations with the full theory for the purpose of evaluating matrix elements

within states made up of light hadrons,

4. Lattice QCD is not an open-ended problem

The masses of hadrons are very well measured experimentally. For this reason we

know the different energy scales in the problem. To analyze the physics of light quark_s

(u, d, s,) there are three scales that we have to consider. First L > _m_i,_u,_, and we take

_.m_,_i,_um-- 1/m,_ as the pion is the lightest particle. Current simulations tell us that for

L/_,_im_,,_ "_ 5 the finite size effects are down to a few percent level. Second, the lattice

should be fine enough such that no essential features of the hadron's structure are missed

as a result of discretizing the theory. This scale is controlled by _mi,_imum/a. We choose

_,_in,:,_,, to be the reciprocal of the proton mass. Again current numerical data tell us that

for _mini,,_,,.,/a "_ 5 finite lattice spacing errors are reduced to the level of a few percent.

Lastly, _maxiraurn/_rninirnurn --" Mv,.oto,_/M,, = 7 is an accurately measured number (getting

this ratio correct in lattice simulations is equivalent to tuning mu to its physical value).

Putting these three factors together tells us that definite measurements requ'.'re lattices of

size L ..- 175. Thus, unless present analysis has lead us to grossly underestimate the first

two scales, definite calculations can be done in the quenched approximation on computers

that can sustain 1-10 teraflops.

5. Hadron Spectrum

The first step towards the analysis of matrix elements is to calculate quark propa-

gators. These quark propagators are combined to form hadron correlators. Matrix elements

are then calculated by sandwiching the appropriate operator between the initial and final

state hadrons. The quality of the results depends on how well one has isolated the desired

hadronic states before inserting the operator (for example eliminated the radial excitations

that contaminate the signal), Finally, to get the matrix element one has to remove the

external legs from the correlation function. Clearly, a necessary condition is to enhance

the signal in the 2-point correlators -- quantities from which we extract decay constants



and the energy of the state• lt is therefore appropriate that as a prelude to presenting

results for matrix elements I give a brief review of spectrum calculations.

Calculations of the light hadron spectrum use three input parameters; two quark

masses, m, and rn_ (we assume mu = rna), and the bare gauge coupling constant. The

quark masses are adjusted to give the physical masses for the 7r and K mesons. In practice

one adjusts the ratio of their mass to that of the proton and, as mentioned above, at present

we have to make an extrapolation from heavier quark masses. If QCD is the correct

theory of strong interactions then all other mass ratios should agree with experimental

numbers as the bare gauge coupling is tuned to zero. Again we extrapolate 9ba,_ -+ 0

using renormalization group scaling. The status of these calculations is summarized by

Ukawa at LATTICE92 meeting [9], and the most complete calculation to date is by Butler

et al. [10].

The results show that finite size errors are down to a few percent level when

L/(ma_imu,_ >_ 5 and finite lattice spacing errors are of similar size for _minirnum __ 5.

More importantly, the quenched results agree with experimental data to within 10%. This

is a remarkable agreement considering the shift in rho mass due to p --, _rTrdecay has

not been taken into account in setting the scale. For this reason I would like to see

independent confirmation of the results of Butler et al. before declaring this aspect of

spectrum calculations under control• In any case these results, in part, form the basis

of my earlier conclusions on relevant scales. The finite a errors are expected to be much

larger in matrix element calculations as discussed later•

6. Semileptonic form factors of heavy-light mesons from lattice QCD

The semi-leptonic decays of mesons containing one heavy valence quark (c, b) and

one light valence quark (u, d, s) may provide the most accurate determination of the flavor

mixing angles. Consider the case, D-+Xlu, where X has flavor content us (K or K*). In

the one W exchange approximation the ampfitude is

(X-I +ulnwlD °) = -_ cP:r,(x-t+.l(v - A)_(V - A).ID°),
(6.1)

GF

-- --_VscW(1)%,(1 - "/5)u(u) (X-['_"/u(1 - 75)clD°),

where GF is the Fermi constant, Vcs is the c _ s CKM matrix element. This process

is particularly simple because the hadronic and leptonic currents factorize. The leptonic

part of the decay can be calculated accurately using perturbation theory, while to take

into account non-perturbative contributions to the hadronic part

H u = (X[_%(1 - %)c[n) (6.2)



one resorts to lattice QCD. In this talk I will present our results for the simpler case
D o -+ K-e+v.

6.1. D O_ K-e+u

The matrix element H_, can be parameterized in terms of two form factors:

(K-(pK)[_7_(1 -- "/5)cID°(pD)> = p_f+(Q2) + q_f_(Q2), (6,3)

where p = (PP + PK) and q = (PD --PK) is the momentum carried away by the leptons,

and Q2 = _q2 (which is always positive). I use the Euclidean notation p = (/Y,iE) so that

p2 =/_2 _ E 2. An alternative parameterization is

(K-(PK)I_7_(1 -- 75)clD°(pD))

( ) ' (6.4)
= P, _ -_Q -_q, f+(Q_)+,_Q r_q, y0(Q_)'

where
Q2

fo(Q2)= f+(Q2)+ m_ - m_c f_(Q2). (6.5)

In the center of mass coordinate system for the lepton pair, i.e. q = 0 or equivalently

P_ =/YD, one has

<K-(pK) l_qclD O(PD)>= 2tidf+(Q2),

(K_(pK)I_TaclDO(pD)) =m2D- rn2Kf0(Q2) ' (6.6)

Thus, the form factor f+(Q2) is associated with the exchange of a vector particle, while

f0(Q 2) is associated with a scalar exchange. It is common to assume nearest pole domi-

nance and make the hypothesis

/+(0) /0(0) (6.7)
f+(Q2) = 1 - Q2/m__' /°(Q2) = 1 - Q2/m_+'

where rnjP is the mass of the lightest resonance with the right quantum numbers to

mediate the transition; D+(1969) or 9"+(2110?) in the pseudoscalar or vector channels

respectively. The goal of the lattice calculations is to determine the normalizations f+(0)

and f0 (0) and map out the Q2 dependence.

In the limit of vanishing lepton masses, the vector channel dominates and one can

write the the differential decay rate as

ar(o_)= 1927r3rn3 dQaA(Qz)a/21f+(QZ)I2' (6.8)
_(O_)=(m_ + ._ -O_)_-4m_m_.



To integrate this, the functional form of f+ must be known. Assuming vector meson

dominance numerical integration gives

r(D ° -_ g-e+t, ') = 1.53[Y_[21.f+(0)[2 x 10-11sec -1. (6.9)

Eqn. (6.9) is the simplest example of the master equation for extracting V_ once _

F(D ° --_ K-e+_ ,) has been measured and f+ calculated using lattice QCD. In this case

however, IV_ I = 0.975 is known very accurately, so one extracts If+(0)] _ 0.75. The

quantity f0(0) has not been determined.

The details of our lattice calculation of the form-factors are given in Ref. [11] so I

do not reproduce them here. I only briefly describe some of the lattice technicalities and
then discuss the numerical results.

6.2. Lattice parameters

This is an exploratory study and our goal is to investigate different numerical

techniques in order to improve the signal to noise ratio. Our statistical sample consists of

35 lattices of size 163 x 40 at _ = 6.0 corresponding to a lattice spacing a = 0.1 fermi.

We fix the heavy (charm) quark mass at _ = 0.135, and use only two values of the light

quark mass, _ = 0.154 and 0.155. Using a -1 = 1.9 GeV, this corresponds to a heavy-

light meson of mass 1.59 and 1.54 GeV (about the mass of the physical charm quark)

and to light-light pseudoscalar masses of roughly 690 MeV and 560 MeV. Our heavy-light

pseudoscalar mesons therefore correspond most closely to the physical D meson, with

a somewhat massive light constituent, while the light-light mesons are analogous to the

physical K. We will henceforth adopt this nomenclature.

6.3. Quark propagators and 3-point Correlation function

The calculation of quark propagators is done on lattices doubled in the time direc-

tion, i.e. 163 x 40 --+ 16a x 80. We use periodic boundary conditions in ali four directions.

These propagators on doubled lattices are identical to forward and backward moving so-

lutions on the original 163 x 40 lattice. To improve the signal we use the "Wuppertal"

smeared source method for generating the propagators.

In the 3-point correlation function the source for the K meson is fixed at t _c = 1

and for the D meson at tD = 32. As a result the wrap-around effects in time direction

are exponentially damped by at least 16 time slices because of doubling the lattices. The

position of the insertion of the vector current is varied over 4 < t < 28 to improve the

statistics. The lowest order Feynman diagram for this process is shown in Fig. la. Fig. lb

shows one possible correction term due to gluon interactions which make perturbative

analysis of the matrix element hard.
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Fig. 1. (A) The semi-leptonic decay of a D O meson to a K-l+u final state. The c -+ s

transition takes place through the emission of a W + and only the vector part of the V- A

weak current contributes. The interaction is not pointlike at the hadronic vertex and its

q2 dependence is given by the form-factors. (B) An example of QCD corrections to the

matrix element Ht,.
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6.4. Operators and correlators

In order to get a handle on O(a) effects coming from the lattice operator we use

three transcriptions for tbe vector current

local _\
V_ (xi = "_l(x)%,q2(x),

¢_t _ 1
v_ .(_)= ;.(_,(_)_.u.(_)q2(_+_,)+_ (_+_)_.u.(_)*q2(_)),

,conserved __ 1
_, (xj= _ ('q1(x)(7.-1)U.(x)q2(m.all)+'_1(x+a#)(%, + l)U.(x)tq2(x)).

(6.10)

In our calculation the quarks ql and q2 may both be light, or one heavy and one light.
Note that conservedV_ (x) is conserved only for degenerate quarks. We use the Lepage-
Mackenzie mean-field improved normalization of these currents relative to the continuum

vector current. The iattice fields are related to their continuum counterparts by

i 3t¢i .i¢ion ` = 1 - _e_pL (6.11)

for a quark of flavor i. Then the normalization of the local vector current is

g_(_)_.q2(_) = 1 1- --(1 -o.82av)g_(_)-y.q2(_), (6.12)
cont 4_c 4_c L

where nc = 0.15702 is the value of the hopping parameter that corresponds to zero pion

mass, and av is the renormalized coupling given by g_ = 1.792_.
The extended 1-1ink current is related as

[ 1 i 3t¢1 i 3_2 [V_ = _00 1 _ 1 _e (1 - 0.82av)V _t'._, , (6.13)cont L

where the factor U0 takes into account the unwanted ultraviolet fluctuations in the link

and its value can be taken to be either the expectation value of the link in the Landau

gauge (0.86) or the fourth root of the plaquette (0.88). We use a mean of the two values,

i.e. U0 = 0.87. Finally the conserved current is related as

(6.14)

6.5. Results

I am going to skip over all the details of the analysis and the discussion of the

quality of the signal in the correlators due to lack of time. These are given in Ref. [11].
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The final results for the form-factors are given in Table 1. Our results show that the three

different lattice transcriptions of the vector current give consistent results, well within their

respective 1-a uncertainty. The numbers do not show a large variation for the two values

of the light quark mass that we have used and the value of .f+(Q2) is roughly consistent

with the phenomenological value f+(0) = 0.75.

Current f+(Q2 = 0.217) f_(Q2 = 0.217) f0(Q 2 - 0.217) f0(Q 2 = -0.05)

VL°cal 0.61(11) -0.44(25) 0.66(13) 0.91(9)
i ,,

0.65(12) -0.39(23) 0.69(la) 0.96(11)
V_c°''_'e''_d 0.74(11) -0.28(21) 0.77(12) 1.09(11)

i i

- 0.155
iiii i

Current f+(Q2 = 0.260) /_(Q2 = 0.260) $0(Q2 = 0.260) /0(Q2 = -0.035)

Logo' -0.65(36) 0.69(21) 0_96 ( 10 )

V_ _t. 0.63(23) -0.50(34) 0.67(23) 1.00(11)

V_ °"'_r_ed 0.74(25) -0.34(35) 0.76(25) 1.14(12)

We can also compare our results with earlier calculations as these were done with

similar lattice parameters. The group of Bernard eta/. [12] measured the form-factors on

243 x 40 lattices at the same values of _ and ,¢. They used only the local vector current,

and adopted a different normalization. Converting their result to the normalization we use

gives fo(.ff- O) -- 0.85(10) at _ = 0.154 to be compared with our value of 0.91(9). Similarly

the Rome-Southampton group [13][1,1]have measured the form-factors on 20 x 102 x 40

lattices at the same value of _ and similar a. They use the "conserved" vector current.

Again, using the same normalization for the vector current that we use and interpolating

their results to a = 0.154, we find f+(fi- 2_r/L) = 0.67(6) to be compared with our result

of 0.74(11) and f0(fi = 2_r/L) = 0.65(5) to be compared with 0.77(12).

The internal consistency of our results and the agreement with previous calcula-

tions shows that semi-leptonic form-factors can be extracted from lattice simulations. The

largest source of error in present results comes from an inadequate signal in the non-zero

momentum correlators. The next round of calculations are being done on 32a x 64 lattices

on the CMS. These will hopefully address the phenomenologically interesting cases of the

decay of D to vector mesons and of B -+ 7r and B -+ D which are crucial for extracting

Vbu and Vbc from the experimental data.



7. The kaon B pm'ameter

CP violation in the standard model is governed by a single parameter _ provided

we assume that (9 = 0. Once the value of d_is known then each CP violating process will

provide a constraint involving the mixing angles and quark masses. I illustrate this using

as an example the mixing between K ° and K---6 as it is the best measured CP violating

process.

The mass eigenstates in the neutral kaon system are defined as

1 K0
IKL> = _ [(1 + e)[ > + (1 -- e)lK"0 > ]

(7.1)
1 KO

[Ks) = _ [(l+e)[ > - (1-e)[K "° >] " '_

where N is the normalization. The parameter e measures the amount; of CP violation, and

in the standard model is given by the master equation

e = 1.4ei_r/4sin_BK [_?3f3(mc'mt)-Yl]m'_w+_72"_"h(mt)Re(VtdVtsVudVu')"°ws22 (7.2)

where _1 = 0.7, _2 = 0.6 and r/a = 0.4 are the QCD correction factors and f2 and f3 are

: known functions of the quark masses. The value of e is known to be

I,I = (2.258 5=0.018) x 10-3. (7.3)

In Eq. (7.2) the strong interaction corrections are encapsulated in the parameter BK

which is the ratio of the matrix element of the AS = 2 four-fermion operator

(_%,(1- "ys)/2d)(_7_(1- 75)/2d) to its value in the vacuum saturation approximation

- - } - s .2 ,.u.
"_ J K.tV, K.tg K , (7.4)

Theoretical estimates of this parameter vary from 0.33 to l and lattice calculations aim to

provide a non-perturbative answer.

The steps in the calculation leading to Eqn. (7.2) are show in Fig. 2. In the

standard model K°K -b"mixing can occur due to the second order weak process shown in

Fig. 2a. Since the W + and the top quark are heavy., it is expedient to integrate them out

and define an effective 4-fermion interaction at some scale # > mc. This is represented by

the diagram in Fig. 2b. This weak amplitude is modified by strong interaction corrections

as illustrated in Fig. 2c, and it is these corrections that change the value of BK from 1.0.

The calculation of B K has been done with both staggered and Wilson fermions.

At present simulations using staggered fermions are far more extensive and have much less
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Fig. 2. (A) One of the two possible box diagrams responsible for the mixing between

K°K --'6".(B) The short distance part involving the W exchange and t quark intermediate

state is replaced by the AS = 2 4-fermion effective interaction. (C) One possible QCD

correction to the weak decay. Lattice QCD is a non-perturbative method to sum ali such

possible corrections.



B

4

theoretical uncertainty. The two formulations give consistent results [15], so I will present
results only for staggered fermions as these have much smaller errors. The details of these

calculations are given in aefs. [16] [17] [18]. Our final results from different lattices and

for different values of a are shown in Fig. 3. This calculation is sufficiently mature that I
analyze the data with respect to the 6 sources of errors discussed in Section 2.

1. Statistical errors: Three independent samples of configurations have been analyzed

at /3 = 6.0 and results for BK are consistent within errors. Also, the Japanese

group [18] have carried out a totally independent calculation and get the same
results. I take this to indicate that the analysis of statistical errors is correct.

2. Finite Size errors: We have compared results on 163 x 40 lattices with those on

243 × 40 at/3 = 6.0 and on 183 × 42 lattices with those on 323 x 48 at _ = 6.2.
In both cases the results are consistent. Our conclusion is that finite size effects

in the data presented in Fig. 3 are much smaller than the statistical errors and at
most 1 - 2%.

3. Finite lattice spacing errors: These errors come from both the lattice action and

the operators used in the measurements. Fig. 3 shows two different extrapolations

assuming corrections to be either O(a) or O(a2). These two different ways of

extrapolation yield B_:g -4/9 = 0.44(4) versus 0.54(2) in the continuum limit. The

uncertainty in the form of extrapolation to use is at present the largest source of

error in the data. Preliminary analysis suggests that the corrections in staggered

fermion data are O(a2). This will be checked by improving the statistics at/3 = 6.4

and doing another simulation at say/3 = 6.6.

4. Extrapolation in mq: The K ° cc,nsists of a d and _ valence quarks. In our cal-

culations the values of BK is read off from a simulation in which the two quarks

are almost degenerate, say both with mass ms2. We have done some tests by

: _ying the two quark masses m the range m3/3 - 3ms to check for effects of

using non-degenerate masses. So far our conclusion is that these are at best a few

percent. Going to smaller masses becomes incIeasingly harder as it requires higher
statistics and a larger lattice, but otherwise the calculation is the same.

5. Quenched approximation: Two independent calculations have been done lattice

generated with 2 flavors of dynamical fermions [19] [20]. The quark mass in ttle

update is _ m,. The results, though preliminary, are consistent within errors with

the quenched data. To improve upon this first check we do need to study the effect

of tuning md to its physical value both in the update of lattices and in the mass

used for the valence quark propagator. Our present estimate is that quenching

may introduce only a 5% correction, making BK one of the first quantities for
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Fig. 3. The result for B_- as a function of the lattice spacing a. Tile factor g-4/9 is the

relative scaling factor for the different values of/3.



which we expect lattice QCD to yield accurate results.

6. Operator renormalization: The 1-loop calculation relating the lattice operator to

the continuum has been done, and the upshot of it is that including this factor

reduces B a" by about 6- 7%.

Finally, to make contact with phenomenology we have to remove the dependence

on the renormalization point # at which the effective theory is defined in the continuum.

The # independent parameter is B_( = BKa-_ 2/9, and for f_ = 6.0 the correction factor is
-219as - 1.34 with roughly a 10% uncertainty coming from the uncertainty in the lattice

scale [21]. Our current estimate is BK -- 0.68(10), where we use the O(a 2) extrapolation

for BR" data and only include the operator renormalization factor as the other sources of

systematic errors are small and less well determined.

To conclude, I hope I have convinced you that lattice QCD calculations can play a

very important role in our understanding of the standard model. The quality of results will

be systematically improved with better numerical techniques and with bigger and faster

computers. Therefore it is appropriate that I end this talk with a brief report on the status

and performance of our QCD codes on the CMh.

8. Optimization of QCD codes on the CMli

We have finished phase one of the development of QCD codes on the CMh. The

overall strategy is to keep ali the control structure in CMFortran under the SIMD pro-

gramming environment. We isolate the computationally intensive portions of tile code

and convert them to CDPEAC. This way we are able to preserve modularity in order to

implement changes in the algorithm and to add new measurement routines very quickly.

The two key operations that capture the essence of QCD calculations axe

A=B+C,D
(8.1)

A = B + C, cshift(D)

where A, B, C, D are 3 x 3 complex matrices and the cshift is by 4-1 lattice units in

one of the four directions. (Same amount of communication is done in ali four directions).

The lattice size being used is 32a x 64 and we use single precision variables. Thus a

typical array layout is A(: serial, : serial, : news,: news, :news, : news) with dimensions

A(3, 3, 32,32, 32, 64). At present the second operation is broken up into two parts

trap = cshi ft(D) (8.2)
A-B+C,tmp
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as there is no way to overlap comnmnications with computations at the CMF level. The

key lessons learned from optimizing the above two kinds of primitives are (the comparisons

were made using CMF version 2.0. A number of inefficiencies have been fixed in version

2.1 but we have not yet done comparison timings under it):

1. There is no discernible performance penelty for calls to CDPEAC routines. So the

code can be made modular and portable by converting small compute intensive

parts into CDPEAC subroutines.

2. We vectorize over the sites. Ali loads and stores are joined with arithmatic oper-

ations, so we reload variables as necessary. This allows us to optimize register use

to get a long vector length.

3. Each time we load a different array, say B after C, we pay a penelty of 5 cycles

due to DRAM page faults. Since data elements in a vector load are contiguous in

memory, there is no penelty within the vector operation. The DRAM page faults

reduce the maximum possible speed from 64 to 50 MIPS/node. Other forms of

data layout do not provide any significant improvement in performance and we do

not recommend hand tuned layouts as they make the code much more complicated

without any gain in speed.

4. For on node calculations we sustain _ 50 Megaflops/node for multiples or adds

and 100 when we can chain multiply with add. Thus we are able to get optimal

performance with very simple vectorization and data layout strategy.

5. By writing matrix multiply in CDPEAC we avoid single-precision loads and stores

(this constitutes the bulk of the factor of 3- 5 performance gain over CMF2.0)

as complex numbers are double word aligned. Single stores should be avoided

whenever possible.

6. The cshift operation is slow due to off-node communication speed and because it

does unnecessary memory to memory transfer of on-chip data. In SIMD mode

the unnecessary moves can be avoided only by combining cshift with the matrix

multiply. Also, part of the on-VU arithmetic can be done while the off-node data

is in the network. This optimization step requires writing what is essentially a

stencil in DPEAC, and we are currently implementing this with help from staff at

Thinking Machines.

In conclusion, it is clear that to develop an optimizing CMF compiler is hard and

performance affecionados will have to program at CDPEAC level for possibly the complete

lifetime of the present architecture. Therefore, I have not discussed any of the inefficiencies

of CMF that are removed by writing in CDPEAC. For those who are willing to write in

CDPEAC there is additional reward as the CM5 is a stable high performance massively
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parallel computer.
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