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Abstract

The spectrum of ion cyclotron emission (ICE) observed in tokamak experiments shows
narrow peaks at multiples of the edge cyclotron frequency of background ions. A possible
mechanism of ICE based on the fast Alfvén Cyclotron Instability (ACI) resonantly excited by
high energy charged products (a-particles or protons) is studied here. The two-dimensional
ACI eigenmode structure and eigenfrequency are obtained in the large tokamak aspect ratio
limit. The ACI is excited via wave-particle resonances in phase space by tapping the fast ion
velocity space free energy. The instability growth rates are computed perturbatively from
the perturbed fast particle distribution function, which is obtained by integrating the high
frequency gyrokinetic equation along the particle orbit. Numerical examples of ACI growth
rates are presented for TFTR plasmas. The fast ion distribution function is assumed to be
singular in pitch angle near the plasma edge. The results are employed to understand the

ICE in Deuterium-Deuterium (DD) and Deuterium-Tritium (DT) tokamak experiments.

*Permanent address: Troitsk Institute for Innovative and Fusion Research, Troitsk, Moscow region, Rus-
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I. INTRODUCTION

New observational results of Ion Cyclotron Emission (ICE) on TFTR»? and JET3* (see
also references contained therein) near plasma edge have been reported recently. The mea-
sured ICE frequency spectra in Deuterium-Deuterium (DD) and Deuterium-Tritium (DT)
discharges show peaks at multiple harmonics of deuterium cyclotron frequency lw.p (and/or
harmonics of tritium cyclotron frequency- lw.r for DT) evaluated at the outer periphery of
the plasma. The width of each peak is very narrow with Aw/w < a/R and | < 10, where
a and R are the minor and major radii of the tokamak plasma, respectively. The results
indicate that ICE is localized spatially near the plasma edge, and there is strong evidence
that ICE is driven by charged fusion products. A linear correlation between the ICE power
and neutron emission rate over six orders of magnitude was observed in JET.? ICE spectrum
is more complicated in TFTR. In ohmically heated DD discharges, a different set of lines
in the ICE spectra, corresponding to the odd deuteron harmonics, w = (2! + 1)w.p, were
observed. For higher frequencies around w = 10w,p a broadband emission was also observed.
The ICE spectrum intensity was found to be proportional to the evolving neutron emission.!
In TFTR DT discharges,?2 ICE spectrum was observed at the initial stage of NBI, with
ICE peak frequencies corresponding to the a- particle (deuterium) edge cyclotron frequency.
During the steady state NBI heating the ICE spectrum presents a rather complicated picture
of the peaks located at tritium and/or deuterium cyclotron frequencies. These observations
also show a correlation of ICE intensity with the neutron emission rate. Thus, the ICE can
be employed as a diagnostic tool to investigate the properties of fast ion population and the

plasma, at least near the plasma edge.

Recent theoretical investigations3 considered ICE to be the Alfvén Cyclotron Instabil-



ity (ACI) driven by fast charged fusion ions which are in cyclotron resonance with the fast
compressional Alfvén wave. In papers®” the instability was studied in the uniform plasma
approximation. In papers®® the two-dimensional eigenmode structure was obtained in the
large aspect ratio limit (¢ = a/R < 1), but a local analysis of the wave - particle inter-
action was performed. The possibility of exciting ACI with very low fast particle density
was demonstrated. However, this theory cannot explain the instabilities at low cyclotron
ha,rmonic‘ frequencies, especially for the DT case with v,a9/v4 =~ 1, where v, is the a-particle
birth velocity, and v, is the Alfvén velocity. One overly restrictive condition for the uniform
plasma theory®7 to be correct, requires that the instability growth rate v > wy,, where wpq
is the a-particle bounce frequency. This condition requires much higher a-particle density
than typical experimental values near the plasma edge.

The theory of cyclotron thermonuclear instability was developed earlier!® (see references
therein). It included the drift motion of fast particles, but the fast particle finite orbit width
was assumed negligible in comparison with the radial wavelength. The analytical theory
reviewed in!® cannot be applied directly to the experiments. One reason is that the radial
excursions of fast particle orbit in TFTR and JET are comparable to the minor radius. The
second reason is that the final growth rate expression contains high bounce harmonic reso-
nances and requires numerical evaluation due to complicated, nonlocal resonance condition
along the particle orbit.

In this paper we will consider the excitation mechanism of ICE based on ACI driven by
fast particles. Qur aim is to develop a two dimensional formalism for fast particle - com-
pressional Alfvén wave interaction and to show that ACI can be unstable to explain the ICE
observation in TFTR and JET experiments. The structure and the spectrum of compres-

sional Alfvén eigenmodes are obtained by neglecting ion FLR effects and plasma pressure in



the large aspect ratio limit. The growth rates due to fast ions are computed perturbatively
from the perturbed fast ion distribution function, which is obtained by integrating the high
frequency gyrokinetic equation along the particle orbit. The equilibrium fast ion velocity
distribution function is asumed to be singular in pitch angle.

To excite the ACI the growth rate due to fast ions must be higher than all dampings due
to thermal electrons and ions. To minimize such dampings and to find the most unstable
eigenmodes wé will mainly consider modes with small parallel component of the wave vector
ky in comparison with perpendicular component k;. Electron Landau damping can be
avoided by choosing kj < w/vr., i.e., the wave phase velocity is higher than the electron
thermal velocity.81! Thermal ions can contribute to significant cyclotron damping at w/we ~
1. However, the thermal ion damping can be minimized for eigenmodes that are radially
localized near the plasma edge, where the thermal ion density and temperature are small. At
higher cyclotron harmonic frequencies the thermal ion damping is exponentially small. We
also note that in tokamak devices such as TFTR or JET the fast ions have radial drift orbit
excursion comparable to the minor radius. It leads to high anisotropy in their velocity space
distribution which provides free energy to destabilize the ACI. The velocity space anisotropy
of the a-particle distribution is a function of the a-particle source gradient and is higher near
the plasma edge.'® Thus, radially localized eigenmodes located in the region of high velocity
space anisotropy and large fast ion population will be most easily excited. Such eigenmodes
are responsible for the measured ICE spectrum peaks.

The paper is organized as follows. In Sec. II we present a two dimensional eigenmode anal-
ysis for compressional Alfvén eigenmode structure and eigenfrequency, and a perturbative
analysis for fast particle contributions. In Section III the kinetic fast particle contribution

is obtained in a WKB approximation by solving a general frequency gyrokinetic equation.




Sec. IV deals with numerical calculations of ACI growth rates using the perturbative method.

A summary is given in Sec. V.

II. COMPRESSIONAL ALFVEN WAVE DISPERSION

A. Eigenmode equation

We will look for electromagnetic modes in the ion cyclotron frequency range, and the
compressional Alfvén wave is a possible candidate. To obtain the compressional Alfvén
wave eigenmode solution, we neglect the fast ion kinetic effects and consider the model of
inhomogeneous, magnetized plasma in a simple toroidal configuration with a circular cross
section and large aspect ratio. In the absence of kinetic contribution from wave-particle

interactions, the eigenmode equation is determined by the cold plasma dispersion relation

2 _ 52
k + €3, (1)
ke
where
2
_w _wp/c®
61——62611— 622—2 =1
2 2 2
W W, w pi/c
€ = —1—€1g3 = 1—€y1 = —_— e ————

we and wy; are the cyclotron and plasma frequencies of ion species i, k is the wavevector,
and ¢; are elements of the plasma permeability tensor without kinetic contribution. The

perturbed electric field can be presented in the form E = (E, E,, E3) , where

kJ_EE k, xE
k. - ki

where B is the equilibrium magnetic field. The polarization is given by the relation

Ey = ,E;=b-E,b=B/B, (2)

Ey=F 3
1= 'zk“_e1 (3)




The parallel electric field of compressional Alfvén wave will be neglected.

To obtain the compressional Alfvén wave eigenmode equation we consider the perturbed
parallel magnetic field in the form By = By(r,8) exp[—i(wt + nyp)], where 8 and ¢ are the
poloidal and toroidal angles, respectively, r is the minor radius of the magnetic surface. B“

is related to the perturbed electric field through the equation

~ Ck_g_Ez
B” = o

(4)

The equlibrium magnetic field is chosen as B = ByRy/(Ry + rcosf), where By and Ry

are magnetic field and major radius at the plasma magnetic axis, respectively. Defining

k) = —ib - V1n B we obtain the differential form of the dispersion relation as
1 8 62
V2 + _5W]B = [k + e — kf By, (5)

where V2 = 1/r(8/0r)r(8/dr). For w% < w® and kf < k3, Eq.(5) reduces to

1 82

V2 + = —=]B) ~ _h (6)
2 802 ” - vi ”’

We will use Eq.(6) to study ACI eigenmode even for w? ~ w?. This equation has been
studied in cylindrical plasma approximation.®!? In toroidal plasmas the eigenmode equation
has been solved® in terms of an eikonal representation using the small parameters 1/m and

€ = r/ Ry, where m is the poloidal mode number.

B. Radial eigenmode structure

In cylindrical plasma approximation the perturbed quantities can be presented in the
form B = B(r)exp|[~iwt — inp + imf)], where ¢ = z/R and z is the coordinate along the

plasma cylindrical axis. Then the eigenmode radial structure is described by the following




equation:
(VZ-V(r)B(r) =0, (7)

where the potential is given by V(r) ~ m?/r? — (w?/v%(0))(n(r)/ne), n(r) is the plasma
density with the central density ng, and v%(0) is evaluated at the magnetic axis with the
vacuum toroidal magnetic field. If V(r) forms a potential well, localized solutions can exist

inside the well. For a plasma density profile of the form
n(r) = no(1 - r*/a?)", (8)

and if m > 1, a potential well can form at r = ry, where r2/a? = 1/(1 + 0;) — A%/a?,

and A?/a? = /20;/(1 + 0;)/[m(1 + 0;)]. Then Eq.(7) can be approximated as a harmonic

oscillator equation which admits localized solutions. The lowest most localized eigenmode

solution has the eigenfrequency w? = (m?v%(ro)/r3)(1 + v/2(1 + 0)/0;/m) and
B(r) = bexp[—(r — ro)?/A%. (9)

Note that in the potential well region the solution (9) is consistent with the ordering

0B _vmB m
o~ r ’V(T)N;'E'

(10)
For o; < 1 the eigenmode is localized near the plasma edge. Thus, to form a potential well
V(r) near the plasma edge, it requires a rapid variation of the plasma density profile near
the plasma periphery (see Fig.1).

To include the toroidal effects in the eigenmode equation, we note that w? /v = (w?/v%(0))
(n(r)/no)(1 + ecos#)®. For high-m modes we consider 8°B;/86 > r29%B,/0r?, which is
satisfied by the cylindrical orderings, Eq.(10). Then, Eq.(6) reduces to

l62§,| _w? on(r)
r2 892~ v3(0) ng

(1 + €cos6)?B,. (11)



To the lowest order in (¢/m) Eq.(11) admits a solution in the form of
By = B(r,8) exp[-iwt + i9], (12)

where S = —np + m(# + esin §)8 and B(r,6) is a slowly varying function of r and 6.

For ¢ ~ O(1/m) and considering the cylindrical ordering, Eq.(10), we have 85/0r <
d1n B/dr. Substituting Eq.(12) into Eq.(6), we obtain an equation for the envelope B(r, 6)
which is identical to the cylindrical Eq.(7).

For larger ¢ we consider

B(r,0) = Z Bi(r)e”, (13)

and require |/| < m. From Egs.(6),(13), and (12), we obtain the recurrence relation for the

coefficients B,(r)

€2 12 2ml  m2é m2. . .
Vi-V(r)(1+ 5) i Rl el B =éV(r) - —TE-](B,-Q + By4)

72 “or?
m A - » - m o - A
+€§((l - 1)31_1 + (l + 1)B[+1) + GV(T)(Bl_l + Bl+1) - 675;(31_1 - BH-I)- (14)

Assuming € ~ O(1/m/¥) and v > 2 so that me® > 1 and requiring the series, Eq.(13), to
converge, B; must be a decreasing function of |I|. For [ ~ O(1) the leading terms in Eq.(14)
are proportional to m2e? ~ ¢ 2~V and all B, are of the same order. For larger [ with
| > O(me?) we obtain B ~ m€231_2/21. Thus, B; < Bj_, and the series (13) converges.
Therefore, the series (13) contains B; with | < me2.

Since l§ < S the phase in B can be neglected. However, we need to calculate B, from
Eq.(14) for I < me?, which requires extensive numerical calculations. In the following we

will approximate B with the cylindrical radial eigenmode given by Eq.(9).



C. Perturbative analysis

Using Eq.(4) the eigenmode equation, Eq. (5), can be rewritten in terms of the perturbed
electric field and is given by

18 €

Ve ITBr = g +Hi - gz'*—

- 61]E2 (T)Ez. (15)

Considering resonance contributions to Eqn. (15) due to all plasma species to be small, we
can make use of the perturbation method. We expand perturbed electric field and eigenfre-
quency as E; = EY + §E; and w = w° + éw, where §E; and éw are small kinetic corrections
to the MHD eigenmode and eigenfrequency solutions. These kinetic effects are described
by the antihermitian part of the permeability tensor é!!° for each species j, which will be

presented in Sec.IIl. Then, from Eq. (15) we have
2
. €
v = Im(bw) ~ —ZIm/Ez[ 225112":2 + Eﬁl@ﬁf—)_ + eﬂz]Egdar/
/E 2i Ow?éy € _l_awz@u
2

2
+ 2
w? Ow k” -6 w? Ow

(kf — €1)?
Taking into account Eq. (3) and neglecting parallel electric field, Eq. (16) can be rewritten

(1+ )|E2dr.  (16)

as
me/E* A Ed%//E*-—--a-‘if Ed’r ~

~ ~—2—21m/E1€311E1d37//E1 | €11 | d’r. (17)
J

III. INTERACTION OF HIGH ENERGY PARTICLES WITH
COMPRESSIONAL ALFVEN WAVE

In this section we will use a WKB eikonal representation for perturbed quantities

¢ > (4, 0)e™ SV g ~ (VS = ick, (18)
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where 1 is the poloidal magnetic flux, the eikonal S will be chosen explicitly in Sec.IV, and
s is the coordinate along the magnetic field so that B - V = Bd/8s. The perturbed vector

and electrostatic potentials are chosen as
E=-Vé+(iw/c)A,B =V x A. (19)

Then the fast particle contribution (subscripted as a) to the antihermitian part of the per-
meability tensor can be expressed through the resonance part of the perturbed distribution

function:
/E" e Edr = A /E*- jAdér = ——-—e,, /E" Vo frdiud®r. (20)

The perturbed fast particle distribution function can be expressed as (we delete the subscript

a)

;_eof e df(, v\ Axb
f_m6£¢+Bm8u<¢ c)+ B Vs

< e Of YAy LBy dJi :
+ Y (Qz ~ Bm s [(¢’ - ——C-—) Ji— k. dz exp (iL1), (21)

I=—co

where f is the equilibrium distribution function, J; = Ji(z) is the [ —th order Bessel function
of the first kind, z = kyv, /w,, 4 = v3 /2B is the magnetic momentum , £ = v?/2 is the
particle energy, Li = k; X v-b/w, — I8, § is the particle gyrophase angle between v, and
k,. The nonadiabatic part of the perturbed distribution function is contained in g;, which

is governed by the general frequency gyrokinetic equation?-1®

vuAu) Ji— vL By dJi

(w —WwWp — lwc)gl = %4((:}1 - wf)[(d’ - Ck_L dz ’

(22)

where

ds
wp = -a? = ’U”b VS + me/.LB/T + wkmvﬁ/T,
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wp =cT/eB*k, -b x VB, w =cT/eBk, - b x K,

. T, 8 lud r_ T
G = ~—(wgg + Baﬂ)lnf, Wi ==k, bx Vinf, (23)

K¢ is the magnetic field curvature, and T is the temperature of given species. Equation (22)

can be rewritten in the form

d . .
(a—t- + ilwe)gr = —iX. (24)

where X is the rhs of Eq. (22). We integrate Eq. (23) along the particle characteristics!®

with the casuality condition that at ¢’ = —o0, g; vanishes, and obtain
alt) = —i /_' R exp(—iwt +iS(s, 9, 0) +i [ * ledt", (25)
where the integral is taken along the unperturbed guiding-center trajectory. Let
W(t) = /0 (wp — @p + lw, — l@)dt (26)

with (77) = §dt(...)/m taken along the particle orbit, 7, = 2n/ | wp | and wy, = 27(§ ;‘fT’I]*l.
Then

at) = —i /_‘ 3} dt' X exp [iW(t') — iW(t) — i(w — @p — l@.)(t' — ). (27)

Note that X' exp[iW (¢')] is periodic in time with the bounce period and can be decomposed!’

as:

X'exp (iW(t") = Y X, exp (ipust’), (28)

where )2,, = X exp (iW(t) — ipwst).
For the nonadiabatic part of the perturbed current [see Eq. (20)] we have after gyrophase

averaging

4= eZ/vldvldv“Gﬁ‘gz, (29)
]
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where the components of the vector G) are v Ll.f;(z) [z, v 0J1/82z and vy J;. Substituting Eq.

(29) into Eq. (20) and integrating Eq. (27) we have

* I
/E‘ A By = 4ime Z/d rvldvldv”E G| exp( W (L) + zpwbt)X (30)
— @, — @p — pwy

To make this equation mcce symmetric we express

wdy B vnEs

1

6= B it (31)
where ky/k, < 1 is assumed. Then we have
- ief

Xp = ﬁ(“’l )Flm (32)

where Fi, = exp (iW(t) — ipwst)Gy - E and G; = {v,wli(2)/(wez);iv18J1/82;2yJi}. Here
the equilibrium distribution function is assumed to be a function of the particle’s integrals
of motion. Returning to Eq. (30) we note that the integration is taken over five-dimensional
phase space. We will extract the fast integration along the unperturbed particle trajec-
tory associated with the variable ¢ in Eq. (30). We transform integration variables from
R,Z,p,vy,v to P,,%,p,u,E, where

eY(R, Z)

P =
¢ 27 me

- VR (33)
is the longitudinal adiabatic invariant. Then we have

vy RdRdZ dpdv, dv| = [ dt/)dPt,,dcpdudE , (34)

o R( 4 I
where we assumed v =~ v,. The particle orbit motion is associated with the variable 9, so
that dt = [2% 95 o L1+ 'JJ})] 1dy. Thus, taking into account Eqs. (32) and (34) and Eq. (30)
we result in

8 ezB (~ T)F;p

lwc - Wp — pwb

f E*. ¢4 Ed’r = — / dP,dudé f, Z (35)
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where Fy, = exp (iW(t) — ipwit)G] - E. A similar expression was analyzed in!? in the limit
of zero banana width and with Fj, computed for well trapped and passing particles.

The p summation can be performed in a general form. First, the resonance term is

expanded as

P
— @, — @p — pws

R Y P,y E) = (w— @, — @p — pwp) ! = — imé(R). (36)

Retaining only the resonance contribution Eq. (35) is integrated over . Then we make the

following approximation

> - — [dp - / L (37)

where p is considered as a function of y and is determined by p(p) = (w — l@, — @p)/w.
The approximation (37) is reasonable if pdp/0u > 1, which is valid because we consider
high frequency modes with w =~ w, > ws. Finally employing Eq. (37) and bearing in mind
that | 9p/8u |/| BR[O | = 1/| ws | we obtain:

[E & B =iy

2 2
ir’¢’B / dP,dEd f;” Fl*(& — wl)Fy, (38)

where we have made use of the bounce resonance conditions and the definition

1 . :
Fyp = py f dtexp (iW () — ip(n)wpt)Gi - E =

= —l-fdtexp(i /t(lw +wp —w)dt')\G;-E = F (39)
T 0 c D 1 = I

The expression (38) is still too complicated for analytical analysis. To further simplify F;
we note that the argument in the exponential function is much larger than =, which means
that the exponential function is fast oscillating except near the region where lw.(0(t1)) +

wp(f(t1)) — w = 0, where 6(t,) is the poloidal angle of the particle position on the orbit at
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time ¢;. Around this point we have

i [l +w —ulat =[] Jde i [ Jat = oo +i [ 1. Jat (40)
b e D o tl... 01 tl... y
where
[t p_.d (t—t)® . d? (t—1t)°
th[...]dt_zdt(z%wp) izl +wp) Tt 4 (41)

= f:f [lwe + wp — w]dt', and tp corresponds to the radially outer most point of the
particle orbit. The same expansion is valid for any resonant point. With a given set of
variables P,, £, i there are two types of particle orbits which correspond to different sign of
parallel velocity o = v/v. Assuming up-down symmetric particle orbits there can be two
resonance points at poloidal angles 6,., and —6,., determined by the resonance condition
lwe(Ores) + wp(bres) — w = 0 for each 0. We will show the calculation procedure for the case
when the first derivative term in Eq. (40) is larger than the second derivative term. For

trapped particles there may be four resonance points. Then we have

1 ; G, E, Gy -Eq4
F — . 1127131 1(112 * 3(103 1(134 I*
1= ~Gi Eqe (Il+ G E° I)+ —Gj - Ege (I +—————GS B ) (42)

where we denote the resonance points 1,3 in the upper half cross section for 0 = +1, -1,
respectively, and the points 2,4 in the lower half cross section for ¢ = +1, —1, respectively.
Also, I 3 = [ expli(d(lw, + wp)/dt)13t?/2]dt. Then we can write
F'F = 2 Z G- E!G; E;+ —= 2 Z G! - E;G; - E,, (43)
T i=12 T i=34
where we have dropped terms with e¥(®iitex) § = k j = |, which correspond to uncorrelated

phase and give zero contribution after averaging over all groups of particles, and obtained

d
I}; = 8n/| (—iz(lwc + wp) |13. (44)

9
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Similar expression can be obtained for uhtrapped particles, with the first term in Eq. (43)
for passing particles with o = 1 and the second term for 0 = —1. Summing over the parallel

velocity direction o, we arrive at the following expressions:
F,“Fz — (2Tb)—2 Z I? (GI* .E*G . Ela,,. +G*.E*G- El-an.) , (45)

where

8w

P= {l d(lw, + wp)/dt P +C[d2(lw, + wp)/dtZ2}1/3

(46)

with the subscripts dropped, and C = 2.6943. Also, to avoid singularity at 6,., = 0 the next
order term from the expansion (40) is included. The coefficients Fi*F; determined by Eq.
(45) contain the information about the wave-particle Doppler shifted cyclotron resonance.
Namely, the two terms in the round brackets gives the electric field value at the resonance
point and the factors G’ and G appear from gyroaveraging. The term I has the dimension
of time and determines how long the particle was in a resonant layer.

In summary, the ACI growth rate due to fast particles is given by Eq. (17) with the
antihermitian tensor given by Egs. (38) and (45). These expressions take into account the

high frequency wave-particle resonance in phase space along the particle orbit.

IV. ALFVEN CYCLOTRON INSTABILITY

A. Fast particle destabilization

In this section we demonstrate the possibility that ACI in tokamak plasmas can be excited
by a small group of high energy particles (a-particles or protons). From Eq. (3), E; is smaller

than E; for w > w, and can be ignored. Thus the perturbed electric field can be expressed
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in the form E ~ F;,0,0, where
E\ = Eyexp|—(r — 10)?/ A% exp[—iwt — inp + im(8 + esin b)], (47)

and o and A are given in Eq. (9). Then k; = m/qRy — n/R,k. ~ mR/rRy. For § =
—ny + m(0 + €sin §) the magnetic drift frequency wp, defined in Eq. (23) is given by

= (mR/Ry — nq)8 — nv4o(V — qV4)

~k||\/_\/1-—uB/£+zan £ (——1)( g?) (48)

Wead

The fast particle driven growth rate can be obtained from Eqs. (17), (38), and (45) by
neglecting the spatial gradient drive term, which is negligible in the high frequency regime,

and is given by

3
Yo w v2e,cB 2ol [0 | lwea O
Jo I il - |
Vew  WRWE, \/TATGRGE] & / P dEdul By =5 \5g * e o) (49)

where we assumed for simplisity that é; ~ w?/w? and w, is the plasma frequency. The
sign of the growth rate depends on the £ and p derivatives of the distribution function. We
mentioned earlier that the plasma inhomogeneity and finite banana width can lead to large
velocity space anisotropy of a-particle distribution. The anisotropy is higher near the plasma
periphery, where the spatial gradient of a-particle source is higher.!? A limiting case of the
distribution function, a delta function in u which represents only the contribution of the
barely trapped particles, is considered. The orbits of the barely trapped particles are shown
by curves 1 and 2 in Fig.2. Such a group of particles have the maximum orbit deviation from
the magnetic surface and their fusion source is maximum in comparison with other groups.

The a-particle distribution can be expressed as

fo = malr) 108 (E52 - o) (50
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where f,(v) represents the velocity distribhtion, and A is the pitch angle of barely trapped
particles. Ag can be obtained from the equation (eq/27mqc)Y(R, Z)|r=AoRo,2=0 = P, (com-

pare with Eq.(33)). Integrating by parts with the distribution (50), Eq. (49) reduces to

Ja _ @ _v2eucB ¥ [P, x
Wea WEwWE, VTATOROE] 45 ¢

E [0 lwe O
X {F(fz) - F(&) - /dgn“f"f% [55 + = .5;] I

2 z/‘l-]zz
Ej -

} TN
ju=~A0€/Bo

where F = (1 + lwea€/(wBu))afo - IPE}piJ} |22, €12 = £ 2(P,) (€1 < &) are the energy
limits determined from resonance condition at fixed P,. The differential operators in Eq.
(51) operate on all quantities to their right hand side. These quantities are taken at resonance

point and therefore are functions of P, and £. The resonance condition is
W — lwea(r(8),0) — wp(r(8),6) = 0, (52)

where 7(0) determines the a-particle orbit. In comparison with the local theory®? Eq.
(561) have additional terms proportional to derivatives of I? and E?. One can show that
the I? derivative terms give small contribution, while the E? derivative terms are always
destabilizing and are comparable with the uJ?/2? derivative terms from the local theory.

Note that the a-particle growth rate is linear in a-particle density.

B. Damping mechanisms and ICE spectrum

To excite the ACI the fast ion drive must be higher than all dampings due to thermal
electrons and ions. To obtain the most unstable modes we have to find a condition when the
damping is smallest and the drive is largest. To minimize the electron damping we choose the
eigenmodes with the wave phase velocity higher than the thermal velocity of electrons,®*!

i.e., ky <« w/vr., so that the electron damping is exponentially small. Ion cyclotron damping
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can be significant if ions are in cyclotron resonance with the wave at | = w/we < b inside
the plasma core. Therefore, eigenmodes localized near the plasma edge and with frequency
corresponding to edge background ion cyclotron frequencies can be weakly damped due to
low ion density. For higher cyclotron harmonics with | = w/ws > 5 the thermal ion damping
is exponentially small. The accurate calculation of thermal plasma damping mechanisms is
beyond the scope of this paper.

For simpﬁcity we will present the growth rate calculation for the ACI eigenmodes with
negligible thermal plasma damping and with eigenfrequencies corresponding to the multiples
of deuterium (a- particle) cyclotron frequency. Such ICE spectrum was experimentally
observed in DD experiments and in the initial stage of DT experiments in TFTR when the
tritium population is small. We will show that the fast particles can destabilize the ACI even
when the ACI eigenfrequencies are different from the fast particle cyclotron frequency. They
can be in cyclotron resonance due to the finite Doppler shift in the resonance condition (52).
For example fast protons can drive ACI with frequencies w = wep(2!+1) = wep(l +1/2). The
ICE spectrum peaks can be also related to the tritium cyclotron frequencies. The results

could be useful in estimating the ratio of tritium to deuterium densities.

C. Numerical results

We present numerical examples of ACI growth rates for TFTR plasma parameters!®:
Ro = 2.52m, a = 0.9m, the safety factor profile is given by ¢(r) = qo/ [2(—‘:53(1 - 0.66r2/a% +
.187*/a*)r?] for r < a and is a parabolic outside the plasma, go = 0.85, the plasina density
is n(r) = 0.5 x 10*(1 — r2/a?)%2cm ™3, the vacuum toroidal magnetic field is By = 5T, the
central a-particle density is 0 = 2 X 10'%m =3, the central proton density is np = n40/50,

and the fast particle density profile is 14, = Tiapo(1 — r2/a?)>7. The position of the plasma
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column in the vacuum vessel is shown on 'Fig. 2 as dotted circle.

In order to excite the ACI instabilities it is required for the eigenmodes to be localized
in a potential well very close to the plasma periphery. This can be achieved by employing
a density profile with very sharp variation near the plasma edge (see Fig.1). Choosing the
parameter o; = 0.2 so that ry ~ 0.9a. The plasma with such sharp density variation near
the plasma edge can be obtained in the initial stage of typically TFTR discharges.® The
frequenciés of the ACI eigenmodes are assumed to be equal to multiples of the edge deuterium
cyclotron frequency. The poloidal mode number m is calculated from the expression for
eigenfrequency (Sec. B). The toroidal mode number is varied to find the most unstable
mode with the constraint ky <« k1. Due to the finite Doppler shift from the magnetic drift
frequency in the cyclotron resonance, Eqs. (48) and (52), a-particles will resonate with the
wave inside the plasma while thermal ions can be in cyclotron resonance near the plasma
edge. The dashed curve between point 1 and 2 in Fig.2 presents the resonance line for the
barely trapped a-particles at the fundamental Doppler shifted cyclotron resonance.

The a-particle driven ACI growth rates are shown in Figs.3 (a) and (b) and the protons

“driven ACI growth rates are shown in Figs.4 (a) and (b) with a velocity distribution in the

form:

4B, ’Uo)
B (vr- +OvT+)ﬁ Z exp ( z. ) n(£(v — v)), (53)

fo=

where vp_ is an adjustable parameter, vry = \/ 2T;/(my + mg), m; and m, are the masses
of reacting nuclei, T} is their temperature which was assumed to be 50keV” for beam heated
plasma, and 7n is the Heviside step function. Note that the parameter vr_ is critical for the
ACl instability. For a-particles the instability disappears at vr.. > 0.25v49, while for protons

the instability occurs at vp_ > 0.8v4. The slowing-down distribution is stable due to high
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fast particle Landau damping. The destabilization from the velocity anisotropy term is not
enough for instability. To drive ACI unstable one needs additional drive due to positive
energy gradient. We note that the distribution given in Eq. (53) can be created at the initial
stage of discharge after the fast NBI starts. The velocity spread is due to the Doppler shift
effect associated with the velocity spread of the thermal fusion ions. The velocity distribution
(53) can also be a result of anomalous fast particle loss caused by toroidal magnetic field
ripples, or plasma instabilities such as the TAE, the fishbone, or other MHD modes. As
a result of such losses the fast particle confinement time can be shorter than the slowing-
down time, and the velocity distribution can maintain a positive gradient. An experimental
evidence has been pointed out in® that the Edge Localized Modes (ELM) activity and the ICE
amplitude are correlated; small amplitude ELMs do not disturb the ICE spectrum, while
high amplitude ELMs can eliminate ICE completely. This related to the anomalous fast
particle loss by ELM activities. Small ELM amplitude only reduces the fast ion confinement
time to less than the slowing down time. High amplitude ELMs scatter almost all trapped
fast particles out off the plasma. After the trapped particle population replenishes near the
edge, the ICE appears again.

The a-particle birth velocity is different from the proton’s: v4 ~ v =~ 1.3 x 10%m/sec <
Upo ~ 2.4 x 10%m/sec. From Fig. 3(a) one can see that the instability disappears for
[ > 6 because of a decrease in the destabilizing contribution associated with the spatial
derivative of EZ. This term is destabilizing because of two reasons. The first reason is
that the region with positive derivative of E? is closer to the center than the region with
negative slope of eigenfunction, the second is that the a-particle density profile is centrally
peaked. For higher cyclotron harmonics the region where particles are in resonance with

the wave is smaller and the corresponding curve of resonance points (curve 1-2 in Fig.2)
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moves out towards the plasma edge. Thérefore, the positive spatial derivative of E? gives
smaller destabilizing contribution to ACI. For protons the Doppler shift is higher and the
reduction of the resonance domain does not lead to such effects. In addition, the value
z =k, v, [(lw.)(~ 2) is higher, which makes the local contribution to ACI (~ uJ}/2%) more
destabilizing.

From Figs. 3(a) and 4 (a) we see that the proton growih rates are about one order
smaller than the a-particle growth rate. We expect that in TFTR experiments both kinds
of particles contribute to the ACI instability. In Figs.4 ((a)) and ((b)) we show the growth
rate of the proton driven ACI at w = w.p = 1/2w,, as a dashed bar. This instability can be
obtained only at ky ~ kj, which is beyond the validity of our assumptions. But, we should
also note that the electron damping will be small in this case because of small wave phase
velocity and v, > v4. Only trapped electrons with velocity v, ~ v4 can give rise to the

damping, which requires additional analysis.

V. CONCLUSIONS

A two-dimensional theory of compressional Alfvén Cyclotron Instability has been devel-
oped to describe the ICE spectrum observed in TFTR and JET experiments. The final ex-
pression for the ACI growth rate Eq.(38) is determined by the Doppler shifted wave-particle
cyclotron resonance. The source of instability can be any free energy source associated
with fast particle distribution function, namely spatially or velocity space gradients. The
expressions for ACI growth rates were used in numerical calculations in a toroidal plasma
with circular magnetic surfaces. Fast particle resonance contributions resulting from the

two-dimensional eigenmode structure and finite banana width effects are retained. We have
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demonstrated that the theory can describe the narrow peaks at multiples of edge deuterium
cyclotron frequency. The theory requires the ACI eigenmode to be localized near the very
edge of plasma and the velocity distribution function to be very narrow in pitch angle and
sufficiently sharp in velocity gradient with velocity spread for a-particles less than 0.25va0,
while for protons less than 0.8v49. The velocity spread can be understood by taking into
account the Doppler shift effect due to thermal spread of the fusion source ions. Such a
distribution can exist if fast particles are lost before they are slowed down. Such anomalous
loss of fast particles can result from toroidal magnetic field ripple, collisional scattering, or
MHD activity like fishbone, TAE modes or Edge Localized Modes. The correlation between
the ELM activities and the ICE amplitude has been shown in3; the small amplitude ELMs do
not disturb the ICE spectrum, while high amplitude ELMs can eliminate the ICE completely.
This is because small amplitude ELMs reduce only the confinement time to less than the
slowing down time, while high amplitude ELMs scatter almost all trapped fast particles out
of the plasma. After the population of trapped particles replenishes near the edge the ICE
appears again. Note that in the eigenmode analysis we have excluded the region between the
plasma current channel and the wall. In this region the eigenmode has a finite amplitude and
the wave-particle interaction can contribute to stability and should be included. We have
obtained the growth rates only for eigenmodes with frequencies equal exactly to multiples
of the edge deuterium cyclotron frequency. But one also expects that the widths of higher
harmonic ICE spectral peaks should be wider than those of lower cyclotron harmonic cases
because the Doppler shift for protons is larger and the background ion cyclotron damping is
smaller for higher cyclotron harmonics. Such wider peaks can form the background proton
driven signal which should correlate with fusion proton source. This conclusion agrees well

with the observed spectra.!? We have also shown that the ACI with eigenfrequency differ-
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ent from the cyclotron frequency of the fast particles can be driven unstable because the
cyclotron resonance condition (52) can still be satisfied due to the finite Doppler shift. For
example, protons can destabilize the ACI with frequencies w = wi(20 + 1) = wep(l + 1/2),
which may be also related to the ICE spectrum peaks at tritium frequencies. This conclusion

can be useful in estimating the ratio of tritium to deuterium densities.
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Figure 1: Typical radial dependence of the potential V(r) = w?/v%4 — m?/r? on r%/a?, which
forms a well at 7 = ry and r( is determined in Eq. (9) The eigenmode is localized within the

2A width region.

Figure 2: Wall position, plasma boundary (dotted line) and two orbits of barely trapped
particles with different pitch angle. Alsoshown is the resonance curve (dashed curve) between

resonance points 1 and 2 at which the resonance condition (52) is fulfilled

Figure 3: The ACI growth rates driven by a-particles with the velocity distribution, given
by Eq.(53) for a) vp_ = vpy = 0.107v,a9 and b) vr_ = 0.2049, vr4+ = 0.107Tvee. The plasma
parameters are: By = 5T, Ry = 2.52m, a = 0.9m, the plasma density is n(r) = 0.5 x
10*(1 — r2/a?)%2em=3, ¢(r) = %/[ﬁz—,(l — 0.667%/a% + .187*/a%)r?], for r < @ and is a
parabolic outside the plasma, gy = 0.85, and the a-particle density is n.(r) = 2 x 10*°(1 —

T2/02)3'756m_3.

Figure 4: The ACI growth rates driven by protons with the velocity distribution, given by
Eq.(53) and a) vp— = vr4 = 0.058vy and b) vr_ = 0.55v4, vr4+ = 0.058vpg. The first dashed
bar at w/wepeqge = 1 corresponds to the case when kj ~ k. The proton density is chosen

as 7n,(r) = 0.4 x 10°%(1 — r2/a?)*™cm 3. The plasma parameters are the same as in Fig.3.
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