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Abstract

The spectrum of ion cyclotron emission (ICE) observed in tokamak experiments shows

narrow peaks at multiples of the edge cyclotron frequency of background ions. A possible

mechanism of ICE based on the fast Alfv_n Cyclotron Instability (ACI) resonantly excited by

high energy charged products (s-particles or protons) is studied here. The two-dimensional

ACI eigenmode structure and eigenfrequency are obtained in the large tokamak aspect ratio

limit. The ACI is excited via wave-particle resonances in phase space by tapping the fast ion

velocity space free energy. The instability growth rates are computed perturbatively from

the perturbed fast particle distribution function, which is obtained by integrating the high

frequency gyrokinetic equation along the particle orbit. Numerical examples of ACI growth

rates are presented for TFTR plasmas. The fast ion distribution function is assumed to be

singular in pitch angle near the plasma edge. The results are employed to understand the

. ICE in Deuterium-Deuterium (DD) and Deuterium-Tritium (DT) tokamak experiments.

*Permanent address: Troitsk Institute for Innovative and Fusion Research, Troitsk, Moscow region, Rus-

sia, 142092
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I. INTRODUCTION

New observational results of Ion Cyclotron Emission (ICE) on TFTR 1'2 and JET 3,4 (see

also references contained therein) near plasma edge have been reported recently. The mea-

sured ICE frequency spectra in Deuterium-Deuterium (DD) and Deuterium-Tritium (DT)

discharges show peaks at multiple harmonics of deuterium cyclotron frequency lwc_ (and/or

harmonics of tritium cyclotron frequency- lwcT for DT) evaluated at the outer periphery of

the plasma. The width of each peak is very narrow with Aw/w << a/R and 1 <_10, where

a and R are the minor and major radii of the tokamak plasma, respectively. The results

indicate that ICE is localized spatially near the plasma edge, and there is strong evidence

that ICE is driven by charged fusion products. A linear correlation between the ICE power

and neutron emission rate over six orders of magnitude was observed in JET. 3 ICE spectrum

is more complicated in TFTR. In ohmically heated DD discharges, a different set of lines

in the ICE spectra, corresponding to the odd deuteron harmonics, w = (2/+ 1)weD, were

observed. For higher frequencies around w = lOweD a broadband emission was also observed.

The ICE spectrum intensity was found to be proportional to the evolving neutron emission. 1

In TFTR DT discharges, 2 ICE spectrum was observed at the initial stage of NBI, with

ICE peak frequencies corresponding to the a- particle (deuterium) edge cyclotron frequency.

During the steady state NBI heating the ICE spectrum presents a rather complicated picture

of the peaks located at tritium and/or deuterium cyclotron frequencies. These observations

also show a correlation of ICE intensity with the neutron emission rate. Thus, the ICE can

be employed as a diagnostic tool to investigate the properties of fast ion population and the

plasma, at least near the plasma edge.

Recent theoretical investigations 5-9 considered ICE to be the Alfv_n Cyclotron Instabil-



ity (ACI) driven by fast charged fusion ions which are in cyclotron resonance with the fast

. compressional Alfv_n wave. In papers 5-T the instability was studied in the uniform plasma

approximation. In papers s,9 the two-dimensional eigenmode structure was obtained in the

large aspect ratio limit (e = air << 1), but a local analysis of the wave - particle inter-

action was performed. The possibility of exciting ACI with very low fast particle density

was demonstrated. However, this theory cannot explain the instabilities at low cyclotron

harmonic frequencies, especially for the DT case with V,_O/VA_ 1, where V_ois the a-particle

birth velocity, and VA is the Alfv6n velocity. One overly restrictive condition for the uniform

plasma theory 5-T to be correct, requires that the instability growth rate "y>> wb_, where w_

is the a-particle bounce frequency. This condition requires much higher a-particle density

than typical experimental values near the plasma edge.

The theory of cyclotron thermonuclear instability was developed earlier l° (see references

therein). It included the drift motion of fast particles, but the fast particle finite orbit width

was assumed negligible in comparison with the radial wavelength. The analytical theory

reviewed in 1° cannot be applied directly to the experiments. One reason is that the radial

excursions of fast particle orbit in TFTR and JET are comparable to the minor radius. The

second reason is that the final growth rate expression contains high bounce harmonic reso-

nances and requires numerical evaluation due to complicated, nonlocal resonance condition

along the particle orbit.

In this paper we will consider the excitation mechanism of ICE based on ACI driven by

fast particles. Our aim is to develop a two dimensional formalism for fast particle - com-

pressional Alfv6n wave interaction and to show that ACI can be unstable to explain the ICE

observation in TFTR and JET experiments. The structure and the spectrum of compres-

' sional Alfvfn eigenmodes are obtained by neglecting ion FLR effects and plasma pressure in
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the large aspect ratio limit. The growth rates due to fast ions are computed perturbatively

from the perturbed fast ion distribution function, which is obtained by integrating the high

frequency gyrokinetic equation along the particle orbit. The equilibrium fast ion velocity

distribution function is asumed to be singular in pitch angle.

To excite the ACI the growth rate due to fast ions must be higher than all dampings due

to thermal electrons and ions. To minimize such dampings and to find the most unstable

eigenmodes we will mainly consider modes with small parallel component of the wave vector

kll in comparison with perpendicular component k±. Electron Landau damping can be

avoided by choosing kll << W/VTe, i.e., the wave phase velocity is higher than the electron

thermal velocity. TM Thermal ions can contribute to significant cyclotron damping at w/w_ ,-.,

1. However, the thermal ion damping can be minimized for eigenmodes that are radially

localized near the plasma edge, where the thermal ion density and temperature are small. At

higher cyclotron harmonic frequencies the thermal ion damping is exponentially small. We

also note that in tokamak devices such as TFTR or JET the fast ions have radial drift orbit

excursion comparable to the minor radius. It leads to high anisotropy in their velocity space

distribution which provides free energy to destabilize the ACI. The velocity space anisotropy

of the a-particle distribution is a function of the a-particle source gradient and is higher near

the plasma edge. 12 Thus, radially localized eigenmodes located in the region of high velocity

space anisotropy and large fast ion population will be most easily excited. Such eigenmodes

are responsible for the measured ICE spectrum peaks.

The paper is organized as follows. In Sec. II we present a two dimensional eigenmode anal-

ysis for compressional Alfv_n eigenmode structure and eigenfrequency, and a perturbative

analysis for fast particle contributions. In Section III the kinetic fast particle contribution

is obtained in a WKB approximation by solving a general frequency gyrokinetic equation.
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Sec. IV deals with numerical calculations OfACI growth rates using the perturbative method.

• A summary is given in See. V.

II. COMPRESSIONAL ALFVI_,N WAVE DISPERSION

A. Eigenmode equation

We will look for electromagnetic modes in the ion cyclotron frequency range, and the

compressional Alfv_n wave is a possible candidate. To obtain the compressional Alfv_n

wave eigenmode solution, we neglect the fast ion kinetic effects and consider the model of

inhomogeneous, magnetized plasma in a simple toroidal configuration with a circular cross

section and large aspect ratio. In the absence of kinetic contribution from wave-particle

interactions, the eigenmode equation is determined by the cold plasma dispersion relation

k2= e2 -I-el, (1)
k_ -- e 1

where

w2 w2. w_/c 2

w_ and w_ are the cyclotron and plasma frequencies of ion species i, k is the wavevector,

and _i are elements of the plasma permeability tensor without kinetic contribution. The

perturbed electric field can be presented in the form E = (El, E2, E3) , where

k± xE
E1 = k.L. E, E2 = , E3 = b . E, b = B/B, (2)

k± ki

" where B is the equilibrium magnetic field. The polarization is given by the relation

ie2 (3)
• E1 = E2 k_ - e------l"
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The parallel electric field of compressional Alfv_n wave will be neglected.

To obtain the compressional Alfv_n wave eigenmode equation we consider the perturbed

parallel magnetic field in the form/}ll =/_li( r, 8)exp[-i(wt + n_o)], where 8 and _oare the

poloidal and toroidal angles, respectively, r is the minor radius of the magnetic surface. /_1]

is related to the perturbed electric field through the equation

/}11= ck±E___._._2. (4)
02

The equlibrium magnetic field is chosen as B = BoRo/(Ro + rcosO), where Bo and Ro

are magnetic field and major radius at the plasma magnetic axis, respectively. Defining

klj = -lb. V In/}lJ we obtain the differential form of the dispersion relation as

1 o_ _ +,_- k_]_, (5)[v__ _ o0_l_ = -[k_- _----7
2 022 2where V_ - 1/r(O/Or)r(O/Or). For 02_ < and k_ < k±, Eq.(5) reduces to

1 0 2 w2

[V_ + r-_ 0O--ZlB_I__-_B,,. (6 /

2 _ 022. This equation has beenWe will use Eq.(6) to study ACI eigenmode even for w_

studied in cylindrical plasma approximation. 9,13In toroidal plasmas the eigenmode equation

has been solved s in terms of an eikonal representation using the small parameters 1/m and

e = r/Ro, where m is the poloidal mode number.

B. Radial eigenmode structure

In cylindrical plasma approximation the perturbed quantities can be presented in the

form J_tl- JB(r)exp[-iwt - into + imO], where _o= z/R and z is the coordinate along the

plasma cylindrical axis. Then the eigenmode radial structure is described by the following
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equation:

• (v_- v(_))_(_)- o, (7)

where the potential is given by V(r) __ m2/r 2 - (w2/v2A(O))(n(r)/no), n(r) is the plasma

density with the central density no, and v_(0) is evaluated at the magnetic axis with the

vacuum toroidal magnetic field. If V(r) forms a potential well, localized solutions can exist

inside the well. For a plasma density profile of the form

n(_)=no(1- r_/a_)_', (8)

and if m >> 1, a potential well can form at r = to, where ro_/a 2 = 1/(1 + ai) - A2/a 2,

and A2/a 2 = ¢2a,/(1 + ai)/[m(1 + ai)]. Then Eq.(7) can be approximated as a harmonic

oscillator equation which admits localized solutions. The lowest most localized eigenmode

solution has the eigenfrequency w2 = (m2v2(ro)/r2)(1 + ¢2(1 + ai)/ai/m) and

/}(r) = bexp[-(r- ro)2/A21. (9)

Note that in the potential well region the solution (9) is consistent with the ordering

o_l) 4"_B11v(_)~ m0--7~ _ ' ;_" (10)

For ai _<1 the eigenmode is localized near the plasma edge. Thus, to form a potential well

V(r) near the plasma edge, it requires a rapid variation of the plasma density profile near

the plasma periphery (see Fig.l).

To include the toroidal effects in the eigenmode equation, we note that w2/v 2 = (w2/V2A(O))

(n(r)/no)(1 + ecos0) 2. For high-m modes we consider 02B[I/002 _>_>r202Bl{/oOr2, which is

' satisfied by the cylindrical orderings, Eq.(10). Then, Eq.(6) reduces to

• 1 02B[i o_2 n(r)(1 + ecos 0)2/311. (11)
r2 002 = v_(O)no



To the lowest order in (e/m) Eq.(ll) admits a solution in the form of

BIi=P(_,e)exp[-i_t+ is], (12) '

where S = -n_o + m(0 + esin 0)s and/_(r, 0) is a slowly varying function of r and 0.

For e ,,_ O(1/m) and considering the cylindrical ordering, Eq.(10), we have OS/Or <<

O ln/_/0r. Substituting Eq.(12) into Eq.(6), we obtain an equation for the envelope/_(r, 8)

which is identical to the cylindrical Eq.(7).

For larger e we consider

i

and require Ill << m. From Eqs.(6),(13), anJ (12), we obtain the recurrence relation for the

coefficients/}t(r)

V_ - V(r)(l + _-) r2 r2 _ J/}' = e2[V(r) - 7
mO

+_r_((z-I)I},__+ (l+ 1)I}_+_)+_v(_)(_},__+_},+_)-_7_(I},__- _},+_). (14)

Assuming e ,-_O(1/m 1/_) and v > 2 so that me 2 > 1 and requiring the series, Eq.(13), to

converge,/}z must be a decreasing function of IlI. For t ,_ O(1) the leading terms in Eq.(14)

are proportional to m2e 2 ,,_ e-2(_-:), and all /}l are of the same order. For larger l with

I > O(me 2) we obtain /}! -_ me2[_l-2/21. Thus, /}z < /_1-2 and the series (13) converges.

Therefore, the series (13) contains/}i with l < me 2.

Since 10 << S the phase in/} can be neglected. However, we need to calculate/}l from

Eq.(14) for l <_me 2, which requires extensive numerical calculations. In the following we

will approximate/} with the cylindrical radial eigenmode given by Eq.(9).



C. Perturbative analysis

• Using Eq.(4) the eigenmode equation, Eq. (5), can be rewritten in terms of the perturbed

electric field and is given by

1 02 e_ oIE2 _- Y(r)E2. (15)
rYe/rE2= [r_002+ k_ k_- E,

Considering resonance contributions to Eqn. (15) due to all plasma species to be small, we

can make use of the perturbation method. We expand perturbed electric field and eigenfre-

quency as E2 = E ° + 5E2 and w = w° + 5w, where 5E2 and 5w are small kinetic corrections

to the MHD eigenmode and eigenfrequency solutions. These kinetic effects are described

by the antihermitian part of the permeability tensor _A10for each species j, which will be

presented in Sec.III. Then, from Eq. (15) we have

E22

-_ - * + g_l,(k_ el)2 + _221E2dzr/

_2

j k_ - el -

E*[ 2i 0(M2_12 e2 1 0w2_11 e_f + w2 (1 + )]E2d3r. (16)
j 2 --_-2 003 k_-_ 1 _o3 (k_-_l) 2

Taking into account Eq. (3) and neglecting parallel electric field, Eq. (16) can be rewritten

as

"Y=- Z E'. e2.Ed3/ O--2"y

/__-_ _. Im ElejnEld3r/ E_ {_ll [ d3r. (17)
$

III. INTERACTION OF HIGH ENERGY PARTICLES WITH

COMPRESSIONAL ALFVI_N WAVE

In this section we will use a WKB eikonal representation for perturbed quantities

0

_- _(¢,O)e -_+is(''_'°), V_ _- i_VS = i_k, (18)

| ,i . ., , • l , viii! l{l{l
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where ¢ is the poloidal magnetic flux, the eik0nal S will be chosen explicitly in Sec.IV, and

s is the coordinate along the magnetic field so that B. V = BOlOs. The perturbed vector ' I

and electrostatic potentials are chosen as

E = -V¢ + (iw/c)A, 13 = V x A. (19)

Then the fast particle contribution (subscripted as a) to the antihermifian part of the per-

meability tensor can be expressed through the resonance part of the perturbed distribution

function:

f ^A Edar=4i_r fE"]:d3r=4i_r f_e_ E*. va]_d3vd3r. (20)
E* • ea • w w

The perturbed fast particle distribution function can be expressed as (we delete the subscript

( ) Axb
]._ e Of e Of VllAII ._-Vf

mOE ¢+ BmO# ¢ c B

+z=-__" gi BrnO_ ¢ c Jl- ck-_ _zz] exp(iLz), (21)

where f is the equilibrium distribution function, Jl = Jr(z) is the l-th order Bessel function

of the first kind, z = k±v±/wc, # = v2 /2B is the magnetic momentum , E = v2/2 is the

particle energy, LI = kl x v. b/wc - l_, _ is the particle gyrophase angle between vz and

k±. The nonadiabatic part of the perturbed distribution function is contained in gl, which

is governed by the general frequency gyrokinetic equation 14-16

ef _ T vllAtl)j t v±Bll dJl], (22)
(w - WD-- lwc)gz = --_-(W,-- W, )[(¢ c "_l dz

where

dS

WD = -_ = vllb" VS + wBm#B/T + wkmv_/T,
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w_ = cT/eB 2 k± • b x VB, wk = cT/eB k± •b × _,

T 0 lw_ 0 cT
---- -_k ,• &l = -m(W_--_ + B 0# )In f' w*T= • b x Vln f, (23)

_c is the magnetic field curvature, and T is the temperature of given species. Equation (22)

can be rewritten in the form

d

(-_+ il_)g_= -ix. (24)

where X is the rhs of Eq. (22). We integrate Eq. (23) along the particle characteristics 1°

with the casuality condition that at t' = -c_, gz vanishes, and obtain

F' Sgt(t) = -i dt'2' exp(-iwt' + iS(s',¢',O') + i "laJ_dt"), (25)

where the integral is taken along the unperturbed guiding-center trajectory. Let

Z'w(t) - (_o_- co_+ l_o_- Ico_.)et' (26)

with (.-2.)= § dt(...)/rb takenalong the particle orbit, rb = 2_'/ I aJb I andwb= 27r[I _1-_.
Then

?_,(t)= -i at'2' exp [iw(t') - iw(t) - i(w - COD- la_)(t' - t)]. (27)

Note that 2' exp[iW(t')] is periodic in time with the bounce period and can be decomposed _7

as:

2' exp(iW(t')) = _ Xpexp (ipwbt'), (28)
p

where 2p = .2"exp (iW(t) - ip_o_t).

For the nonadiabatic part of the perturbed current [see Eq. (20)] we have after gyrophase

• averaging

1"_ eF_,[vlavl '"= dvllG t gz, (29)g

I d
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where the components of the vector G_ are v±lJl(z)/z, iv±OJt/Oz and viiJr. Substituting Eq.

(29) into Eq. (20) and integrating Eq. (27) we have

/ ___t.f E* .G_*exp(--iW(t)+ipwbt)f(,_,
E* •_A. EdZr = 4iTre dZrvzdvzdvll . (30)

w . W--l_c--WD--/Xab

To make this equation more symmetric we express

.El vilE3
¢ vllAII _ _ +i (31)

C _ 03

where kll/k± << 1 is assumed. Then we have

ief ,_ T
f(p = -W--_[W,-- ca. )f,p, (32)

where Flp = exp(iW(t)- ipwbt)Gz" E, and Gz = {vi03Jz(z)/(03cz);ivicgJl/cgz;vjlJI }. Here

the equilibrium distribution function is assumed to be a function of the particle's integrals

of motion. Returning to Eq. (30) we note that the integration is taken over five-dimensional

phase space. We will extract the fast integration along the unperturbed particle trajec-

tory associated with the variable t in Eq. (30). We transform integration variables from

R, Z, _o,v±, vii to P_, ¢, _, #, _:, where

e¢(R, Z) _ v_R (33)P_= 2rmc

is the longitudinal adiabatic invariant. Then we have

0¢ C v'__l_l B dcdP_,dcpd#dC,v±RdRdZdcpdv±dvil = [OZ 03_R(1 +
(34)

?22 lj 03e

where we assumed vii_ v_. The particle orbit motion is associated with the variable ¢, so

.2 -ldthat dt = r°-_z--_--/1+ _)] ¢. Thus, taking into account Eqs. (32) and (34) and Eq. (30)LOZwcR_

we result in

03cw2T i,p 03- l_c - _D -- pwb'



13

4

where Fly = exp (iW(t) - ipwbt)G_. 1_. A similar expression was analyzed in1° in the limit

of zero banana width and with F_pcomputed for well trapped and passing particles.

The p summation can be performed in a general form. First, the resonance term is

expanded as

P - i_5(R). (36)R-'(P_,_,E)- (w- l_ - _D- pwb)-' = w- l_ - _ - p_

Re;taining only the resonance contribution Eq. (35) is integrated over #. Then we make the

following approximation

Op d#, (37)
P

where p is considered as a function of # and is determined by p(/z) = (w- 1Cv_- CVD)/Wb.

The approximation (37) is reasonable if/z0p/0/z >> 1, which is valid because we consider

high frequency modes with w __ w_ >> wb. Finally employing Eq. (37) and bearing in mind

thatIOplO_I/IORIO_I=1/Iw_Iweobtain"

41r2e2B

f E*._A.Ed3r= iE f dP,dEd_ F[*(C_,- _.)F, (38)
I 0_c('d2

where we have made use of the bounce resonance conditions and the definition

1 /,

dtexp (iW(t) - ip(#)wbt)Gl " E =f_ =
X dtexp (i [t(lwc + WD-- w)dt')G, . E =- Ft. (39)

J JO

The expression (38) is still too complicated for analytical analysis. To further simplify Fz

, we note that the argument in the exponential function is much larger than _r, which means

that the exponential function is fast oscillating except near the region where lwc(6(tl))+
J

Wo(8(tl)) -aJ = O, where 0(tl) is the poloidal angle of the particle position on the orbit at
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time tl. Around this point we have

I2 /,; s;i Its<+_D- _]dt'= i [...]dt'+ i [...]d¢= i_o_+i [...]dt', (40)

where

f,i . d (t - tl) 2 . d2 (t - tl) 3i [...]dt'= z-_ (lo_<+ WD) 2 _ Z-_(lw< + WD)6 _-.... , (41)

aii = f_J[lwc+ WD- w]dt', and to corresponds to the radially outer most point of the

particle orbit. The same expansion is valid for any resonant point. With a given set of

variables Pv, £, # there are two types of particle orbits which correspond to different sign of

parallel velocity a = vll/v. Assuming up-down symmetric particle orbits there can be two

resonance points at poloidal angles O_,, and -8_e, determined by the resonance condition

lwc(O_e,)+ WD(9_,) --w = 0 for each a. We will show the calculation procedure for the case

when the first derivative term in Eq. (40) is larger than the second derivative term. For

trapped particies there may be four resonance points. Then we have

Fl = 1G1.Ele '_°1 I1+ e'_''I_ + 1Ga'Eae i_°3 /3 + ,
rb G1 E1 rb Ga E3

where we denote the resonance points 1, 3 in the upper half cross section for a = +1,-1,

respectively, and the points 2,4 in the lower half cross section for a = +1,-1, respectively.

Also, Ix,a = f+o_ exp[i(d(lwc + WD)/dt)l,at2/2]dt. Then we can write

I_ ,, I_ Z G',*. E'G,. E,, (43)
F[*F, = _ _ G, •E;G,. E, + _ ,=a,4i--1,2

where we have dropped terms with ei(_i+_a), i # k,j _ l, which correspond to uncorrelated

phase and give zero contribution after averaging over all groups of particles, and obtained

12 = 8_r/I d (lwc + OJD)[ • (44) '
1,3 _ 1,3
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Similar expression can be obtained for untrapped particles, with the first term in Eq. (43)

. for passing particles with a = 1 and the second term for a - -1. Summing over the parallel

velocity direction a, we arrive at the following expressions:

F[*Fz = (2T_)-2 _ 12 (G'*. E*G. El,_c" + G". E'G. El_,_c, ) , (45)

where

_ (46)
- {] d(lwc + WD)/dt 13+C[d2(lwc + WD)/dt2]2} 1/3

with the subscripts dropped, and C = 2.6943. Also, to avoid singularity at 0,e, = 0 the next

order term from the expansion (40) is included. The coefficients F[*Fz determined by Eq.

(45) contain the information about the wave-particle Doppler shifted cyclotron resonance.

Namely, the two terms in the round brackets gives the electric field value at the resonance

point and the factors G' and G appear from gyroaveraging. The term I has the dimension

of time and determines how long the particle was in a resonant layer.

In summary, the ACI growth rate due to fast particles is given by Eq. (17) with the

antihermitian tensor given by Eqs. (38) and (45). These expressions take into account the

high frequency wave-particle resonance in phase space along the particle orbit.

IV. ALFVEN CYCLOTRON INSTABILITY

A. Fast particle destabilization

In this section we demonstrate the possibility that ACI in tokamak plasmas can be excited

by a small group of high energy particles (a-particles or protons). From Eq. (3), E2 is smaller

. than E1 for w > wc and can be ignored. Thus the perturbed electric field can be expressed
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in the form E _ El, O,O, where

E1 = E0 exp[-(r- ro)2/AZ]exp[-iwt -in_ + im(8 + esin O)], (47) "

and ro and A are given in Eq. (9). Then kll = m/qRo- n/R,k± _- mRfRo. For S =

-n_o + m(8 + esin0) the magnetic drift frequency WD_ defined in Eq. (23) is given by

Wo: = (mR/Ro - nq)O - ?_Vda(Vcp -- qVO)

kll - ,B/e + - 1 1

The fast particle driven growth rate can be obtained from Eqs. (17), (38), and (45) by

neglecting the spatial gradient drive term, which is negligible in the high frequency regime,

and is given by

% - <,.... ,...o]= 2 2 v_AroRoE 2 _ + /:, (49)

where we assumed for simplisity that ell" w_/J and wp is the plasma frequency. The

sign of the growth rate depends on the _; and # derivatives of the distribution function. We

mentioned earlier that the plasma inhomogeneity and finite banana width can lead to large

velocity space anisotropy of a-particle distribution. The anisotropy is higher near the plasma

periphery, where the spatial gradient of a-particle source is higher. _2 A limiting case of the

distribution function, a delta function in # which represents only the contribution of the

barely trapped particles, is considered. The orbits of the barely trapped particles are shown

by curves 1 and 2 in Fig.2. Such a group of particles have the maximum orbit deviation from

the magnetic surface and their fusion source is maximum in comparison with other groups.

The a-particle distribution can be expressed as

f_=n_(r)f_(v)_( "B° A0), (50) •
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where f_(v) represents thevelocity distribution, and Ao is the pitch angle of barely trapped

• particles.Ao canbe obtainedfrom theequation(e_/27rm_c)¢(R,Z)[R=AoRo,Z= 0 = P_ (com-

parewithEq.(33)).Integratingby partswiththedistribution(50),Eq. (49)reducesto

= ve,cBfdP xx¢_ w;w¢_22 v/-ffAroRoE2o

e 0 _-_ 2 2# IJ2,1t,:^oe/oo , (51)
x F(£_)- F(E1)- j +

where F = (1 + lw_,_£/(wB#))n,_f,, _ 2 2 , 2 2 ,._I EI#_J i/z , £1,2 = ,._,2(P_,) (£1 < &) are the energy

limits determined from resonance condition at fixed Pv. The differential operators in Eq.

(51) operate on all quantities to their right hand side. These quantities are taken at resonance

point and therefore are functions of Pv and £. The resonance condition is

w- lwo (r(o),0) - o)= 0, (52)

where r(0) determines the a-particle orbit. In comparison with the local theory 8,9 Eq.

(51) have additional terms proportional to derivatives of 12 and E_. One can show that

the 12 derivative terms give small contribution, while the E_ derivative terms are always

destabilizing and are comparable with the/_J_/z z derivative terms from the local theory.

Note that the c_-particle growth rate is linear in a-particle density.

B. Damping mechanisms and ICE spectrum

To excite the ACI the fast ion drive must be higher than all dampings due to thermal

electrons and ions. To obtain the most unstable modes we have to find a condition when the

, damping is smallest and the drive is largest. To minimize the electron damping we choose the

eigenmodes with the wave phase velocity higher than the thermal velocity of electrons, TM
t

i.e., kll << W/VT_, SOthat the electron damping is exponentially small. Ion cyclotron damping
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can be significantifionsareincyclotronresonancewiththewave at l= oJ/w_< 5 inside

theplasmacore.Therefore,eigenmodeslocalizedneartheplasmaedgeand withfrequency

correspondingtoedgebackgroundioncyclotronfrequenciescanbe weaklydamped due to

lowiondensity.ForhighercyclotronharmonicswithI= oJ/co_> 5 thethermaliondamping

isexponentiallysmall.The accuratecalculationofthermalplasmadamping mechanismsis

beyondthescopeofthispaper.

Forsimplicitywe willpresentthegrowthratecalculationfortheACI eigenmodeswith

negligiblethermalplasmadampingand witheigenfrequenciescorrespondingtothemultiples

ofdeuterium(c_-particle)cyclotronfrequency.Such ICE spectrumwas experimentally

observedinD D experimentsand intheinitialstageofDT experimentsinTFTR when the

tritiumpopulationissmall.We willshow thatthefastparticlescandestabilizetheACI even

when theACI eigenfrequenciesaredifferentfromthefastparticlecyclotronfrequency.They

can beincyclotronresonancedue tothefiniteDopplershiftintheresonancecondition(52).

ForexamplefastprotonscandriveACI withfrequenciesw = WED(2/+I)= _p(l-{-I/2).The

ICE spectrumpeakscan be alsorelatedtothe tritiumcyclotronfrequencies.The results

couldbe usefulinestimatingtheratiooftritiumtodeuteriumdensities.

C. Numerical results

We present numerical examples of ACI growth rates for TFTR plasma parameters18:

Ro = 2.52m, a = 0.gm, the safety factor profile is given by q(r) = qo/[d(_---_)(dI -- 0.66r2/a 2 +

.18r4/a4)r 2] for r <_a and is a parabolic outside the plasma, qo = 0.85, the plasma density

is n(r) = 0.5 x 1014(1 - r2/a2)°'2cm -3, the vacuum toroidal magnetic field is Bo = 5T, the !

central c_-particle density is n_o = 2 x 101°cm -3, the central proton density is npo = n_o/50,

and thefastparticledensityprofileisn_,p= n_,p0(1- 7"2/a2)3"75.The positionoftheplasma
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column in the vacuum vessel is shown on Fig. 2 as dotted circle.

In order to excite the ACI instabilities it is required for the eigenmodes to be localized

in a potential well very close to the plasma periphery. This can be achieved by employing

a density profile with very sharp variation near the plasma edge (see Fig.l). Choosing the

parameter e_ = 0.2 so that r0 _ 0.9a. The plasma with such sharp density variation near

the plasma edge can be obtained in the initial stage of typically TFTR discharges. Is The

frequencies of the ACI eigenmodes are assumed to be equal to multiples of the edge deuterium

cyclotron frequency. The poloidal mode number m is calculated from the expression for

eigenfrequency (Sec. B). The toroidal mode number is varied to find the most unstable

mode with the constraint kll << k±. Due to the finite Doppler shift from the magnetic drift

frequency in the cyclotron resonance, Eqs. (48) and (52), a-particles will resonate with the

wave inside the plasma while thermal ions can be in cyclotron resonance near the plasma

edge. The dashed curve between point 1 and 2 in Fig.2 presents the resonance line for the

barely trapped a-particles at the fundamental Doppler shifted cyclotron resonance.

The a-particle driven ACI growth rates are shown in Figs.3 (a) and (b) and the protons

driven ACI growth rates are shown in Figs.4 (a) and (b) with a velocity distribution in the

form:

4Bo 1 - Ao _ exp rl(=t:(v - Vo)), (53)= + +,-

where vr- is an adjustable parameter, VT+ = _/2Ti/(ml + m2), ml and m2 are the masses

of reacting nuclei, T_ is their temperature which was assumed to be 50keV for beam heated

, plasma, and _?is the Heviside step function. Note that the parameter VT- is critical for the

ACI instability. For a-particles the instability disappears at VT- > 0.25V_o, while for protons
s

the instability occurs at VT- > 0.Sv_0. The slowing-down distribution is stable due to high
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fast particle Landau damping. The destabilization from the velocity anisotropy term is not '

enough for instability. To drive ACI unstable one needs additional drive due to positive

energy gradient. We note that the distribution given in Eq. (53) can be created at the initial

stage of discharge after the fast NBI starts. The velocity spread is due to the Doppler shift

effect associated with the velocity spread of the thermal fusion ions. The velocity distribution

(53) can also be a result of anomalous fast particle loss caused by toroidal magnetic field

ripples, or plasma instabilities such as the TAE, the fishbone, or other MHD modes. As

a result of such losses the fast particle confinement time can be shorter than the slowing-

down time, and the velocity distribution can maintain a positive gradient. An experimental

evidence has been pointed out ina that the Edge Localized Modes (ELM) activity and the ICE

amplitude are correlated; small amplitude ELMs do not disturb the ICE spectrum, while

high amplitude ELMs can eliminate ICE completely. This related to the anomalous fast

particle loss by ELM activities. Small ELM amplitude only reduces the fast ion confinement

time to less than the slowing down time. High amplitude ELMs scatter almost all trapped

fast particles out off the plasma. After the trapped particle population replenishes near the

edge, the ICE appears again.

The a-particle birth velocity is different from the proton's: VA "_ V_o_ 1.3 X109cm/sec <

vpo _-- 2.4 x 109cm/sec. From Fig. 3(a) one can see that the instability disappears for

l > 6 because of a decrease in the destabilizing contribution associated with the spatial

derivative of E_. This term is destabilizing because of two reasons. The first reason is

that the region with positive derivative of E12is closer to the center than the region with

negative slope of eigenfunction, the second is that the a-particle density profile is centrally
¢

peaked. For higher cyclotron harmonics the region where particles are in resonance with

the wave is smaller and the corresponding curve of resonance points (curve 1-2 in Fig.2)
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moves out towards the plasma edge. Therefore, the positive spatial derivative of E_ gives

. smaller destabilizing contribution to ACI. For protons the Doppler shift is higher and the

reduction of the resonance domain does not lead to such effects. In addition, the value

z = k±v£/(lwc)(,,_ 2) is higher, which makes the local contribution to ACI (_ #J_/z 2) more

destabilizing.

From Figs. 3(a) and 4 (a) we see that the proton growth rates are about one order

smaller than the a-particle growth rate. We expect that in TFTR experiments both kinds

of particles contribute to the ACI instability. In Figs.4 ((a)) and ((b)) we show the growth

rate of the proton driven ACI at w = WeD-----1/2w_p as a dashed bar. This instability can be

obtained only at klj ,,_ k±, which is beyond the validity of our assumptions. But, we should

also note that the electron damping will be small in this case because of small wave phase

velocity and ve >> VA. Only trapped electrons with velocity veil "_ VA can give rise to the

damping, which requires additional analysis.

V. CONCLUSIONS

A two-dimensionaltheoryofcompressionalAlfvdnCyclotronInstabilityhasbeendevel-

oped todescribetheICE spectrumobservedinTFTR and JET experiments.The finalex-

pressionfortheACI growthrateEq.(38)isdeterminedbytheDopplershiftedwave-particle

cyclotronresonance.The sourceofinstabilitycan be any freeenergysourceassociated

withfastparticledistributionfunction,namely spatiallyorvelocityspacegradients.The

expressionsforACI growthrateswereusedinnumericalcalculationsina toroidalplasma

' with circular magnetic surfaces. Fast particle resonance contributions resulting from the

two-dimensional eigenmode structure and finite banana width effects are retained. We have
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demonstrated that the theory can describe the narrow peaks at multiples of edge deuterium

cyclotron frequency. The theory requires the ACI eigenmode to be localized near the very

edge of plasma and the velocity distribution function to be very narrow in pitch angle and

sufficiently sharp in velocity gradient with velocity spread for a-particles less than 0.25v_0,

while for protons less than 0.8v_0. The velocity spread can be understood by taking into

account the Doppler shift effect due to thermal spread of the fusion source ions. Such a

distribution can exist if fast particles are lost before they are slowed down. Such anomalous

loss of fast particles can result from toroidal magnetic field ripple, collisional scattering, or

MHD activity like fishbone, TAE modes or Edge Localized Modes. The correlation between

the ELM activities and the ICE amplitude has been shown in3; the small amplitude ELMs do

not disturb the ICE spectrum, while high amplitude ELMs can eliminate the ICE completely.

This is because small amplitude ELMs reduce only the confinement time to less than the

slowing down time, while high amplitude ELMs scatter almost all trapped fast particles out

of the plasma. After the population of trapped particles replenishes near the edge the ICE

appears again. Note that in the eigenmode analysis we have excluded the region between the

plasma current channel and the wall. In this region the eigenmode has a finite amplitude and

the wave-particle interaction can contribute to stability and should be included. We have

obtained the growth rates only for eigenmodes with frequencies equal exactly to multiples

of the edge deuterium cyclotron frequency. But one also expects that the widths of higher

harmonic ICE spectral peaks should be wider than those of lower cyclotron harmonic cases

because the Doppler shift for protons is larger and the background ion cyclotron damping is

smaller for higher cyclotron harmonics. Such wider peaks can form the background proton
!

driven signal which should correlate with fusion proton source. This conclusion agrees well

with the observed spectra. 1'2 We have also shown that the ACI with eigenfrequency differ-
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ent from the cyclotron frequency of the fast particles can be driven unstable because the

° cyclotron resonance condition (52) can still be satisfied due to the finite Doppler shift. For

example, protons can destabilize the ACI with frequencies w - w_(21 + 1) - w_(l + 1/2),

which may be also related to the ICE spectrum peaks at tritium frequencies. This conclusion

can be useful in estimating the ratio of tritium to deuterium densities.
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Figure 1: Typical radial dependence of the potential V(r) = w2/v2A -m2/r: on r2/a 2, which

forms a wei! at r = r0 and ro is determined in Eq. (9) The eigenmode is localized within the

2A width region.

Figure 2: Wall position, plasma boundary (dotted line) and two orbits of barely trapped

particles with different pitch angle. Also shown is the resonance curve (dashed curve) between

resonance points 1 and 2 at which the resonance condition (52) is fulfilled

Figure 3: The ACI growth rates driven by a-particles with the velocity distribution, given

by Eq.(53) for a) VT- = VT_ = 0.107V_0 and b) VT- = 0.2V_0, VT+ = 0.107V_0. The plasma

parameters are: Bo = 5T, Ro = 2.52m, a = 0.gm, the plasma density is n(r) = 0.5 x

1014(1 -- r2/a2)°'2cm -3 q(r) = qo/[ d, a(---_TU(1--0.66r2/a 2 q-.18r4/a4)r2], for r _ a and is a

parabolic outside the plasma, q0 = 0.85, and the a-particle density is n_(r) = 2 × 101°(1 -

Figure 4: The ACI growth rates driven by protons with the velocity distribution, given by

Eq.(53) and a) VT- = VT+ = 0.058Vp0 and b) VT- = 0.55vp0, VT+ = 0.058Vp0. The first dashed

bar at W/Wcn_age= 1 corresponds to the case when kll ,,- k_. The proton density is chosen

as np(r) = 0.4 x 109(1 - r2/a2)3"_5cm -3. The plasma parameters are the same as in Fig.3.
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