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Abstract rE92 018445

Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above . ,..

stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time

nonlocal regime, but at large l_ne the Rechester-Rosenbluth effective diffusion is confirmed. Near

stochastic threshold, subdiff_ive behavior is observed for st:ort mean free paths. The nature of

this subch'ffusive behavior is understood in terms of the spectrum of islands in the.stochastic sea.

1 Introduction: stochasticity, transport, and diffusion
A three dimensional toroidal magnetic field is a Hamiltonian system, and the existence of

magnetic surfaces in an axisymmetric configuration is a consequence of the K.A.M stability

theorem. The occurrence of sraaU resonant magnetic field perturbations can lead to the onset of

chaotic field line diffusion, provided that the Chirikov criterion is fidlfilled [1].

This deconf'mement mechanism is a major candidate to explain the anomalous confinement

properties of Tokamak discha:rges [2,3].

This paper reviews some recent results, and reports some ongoing progress on the problem of

heat transport in a stochastic magnetic field configm'ation.

Well above stochastic threshold, a numerical solution confirms the Rochester-Rosenbluth

effective diffusion regime, but for short time a nonlocal regime is observed and studied

analyticaIly [4]. Near stochastic threshold, subdiffaasive behavior is observed for short mean free

paths. The nature of this subdfffu_ive behavior is understood in terms of ,..hespectrt_m of islands

in the stochastic sea.
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The most general transport theory of a passive scalar, T(r,t) (temperature or density), in a

statistically homogeneous media, is nonlocal and relates T at point r, time t, to the source,

S(r',t'), elsewhere before t, through a propagator P:

T(r,t) =fdt' dr'P (r-r',t-t') S(r',t'). (1)

P is the fundamental quantity arising through first principles, the diffusion coefficient is not

fundamental and may or may not exist. Let us consider the long distance behavior of the Fourier

transform, P(k,co), of P(r,t). If its asymptotic form for large r and t, i.e. near k -- 0, and co= 0,

is P'l(k,c0) ~ io + k.D.k + O[k 4] , then the transport becomes local and diffusive on large space

and time scales. T obeys the usual differential equation, and the mean-squared displacement

<r(t)r(t)> = 2 D t is normal.

Recently a large number of physical problems such as diffusion in convective cells, diffusion

on stochastic webs, diffusion on percollating clusters, convection of a passive scalar by a

turbulent flow, and diffusion in disordered media, have displayed anomalous mean-squared

displacement [5];

<r2(t)> ~ tct, and <ra(t)> ~ logl3[t]. (2)

The exponent _ characterizing the fractional Brownian motion, can be larger or smaller than one,

with trapping or long ballistic flights often the cause of this subdfffusive or hyperdiffusive

transport. When o__ 1, an application of the definition of the diffusion coefficient will give 0 or

oo. Tiffs does not mean that the diffusion is 0 or + ao it means that the concept of diffusion

coefficient is meaningless, and that the expansion of P(k,c0) does riot give a simple formula.

On the other hand the occurrence of logarithmic behavior is often due to trapping. The case

13--4has been widely investigated in relation to Sinai's result of diffusion in a random one

dimensional potential [6].

In this paper we report and analyze the observation of subdiffusive collisional transport in a

stochastic magnetic field configuration, slightly above threshold.

2 Heat transport well above stochastic threshold
Because of its potential to explain anomalous confinement, heat transport in a stochastic

magnetic field has been intensively investigated. Besides the thermal Larmor radii four length

scales are relevant: the collisional mean free path "alongthe magnetic field Xc, the longitudinal and



• *t '

¢
4

• ' 3

'x

transverse autocorrelation lengths of the perturbing magnetic field, _'11and Xl, and the Lyapunov

length kKassociated with file Kolmogorov entropy [7].

The existence of a finite _'K allows description of the dynamics of a heat pulse in terms of

combined collisional diffusion and exponential Lyapunov stretching, resulting in an effective

diffusion <It(t))> = 2DRRt flu'st obtained by Rechester and Rosenbluth [2] and Stix [3], and .

recently numericaUy confirmed by Rax and White [4].

'ro set up a numerical simulation we consider the Chirikov-Taylor model. Starting from an

unpertah"bed homogeneous magnetic field B directed along the z axis we add a shear by= Bx, and

a multimode coherent pertubation bx= eB sin(y)[l+ 22cos(2rcnz)], where the sum is over ali

positive integers n.

A Lagrangian representation of an Eulerian anisotropic heat flow along and across this

magnetic configuration is achieved by adding a random reversal of the velocity v, along z

correlated with a cross field displacement of gyroradius p. The Poincare section of such a

dynamics for v t = 1 is:

f Zt+ = Z t ,,I- V t

Yt+l = Yt + Xt+l
xt+ 1 = x t + e sin[Yt] + P t (3)

and for vt = -1 Eqs. (2,3) must be inverted so that for pr---0a particle retraces its path back

along the field line. The sign of vt for each particle is changed each time step With probability P

producing diffusive motion in z.

A collisional displacement Pt of magnitude p and random sign is given to x on those time

steps that vt changes sign. To achieve statistical accuracy typically 105 particles are used. The

parallel mean free path is ;Lc = (1-P)/P, and the parallel and perpendicular diffusions are %,

=.5(1-P)/P and Z±-.5P 2P. The field line diffusion ZM, autocorrelation length kit, and the

Lyapunov length XKare determined numericaUy. Because the Chirikov-Taylor model is defined

on a torus the transverse autocorrelation length _.±=2r_.

The results of our simulations can be summarized as follows. The long time behavior is found

to be diffusive, <r2(t)> = 2Defft, with an effective diffusion coefficient Dell in complete

agreement with DRR, bat the short time behavior is found to be <it(t)> = _/t'.

The usual ballistic regime near t ~0, <r2(t)>~t 2 is unobservable because of the scales. The

transport in the diffusive regime is due to the finite Lyapunov length XK of the Chirikov-Taylor O



model: through the exponential stretching character of the stochastic instability deterministic chaos

allows a rapid spread of a heat pulse. Following Rechester, Rosenbluth and Stix we have Dru_=k

ZM/_/v - where k is a constant and v is the number of collisions necessary for decorrelation:

We show here the region near stochastic threshold, of particular interest in plasma physics

applications, but similar results hold in the large e quasilinear domain provided accelerator modes

are avoided. Excellent agreement is obtained with the single constant k---0.5for very large I_,nges

of P, p, and e. ]

1
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D numerical one Deft as a.01
function of the stochasticity
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Besides this effective diffusion regime we have 'also observed subdiffusive behavior at short

time. Such behavior can be easily analyzed with the help of a random Gaussian field model.

Consider an inf'mite homogeneous magnetic field B directed along the z axis, and a small

random field, b, such that <b>= 0, V.b = 0. <b2>/B2 is a small parameter of the order of 10 -6-

10-8 and < > indicates statistical averages.

The second moments of the b field are characterized by the longitudinal (z) correlation length, XII,

'(bx(Z)bx(Z3>= <by(Z)by(Z3>= <b2>exp[-(z-z)2/2,_]. The magnetic diffusion coefficient is ZM= ,]-x7"2

_'11<b2>/B2"



The temperature diffusion equation is equivalent to Langevin equations with Lagrangian

coordinates (x,y,z).

dx dzbx(z) (t)dt- cit B +rl±

dzb
dt - ck B + rl±(t) • (5)
17.
i_ = rl H(t)

The statistical characteristics of the collisional noises rl are <r]±(t)>--0, <rl±(t)rli(t')>=2X±iS(t..t'),

<rill(t)>---0,<rlll(t)rlll(t')>=2Xtt_5(t-t')(8 is the Dirac distribution). Thus when b=0, we recover

collisional fast diffusion along B, and very slow diffusion across B. Let us introduce b(k), the

=f k_._ dk '(b(kl.b*(k')Fourier transform of b(_), and integrate Eqs. (5) to obtain <r2(t)> _ • B2 >

<[eikz(0-1][eikZ(t)-l]>)+_dudu'<rl±(u)_i(u')>. Then using the Gaussian properties of the
• 2 * *

collisional noise <eikz(t)>=e "k _11t, and <bx(k)bx)(k')> = <by(k)by(k')> = <b2>),,tl_3(k-k')exp[-

k2_,212]/2"_"_ we obtain <r2(t)> = 8XM_'_t1_ + 4X.l.t.

No effective diffusion coefficient is found with this exact solution of the Langevin equation and

the subdiffusive behavior obtained witlfin the framework of this model agrees qualitatively and

, quantitatively with the short-time behavior observed with the map model. In the nonlocal regime

the ProPagator to be used in Eq. (1) can be calculated with the help of a Wiener functional

integration and the final result is:

P(r,t) = ®(t) exp[-
3r4/3 112.,,2 213r2/3_,213_, l13tl /3

,-2/3--213"'I13I13jt _ LM Ioli • (6)
z 4_M _11 t

The anomalous scaling of the exponent agrees with the previous mean square displacement, and

this propagator basically describes a random walk along a random field.

3 Heat transport near stochastic threshold
Of particular interest for magnetic confinement is the behavior near stochastic threshold, the

most probable state of magnetic fields in tokamak devices. Near threshold, for very short mean

free path, the previous Chirikov-Taylor model displays the occurence of subdiffusive behavior,

<x2(t)> = logP[t] . (7)

In the following we will describe how the spectrum of islands in the stochastic sea is

responsible for this result.
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A random walk can always be decomposed as a set step/pause/step/pause/step/pause, and so

on. To calculate the mean square displacement as a function of time we have to know two basic

quantifies, namely file distribution function of step size ¢(s) and the the waiting time distribution

_g(t) at the pause. "I'hen given an N step walk we can write:

So

J<x2> - <[2si]2> = N s2 _(s) ds
1

N j.t° . (8)

<t>=<_ti> = N Jt lg(t)dt
1 6

To express the mean square displacement as a function of the time we have to eliminate N from

these equations. In a given experiment the particles may not have dme to completely explore the

distribution of step sizes, even if this distribution is bounded. Thus rather themtaking so = to = +

o%we have to introduce two cut off points which are in fact N dependent.

.This regularization, depending on the behavior of _ and gt at large _trgument, can be

responsible for the occurrence of subdiffusive behavior, such as given by Eq. (2).

To examine the problem of transport near threshold in the Chirikov map model, the evaluation

of these two functions requires a detailed study of the distibution of island sizes and of the

trapping near islands. Roughly speaking, wandering closely around an island is the pause and the

islandsize the step,

To calculate the distribution function between,the scale s = 0 and s = 1 we proceed as follows.

Introduce a grid, and calculate the extent of the stochastic sea by initially setting the function n =1

everywhere and then following a single long orbit in the stochastic sea, setting n = 0 for each grid

square visited. Using this technique it is possible to distinguish islands from stochastic sea ibr ali

islands larger than the grid size, and the method has been used by Umberger and Farmer to

investigate the distribution of island sizes.

For small islands the distribution of the islands is fractal, being given by a power law, with the

mea of ali islands of size greater than s being given by

A(s) = A(0)- c sr' . (9)

We are interested in accurate determination of areas also for large islands, so the covering

methods described by them are not sufficient. However an accurate determination of the

distribution of island areas and perimeters can be made fi'om the function n0,j).
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Scanning the _p-id,each co:mected set of island points can be labeled by setting n(ij) = k, with

k an index labeling that island, and the next connected set of points encountered labeled by k+l.

Finally the islands at the edges of the domain are joined in accordance with topological

identification on the toms, to insure that the results are not dependent on the location of the edges

of the domain.

Then by counting the number of points with index k to determine the area of island k, a

complete catalogue of islands can be made, each with its associated area and perimeter, from the

island of maximum size so down to islands of the grid size. For this purpose we define the size

to be the square root of the island area. Sample results are shown in Fig. 2.

"' / -_ ' -;--"'. '-_- ' ...."' "'/ --'

",'PA.,-;'
5.. _ . ,_ ,,,_ _,_ _ . tp_ Fig. 2 island

• _ perimeters found

'" _,_'X_ _._ . _x__.%_X using a grid mesh of
i_(__,_ _ • lO00xlO00, e = 1.13.0
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Using continuum notation, the expression for the total area of all islands with size greater than s is
So

A(s)= _ s2¢(s)ds, (10)
S

with ¢(s) the density of islands. The total area occupied by the islands, A(0) is finite, but the

total number of islands is infinite. Results are shown in Fig. 3.

W
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The results for small s a_e with those obtained by Umberger and Farmer [8], Eq. (9), with

p--0.6. For s _ so the scalh:lg is quite different, and we obse.we A(s) = s -a with a = 0.2.

41.9-

-1,0

.1.1

Fig.3 the distribution of

In(A) island size, note the•1.2

occurence of two scaling

.,.3 regimes.

.1.4

i

B -6 -4 .2

In(s)

From Eq. (10) we find, in this domain, _(s) ._ s - 3.2. We refer to this scaling regime as the

dynamical range, as we will see that it determines the short time collisional diffusion of the

medium. The transition between the two regimes occurs approximately at island sizes

corresponding to the smallest islands visible in Fig. 2.

Now we proceed to evaluate _g(t). By observing single particle orbits it is found that long

periods of time are spent circling the periphery of the largest islands. In fact near threshold, when

the islands fill a significant part of the stochastic sea, the dominant contribution to the time spent

in any orbit comes from circling the largest island.

By measuring this time, preliminary results indicate that the island trapping time z depends

exponentially on the island perimeter, i.e., 'r(s) = xo _ s/s°.

Diffusion then consists of a step with size given by the linear dimension of an island, and

subsequent wandering in the stochastic sea until the particle is again attached to an island. Near

stochastic threshold, with many islands present, this latter phase occupies a negligible amount of

time. The integration limits in Eq. (8) depend on the amount of time in the simulation, and

therefore how much of the island distribution the particles have been able to explore.
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Since there is in fact a largest island of scale so , if one waits long enough the particles will

explore all the islands, the integrals are independent of N, the ratio of <x2> to <t> is independent

of N, and the result is diffusive motion.

This result requires lengths of time in which the total distance diffused is greater than the basic

periodicity of the system, 2n. However, for shorter times the limits of these integrals so, to must .

be replaced by the largest values of s, t which the system has had time to explore, sm and tm .

Since the truncation of the integrals depends on the number of steps N, the values of sm and

tm depend on N and the motion is not necessarily diffusive. To find sm and tmconsider N

random selections of islands using the distribution d_. The limit sm, and hence the large scale

islands not visited will be given by the expression
So

) = = •
S

The trapping time depends exponentially on the island size, we have t m = e sm(r_)

The distribution of trapping times is also related to the distribution of the islands ttux)ugh
a+2

So

W(t) = iS[t- x(s)] _(s)ds, i.e., _'(t) = (12)
t loga+3(t/xo)

where we have used x(s) = xo e s/s°. Substituting and evaluating Eqs (6) and (7), after N steps

the dominant scaling is

<x2>=N, <t>=O Nl/a+2, i.e., <x2> _ log'+2(t) . (13)

Using the measured value a=0.2 this result agrees quite well with the observed subdiffusive

behavior. Thus the decomposition analysis of the behavior of transport in term of island trapping

appears to be consistent with the observed logaritmic mean squared displacement. The structural

reduction step/pause/step/pause/step .... is thus valid provided we take the two elementary

processes to be pause = (wandering around an island), and step = (jumping between islands).

4 Conclusion
We have reviewed some recent results, and reported some ongoing progress on the problem of

heat transport in a stochastic magnetic field configuration.

The collisional diffusion coefficients scale differently with respect to density n, and temperature

T: _IF.Ts/2n"1,and _.L--TI/2n, so that in tokamaks we obtain a wide range of values: _IF.109-

1010m2/s, and %.t...10-1-10"2rn2/s.The typical width of braided magnetic domain is r-.i()'2-1.m,
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and XM,-10"5-10"Sm. This wide range of values leads to the potential occurence of a wide range

of regimes, some of which have been investigated here.

We find using the Chirikov map model that Rechester Rosenbluth diffusion is valid, madquite

accurate over a very large domain in parameter space. Complete results will be presented in a

future publication. We are presently extending these investigations to include other stochastic

configurations. Also of great interest is the extension of this work to include two species

incorporating momentum conserving collision operators.

Subdiffusive behaviour is observed near stochastic threshold. The results presented here are

preliminary, however the identification of the waiting time arround an island and thc self-similar

spectrum of island size appear to be the two basic ingredients required to understand transport

near the stochastic threshold.
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