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FREE ENERGY IN PLASMAS
UNDER WAVE-INDUCED DIFFUSION
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When waves propagate through a bounded plasma, the wave may be amplified or
o

damped at the expense of the plasma kinetic energy. In many cases of interest, the primary

effect of the wave is to cause plasma diffusion in velocity and configuration space. In the

absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain

structures are mixed and fine-grain structures emerge. The maximum extractable energy by

waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but

it is difficult to calculate. Through the consideration of specific examples, certain strategies

for maximizing energy extraction are identified.

PACS numbers: 51.10 5.2.25 52.35
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[. Introduction

Consider the passage of a pulse of waves through a slab of plasma, in which the pulse
,9

first enters the otherwise undisturbed plasma slab, and then emerges from the slab, leaving

the plasma entirely. The plasma is rearranged in response to the wave pulse, and the amount

of energy in the plasma may change. Since the total energy is conserved, the wave may have

either less or greater energy as it emerges from the slab. What is of interest in this paper is

the maximum amount of energy, under certain practical constraints, that may be extracted

from the plasma.

Under different circumstances, there would be different constraints governing the ways

in which the plasma could be rearranged by the wave. If the plasma is collisionless, each

species must conserve its volume in the 6-dimensional phase space of velocity and config-

uration space. In such a case. the maximum extractable energy from the plasma may be

obtained through the so-called "'Gardner restacking algorithm" 1.2 which we restate here:

Suppose. the 6-dimensional phase space is chopped into N little bins of volume V =
2 -b _"AxAyAz'.Xv_:AvyAv.. Each bin has an average energy ei "- rn(v2i + vy, vzi)/2, where i

varies from 1 to :V. Let us order the bins such that if i > j, then ei > ej. Each bin also has

an initial density f0i, so that, initially, the lth bin has energy foieiV. The total energy of
0

the plasma is then found just by summing f0ieiV over the repeated index. Now consider a

rearranging of the plasma that respects only that each bin density be preserved throughout

the flow in the 6-dimensional phase space. Then, let us restack (reorder) the f0i in order

of decreasing density, i.e., such that the set of final densities, {f/i}, is a permutation of the

set of initial densities {f0j}, such that if i > j, then f/i < f/j. The maximum extractable

energy under this "Gardner restacking" is clearly

wo = (fl, - fo,)v, (1)
i

and we choose to call Wa the "Gardner freee energy." Here, the plasma is rearranged in-

compressibly in the 6-dimensional phase space such that the bins with the largest densities

eventually occupy the lowest energy states, but each bin density is preserved. In practical sit-

uations, however, it would be highly unlikely ever to realize the maximum energy extractable

under Gardner restacking.

Less energy, in general, might be extracted from a plasma if the wave were constrained "

to interact with particles only by diffusing them in phase-space from regions of high phase-

space density to regions of lower phase-space density. This is the so-called quasilinear

diffusion 3 that occurs in resonant wave-particle interactions, and, in many circumstances,

this would be the more likely type of plasma response to waves. The purpose of this paper



is to examine the maximum extractable energy from the plasma slab under diffusive rear-

rangement. The restacking solution to the maximal extraction problem under merely the

. incompressibility constraint is easily and succinctly stated in Eq. (1). In contrast, under the

diffusive constraint that interest us here, obtaining the maximum energy e.'_ractable is far

more challenging. In fact. it turns out that a general solution to this problem is surprisingly
$

difficult, so much so that. rather than a solution, what is offered here is mainly to identify,

to motivate, and to pose precisely what is actually a quite fundamental problem of practical

interest, and to indicate certain features that the solution must have.

The question of "free energy" in a plasma, different under different constraints, has been

addressed in a number of other contexts. Rosenbluth and Rutherford 4 define three sources

of free energy: one, expansion free energy, arising from nonuniform density and temperature:

two. velocity space free energy, arising from nonmax-wellian velocity distributions: and three,

magnetic free energy, arising from the plasma diamagnetism. The free energy tapped in

wave-driven plasmas, however, is not strictly considered in generality in any of the above

three categories: in general, the free energy tapped by waves relies at once on the details of the

distribution function in both velocitv and configuration space, something of a combination

of categories one and two. Hence, a consideration of the free energy in the expansion of a

nonmaxweUian plasma could be more complicated than either the velocity space instabilities

of a nonmaxwellian plasma or the spatial expansion of a maxwelllan plasma.

Even the spatial expansion of a maxwellian plasma is more complicated when the re-

' locity space features are considered. For example, more energy can be released, in principle,

if specifically the energetic particles in the dense region diffuse with the less energetic par-

ticles in the underdense region. Waves can indeed diffuse particles in such a manner, and,

even for maxwell.ian velocity distributions, there could be a greater number of energetic par-

ticles in the denser region than slower particles in the underdense region. Just considering

the expansion of a max'wellian distribution 4 would indicate less free energy than might be

extracted in the above manner.

The questions raised here must also be distinguished from the recent, interesting con-

siderations of free energy in a plasma by Morrison and Pfirsch, s'8'r who derive expressions for

the free energy in perturbations about plasma equilibria. What Morrison and Pfirsch 5 do is

to impose precisely on the perturbation the constraint of "dynamic accessibilty," taking into

account the effects of resonant particles. With improvement on expressions for the energy in

, various plasma modes, more precise considerations of plasma stability may be made. Such

calculations are relevant in initial value problems, where the growth of a plasma mode reties

on the free energy available to the mode.
¢

In the problem contemplated here, where the wave pulse enters and leaves the plasma

from a boundary, such initial value problems do not arise. Since the plasma is driven ex-



ternally, whether the waves employed would be stable or unstable were the plasma infinite

and homogeneous does not turn out to be directly relevant. Also, what is of interest here is

a global quantity, the maximum energy extractable, which is something that could not be

approached from the viewpoint of local stability criteria.

This particular posing of the energy extraction problem, under the diffusive constraint,

arose recently in the practical problem of extracting energy from the population of c_-particles

that are produced in a fusion reactor, s Extracting energy from the c_-particles is thought to

be valuable for two reasons: one. less free energy in the s-particles reduces the likelihood of

unwanted deleterious instabilities of the plasma, and, two, the energy channeled into waves

may perform certain useful tasks. One problem is to find the waves that might extract the

largest amount of this free energy, and a statement of the maximum extractable energy would

be useful in evaluating specific extraction schemes. As it turns out, none of the calculations

in the literature of plasma free energy quite addresses the kind of problem that needs to be

solved to find this maximum extractable energy.

The diffusion that we consider here is formally nonlocal; particles can diffuse from any

high density region of phase space to any low density region of phase space, even if the

two regions are not contiguous. As we show later, such a posing of the problem is entirely

consistent with particles physically diffusing only locally: it turns out that when viewed on

a microscopic scale the diffusion is local; when viewed on a more coarse scale, the diffusion 0

can appear as nonlocal. Hence, the mathematical posing of the problem does not disallow

nonlocal diffusion. Note that for the Gardner restacking solution it matters not whether the

flow in phase space is local or not, since nonlocal rearrangements of density can always be

constructed from local exchanges.

The paper is organized as follows: Before stating formally the exact problem to be

solved, we introduce a number of examples: In Sec. II, we formulate this problem by taking

as an example stimulated emission by a set of lasers. Here, the energy levels are discrete

rather than continuous, as in a plasma. In Sec. III, certain insights into optimizing energy

extraction are drawn through considering numerical examples of the case of discrete energy

levels. In See. IV, we give a precise statement of the problem both for discrete and continuous

distribution functions. In Sec. V, we discuss how the wave diffusion describes a subset of all

possible phase-space conserving rearrangements, and so is consistent with incompressibility. "

In addition, we prove that the maximum energy released under diffusive rearrangements

is bounded by the Gardner free energy, Wa. In Sec. VI, the bump-on-tail distribution is •

considered in one dimension. In Sec. VII, the conclusions and main results are discussed

briefly.



II. Stimulated Emission by a Set of Lasers

The problem posed in plasmas can similarly be posed with respect to stimulated emis-

sion by a set of lasers, and. for didactic reasons, a discussion with respect to the rearrange-

ment by lasers of populations of discrete energy levels ought to precede discussion concerning

the rearrangement of a plasma continuum.

Suppose. first, an atomic system with just three energy levels, the ground state at

energy e0, the first excited state at el, and the second excited state at e2, with initial

population densities of, respectively, N0, N1, and N_. Suppose further the availabifity of

three lasers with frequencies vi0, v20, and v_a, that, respectively, can stimulate transitions

between the first level and the ground state, the second level and the ground state, and

the second level and the first level. What these lasers can do, essentially, is to exchange

the population in any one level with the population in any other level. This happens if the

resonant frequency is applied for just the right amount of time (the so-called "n" phasing").

The question we pose is: what can be done with these lasers to extract the maximum energy

from the atomic system?

The maximum energy extractable is, in this case, just the Gardner solution: Suppose

for example that N1 > N2 > N0, then the Gardner solution gives

AW = eoN0 + elN1 + e2N2 - (coN1 + elN2 + e2No), (2)

g

where the populations were restacked so that the largest p'opulation now occupies the ground

state. The set of lasers available can accomplish this in two steps:

£0 £1 d2

initial (No N1 N_ )

Exchange Case" step 1 N1 No N2 ,

step 2 Nt N_ No

where, in step 1, applying frequency va0 for just the right amount of time exchanges the

populations in energy levels 0 and 1, ar_ then, in step 2, applying frequency v2a, again for

just the right amount of time, exchanges the populations in levels 1 and 2. This sequence

for extracting the maximum energy cart be expressed by the notation "(vlo v21, ),'_

• Note that these steps are not commutative, i.e., (vi0, v2x) _k (v2x, vlo). Thus, to extract

the maximum energy, the lasers must be both carefully synchronized to achieve the _rphasing

and ordered in the correct sequence.
$

Now suppose that timing the lasers so precisely as to exchange populations is very

difficult or impossible--perhaps the atoms can not ali be stimulated at once--then one can



imagine that all each laser can do is to tend to equalize populations rather than to exchange

them. In the previous example, what would be accomplished by (vi0, u2x) is"

Diffusive Case"

_0 £1 _2

step 1 (N1 + ,_o)/2 (Nt + No)/2 N2 '

step 2 (X, + N0)/2 (,V, + N0)/4 + N2/2 (N, + N0)/4 + N2/2

Again, these steps are not commutative, i.e., (rio, V21) _ (v2x,Vxo). Note, too, that if we

denote the final population levels as N_, NJ, and N_, it is not guaranteed that N_ > N_ >_N_;

it may take further applications of these lasers to converge to such a solution.

In the case where the lasers exchanged populations, finding the optimal laser sequence

was easy; not only was the minimum energy configuration apparent immediately--through

the Gardner reordering--but, even if we did not guess immediately this state, we could

simply have examined all accessible states, which are just permutations of the populations.

With only three populations that is only 3[=6 states. In the case here, where the lasers

diffuse rather than exchange populations, to examine ali accessible states would not be so

easy, even with just three, energy levels, since there are now an infinite number of accessible

states[

III. Numerical Ez,ample for Three.Level System

Suppose a three-level system, with a density vector N - (No, N1, N2), and an energy

vector t" __ (ao, q, e2). Thus, the energy is W - /_'. t'. For example, say that the energy

vector is _' = (0,1,4). If the initial density vector is /_o = (0,2,5), then the initial energy

is W ° = IV°. t' = 22. Let us try to solve, for this example, for the minimum energy under

diffusive rearrangement.

One might try to apply frequency V2ofirst, since that releases the maximum energy,

10 units; if one does so, then it is noticed that the population in level two is still larger than

in level one, so that frequency v21 should be applied to release more energy. The steps are:

eo--O ea"-I e2=4

(v2o,V2x) stepi W 1 = 12 5/2 2 5/2 .
step 2 W2 = 45/4 5/2 9/4 9/4

Note that since the populations are now monotonically decreasing in energy, no further

energy can be extracted.



Alternatively, consider the sequence (rio, V2o,v_l ), which gives

e.o=0 _1 = 1 e2 =4

sequence '2 step 1 W l = 2l 1 [ 5

' (vm, v_o,v_ ) step 2 W 2 = 13 3 1 3 '

step 3 I,V3 = 10 3 2 2

Again, note that since the populations are now monotonically decreasing in energy, no further

1 units more energyenergy can be extracted. But, this sequence of lasers has extracted l_
than the sequence above, (v_0, v21). A strategy apparently with merit is that:

Strategy i: Diffusion of particles first between similar

population levels, ali other things being equal, eventually

releases more energy.

That being the case. another sequence that might be tried is (v21, v20,vi0), which gives

eo----O el -- 1 e2--4

sequence 3 step 1 W' = 35/2 0 7/2 7/2

(v2x,V2o,Vm) step 2 W 2 = 21/2 7/4 7/2 7/4 '
B

step 3 W 3 = 77/8 21/8 21/8 7/4

which actually releases the most energy of all! In fact, it appears that this sequence releases

the maximum energy.

Note that it is not possible to find a maximal sequence independent of the energy

vector. For the energy vector here e = (0, 1,4), sequence 3 above appears to release the

maximum energy, but for a more "flat" energy vector, saye = (0, 1,9/8), sequence 2, which

puts more atoms in the ground state, gives a lower final energy of 33/8 wheras sequence 3,

which removes the most atoms from the highest energy state, gives a final energy of 35/8.

One might profitably examine one more sequence. Consider

Co=0 ex =1 e2 =4

, initial W ° = 22 / 0 2 5

sequence 4 step 1 W l = 35/2 0 7/2 7/2
step 2 W 2 = 63/4 7/4 7/4 7/2 .

, (v,x,Vlo, V2o,v2_) step 3 W a = 49/4 21/8 7/4 21/8

step 4 W 4 = 175/16 21/8 35/16' 35/16



This sequence turns out relatively badly; here, with the opportunity to deplete the second

ieve[ at step '2. the first level was depleted instead. Apparently, a second strategy with merit

is that:

Strategy ;2: Depleting of particles the higher energy

level first, ali other things being equal, eventually releases

more energy.

How might one prove that sequence 3 releases the most energy? One could probably

offer, for this simple case, a rather cumbersome and inelegant proof, but we resist doing that

without an algorithm for considering the N-level system, where N may be large. Evidently,

the complexity of the problem increases rather substantially with increasing N.

IV. Statement of the Problem

Having motivated the importance of the problem, having identified where this problem

might occur, and having indicated its complexity, finally, we are in a position to state the

problem precisely, both for the case of discrete energy levels and for the case of a continuum

in both energy and space. For the discrete case, in which diffusion equalizes the density in

two energy states, the rearrangement problem may be stated as follows:

Statement of the Problem, Discrete Diffusive Rearrangement: For an '

energy level vector _'= {ei} and a density vector, at the kth iteration

1_"k = {N/_}, find the iteration sequence (alba,... akbk), meaning that,

at the kth step, the density is iterated according to the rule

N/k = { Nik-', if/# ak, bk;
(3)

(Y2:' + g:[')/2, if/= ak, bk;

that minimizes W k = _'./_k = _i e_N/k, for k --, _.

One can also state the problem in the continuum limit under general diffusive possibly

nonlocal, flow. Without loss of generality, as we show below, consider the one-dimensional

density f(v, t) that evolves according to

Of

o-7= f g(., .', t)[f(.',t) - (4)
$

where the kernel K(v, v_,t) h_ two important properties:

1. K(v, v', t) = K(v _,v, t), which assures particle conservation.

2. K(v,v',t) >__O, which assures that diffusion occurs in detailed balance, i.e.. for any

flow beween v and v', Of/Or > 0 if f(v,t) < f(v',t).



The continuum rearrangement problem to be solved can then be stated as follows:

Statement of the Problem. Continuum Diffusive Rearrangement: For

, a density function f(v, t) obeying Eq.(4), find the kernel If(v, v', t)
that minimizes

P

. W(t) = J e(v)f(v,t)dv (5)

., for t _ oc. For a nonrelativistic plasma, one would take _(v) = v2/2.

That the stating c r.the problem in one dimension is, in fact, without loss of generality

can be demonstrated by proceeding to the continuum Emit as follows: Let f evolve in the six

dimensional phase space, which is chopped into M boxes of volume V = dzdydzdv, dvudv...

Associated with each box i is an energy e;, and a number Ni(t), where the boxes may be

ordered so that ifi >j thene_ > e,. Define f(s, t) _'Ni(t)/V, foriV< s < (i+l)V, and
obtain a one dimensional density distribution function in the limit M --. _.

Note that the problem, even as put in one dimension, is quite formidable; in principal,

to solve this exactly, ali kernels If(v, v', t) obeying properties (1) and (2) above must be

searched, in order to find the kernel that evolves f to the minimum energy state. This is

a search in three-dimensional function space. This might be posed variationally, but there

, does not occur to these authors any easy way of solving this problem.

Finally, note that f, as evolved through Eq.(4), obeys an H-theorem. 9 Consider the

quantity

d_ f(v,t)2dv = dv dv'Z(v,v',t)[2f(v,t)f(v',t)- 2f2(v,t)]

=f f dv'K(v,v', t)[2f(v,t)f(v',t)-f(v,t)2-f'2(v,t)]

=-f f - O,

where the first equality makes use of Eq.(4), the second equality may be written because

K(v,v_,t) is symmetric in v and v_, and the inequality follows from the positive definite

nature of K. It follows that since a positive quantity is monotonically nonincreasing, it must

reach a steady state.

V. Reconciling Diffusive Flow with Phase Space Incompressibility
J

In posing the problem of the extraction of plasma energy by waves traversing a plasma

slab, it has been assumed that the waves can diffuse plasma from any region of phase space to

any other region of phase space. Stricty speaking, diffusive flow can not occur if the plasma

is collisionless, and nonlocal diffusion is not physical. However, these considerations are on



a microscopic scale; on a coarser scale, it will always appear that waves can, in principle,

diffuse plasma from any r£3ion of pi:ase space to any other region of phase space. Thus "fine-

grained" entropy is conserved, even as what might be defined as "coarse-grained" entropy
p

grows (see e.g. Ref. 10).

Consider for a one dimensional density distribution, a series of phase space boxes, each
of size AxAv, 0

where we use horizontal placement to indicate the velocity axis, so that the different boxes

represent different velocities. The numbers in each box give the average phase-space densi[ty

within the box. One diffusive step could give

How might such a diffusive rearrangement occur in a system conserving phase-space

density such as a collisionless plasma? Suppose the plasma were more finely grained, e.g.,

divide each phase space box into four smaller boxes, each of size (Ax/2)(Av/2), so that the

density can be represented by

.
Here, the second row of numbers represents the density at a slightly different spatial position,

and the second column of numbers represents the density at a slightly different velocity. Now,

a possible phase-space conserving rearrangement is

"2 4 "

and, if one just looked at this phase-space conserving rearrangement on a slightly coarser

scale, then one would simply see

Thus, "diffusion" on one scale can be viewed as an incompressible flow on a more microscopic
scale.

A second point related to _fine-graining" is that diffusion need not be treated as if

it could occur only between contiguous areas of phase space. For example, in the example

abo_e, consider the diffusive rearrangement

in which the diffusion occurs between the noncontiguous regions of phase space. But exactly

this rearrangement is possible by considering a finer graining over a small region abutting

the larger region, as we show:

10



Suppose, in the original phase space graining, each box is of size AzAv. Expand each

box into N smaller boxes of size (Az/N)Av. In other words, with each row representing a

spatial region of width :.hz/N, the distribution-:m be be represented by
8 2 4

8 2 4

8 2 4

8 2 4 .

Now, suppose that diffusion takes place in the horizontal direction across the bottom s!iver,

and in the vertical directions across the side regions only, then, the distribution evolves to
6- 2 6-

6- 2 6-

• . !

6- 2 6-

6- 6- 6- ,

where by "6-" is a number slightly smaller than 6, approaching 6 for N large, since the

distribution function tries to equilibrate in the bottom and side regions. But on a coarser

t scale, the resulting distribution vector just appears to be N = (6,2,6), as if the diffusion

had occurred across noncontiguous regions.

What has been shown in this section is that diffusive, nonlocal rearrangements of phase

space are obtainable through local phase-space conserving rearrangements on a smaller scale.

The opposite, however, is clearly not true; the density vector (2,5) can not be rearranged

diffusively on any scale to give (5,2). Thus, the diffusive rearrangements form a subset of

all possible phase-space conserving rearrangements of the plasma in phase space. Since the

Gardner restacking solution gives the maximum energy' extractable under the superset of

phase-space conserving rearrangements, clearly the maximum energy extractable through

diffusive rearrangements is necessarily bounded through Eq.(1) by Wg, the Gardner free

energy.

VI. Free Energy in Bump-on.tail Distribution

One of the classic examples of the release of energy through quasilinear diffusion by

. waves is the interaction of a spectrum of electrostatic waves with the so-called "bump-on-

tail" distribution function. Here it is important to discriminate between an initial value

problem, the case generally treated in the literature, and the boundary value problem, the
D

situation of interest here.

in the initial value problem, a spectrum of unstable waves grows until there is no more

11



energy to feed the instability. In addition to the change in energy in the group of particles

resonant with the wave, there is also a change in energy of nonresonant particles, since these

particles, nonetheless, oscillate in the wave. Of course, this bookkeeping of the energy could
I

be accomplished equally well through lumping the oscillatory energy of the nonresonant

particles into the wave energy. 11'12In the boundary value problem treated here, the wave

leaves the plasma slab entirely, so there is no remaining oscillatory motion within the wave;

hence, the only change to the particle kinetic energy arises through the resonant particle

rearrangement.

The "bump-on-tail" distribution function is a one-dimensional distribution in veloc-

ity, with a minimum at superthermal energies. The maximum extractable energy through

diffusive rearrangement occurs when the minimum is filled in from higher energy. What

about a distribution function with two or more minima at superthermal energies, a "several-

bumps-on-tail" distribution? If the diffusion can be nonlocal, determining the maximum

extractable energy is difficult; this is no simpler than the general statement of the problem

in the continuum limit. However, if the diffusion were limited to local diffusion only, it turns

out that this energy can be determined. If waves are employed only to diffuse particles from

higher to lower energy, the temporal sequence of local diffusion is unimportant, since in any

event, the lowest energy state is reached when there is a local flattening of abutting regions.
b

VII. Summary and Discussion

What has been set forth here is the question of energy extraction from a plasma slab

by means of waves traveling through it, such that the wave causes velocity and space diffu-.,

sion within the plasma. This is the configuration that arises in certain problems of practical

interest, for which knowledge of the maximum extractable energy would provide a standard

by which to evaluate any particular means of extraction. In addition to relating to con-

temporary problems in plasma physics, this question relates also to maximizing stimulated

emission by a set of lasers.

Some consideration must be paid to a number of subtleties: on a microscopic scale,

the collisionless rearrangement of a plasma must preserve phase space density and occur

locally, but viewed on a coarser scale, the plasma appears to be rearranged diffusively and

nonlocally.

The problem has been posed here both for the discrete and the continuum cases. The

latter posing is applicable to plasmas, while the former posing is applicable to stimulated

emission in atomic systems as well as, indeed, any numerical and therefore necessarily discrete

posing of the problem in plasmas. In both cases, the maximum extractable energy by diffusive

means has been shown to be less than the Gardner energy.

What is interesting is that obtaining the precise maximum extractable energy under

12



diffusion by waves, even in relatively simple situations, is a surprisingly formidable task. For

local diffusion in several dimensions, or, equivalently, nonlocal diffusion in one dimension,

the temporal sequence of the wave diffusion is critical. Different final states are reached

depending on the wave history. While no solution has been obtained for finding the maximum

extractable energy under such circumstances, certain insights have been drawn through the

_ consideration of specific examples, and certain strategies for optimizing energy extraction
have been discovered.

What has been identified in this work is a fundamental quantity of practical interest,

the free energy of a plasma under the constraint of diffusion by waves. While it is difficult

to ca!culate, it can be defined precisely. It is this quantity that is the free energy of interest

in certain important problems.
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