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Alpha particle effects on the internal kink and

fishbone modes

Yanlin Wu, C. Z. Cheng, and R. B. White
Plasma Physics Laboratory, Princeton University
| P.O. Box 451
Princeton, New Jersey 08540 USA

Abstract

The effects of alpha particles on the internal kink and fishbone modes are studied
analytically. The nonadiabatic contribution from untrapped alpha particles is negligible.
Finite inverse aspect ratio, plnsma  and plasma shaping effects can significantly enhance
the trapped particle drift reversal domain in the pitch angle space and reduce the bounce-
averaged magnetic drift frequency. The drift reversal effect on the ideal kink mode is small,
but the f, threshold for the fishbone mode can be much lower than previously predicted.?
Moreover, the fishbone mode could be excited by alpha particles even when the plasma
is stable in the ideal MHD limit. In addition, the ion diamagnetic drift frequency (finite
ion Larmor radius effect) has a strong destabilizing effect on the fishbone mode when it is
comparable with the trapped alpha averaged precessional drift frequency, even though it

stabilizes the plasma in the ideal MHD limit.
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I. Introduction

The effects of energetic particles on the ideal magnetohydrodynamic (MHD) kink and
fishbone modes have been studied extensively.!® Most previous works were focused on
~ circular cross section tokamaks with zero plasma beta and assumed a narrow pitch angle
distribution. In the low-frequency limit, i.e., the wave frequency w is well below the
precessional frequency w; and the diamagnetic drift frequency w,, the sign of the trapped
particle potential energy is prop_ortional t0 w./wy and the energetic trapped particles have
a stabilizing effect if w,/wy > 0 and destabilizing otherwise. When the hot particle beta
B is larger than a critical value, the fishbone mode is excited with w ~ w,. For fusion a-
particles, however, due to their uniform pitch angle distribution, w.,/(ws — w) may change
from being positive to negative as the particle pitch angle A changes from a deeply trapped
to a barely trapped state. The inverse aspect ratio €,, finite # and plasma shaping effects
can enlarge the drift reversal domain. Thus the net effect of trapped a—particles‘ must be
integrated over the entire trapped a-particle population. Furthermore, since the trapped
a population averaged precessional drift frequency (w;) may be comparable with the mode
growth rate 4 or even change sign, some of the previous conclusions!® based on zero beta,

large aspect ratio equilibrium will be greatly modified.

In this paper, we investigate the a-particle effects on the internal kink as well as fishbone
modes due to effects of plasma 3, plasma shaping, and the core ion finite Larmor radius
effect through the diamagnetic drift frequency. The effects of plasma 3, plasma shaping
and finite aspect ratio are included in calculating wy, and both the trapped and passing
particle contributions are included in the kinetic potential energy. We find that the stable
domain in the (B4, 7) plane can be significantly reduced due to these effects from that

previously predicted.’



In Section II we briefly review an analytical equilibrium solution based on a low beta
ordering.%!® The plasma shaping effect is included. An analytical expression of the trapped
particle precessional drift frequency is presented in Sec.III. The dispersion relation for the
internal kink and fishbone modes is presented in Sec.IV and an analytical marginal stability
analysis is given in Sec.V. Numerical results of the dispersion relation are presented in

Sec.VI. A ccnclusion is given in Sec.VII.

II.. The shaped equilibrium

Consider an axisymmetric toroidal plasma, consisting of a core (c) isotropic component
and a-particles (a) with n, < n, and T, > T, but 8, < B.. We consider a trans-
- formation®!? from the cylindrical coordinate system (R, Z, ¢) to a flux coordinate system

(p,w, ), where p labels magnetic surfaces and w is a poloidal angle, i. e.
R = R(p,w), Z = Z(p,w). (1)
The transformation leads to a me‘tric tensor g;; defined by the element of length
(d€)? = gpp(dp)* + 2gpudpdw + guu(dw)? + R*(dg)?, (2)
where
gij = O;RO;R+ 0,20;Z, (3)
and the Jacobean J = R detgij is given by
‘}= R(8,R8,Z — 0,R0,,Z). " (4)
The magnetic field B is represented in the form

B = RoBy(f(p)Vé x Vo + 9(0)V9), (2)

3



where Ry is the major axis of the torus, By is the vacuum toroidal magnetic field, and f

and g are functions of p only. The safety factor q is then given by

glp) [ dwT

and the equilibrium equation reads
f gww f g 4 gg
[a - pw] + R232 + R2 ’ (7)

where the pressure p is a function of p only, and primes denote derivatives with respect to
p.

Employing a standard low beta tokamak ordering® with p/Bj ~ €2, f ~ ¢ and g ~ 1,

equation (7) implies that ¢ = 1 + ¢2g, where the subscript denotes the order in inverse

aspect ratio e. We seek a solution for the equilibrium furfaces in the form

R= Ry—epcosw —?A(p) + %Y sa(p) cos(n — 1)w + e3P cosw + ..., (8)

Z =¢psinw +e2)_ su(p)sin(n — 1)w — e*Pcosw +.... (9)

Substitution of these expressions into the equilibrium equation (7) and normalization
of length to Ry yield equations for the Shafranov shift A , the imposed shaping functions
Sn, and P which corresponds to a relabelling of the surfaces. Thus, we obtain from the

A

coefficients of different harmonics of w in each order:

32 + 95+ fl (Pfl)l =0, (10)
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Figure 1: The flux contour plot in R-Z plane.

and

no (2ef) Ly, 2 ySa _
8q + ( of: p)sn (n 1)p2-0. (12)

Note that equation ( 12) is not driven by the plasma pressure and requires an external
origin; it describes how shaping at the plasma surface propagates into the plasma. The
ellipticity and triangularity are described by s, and s3, respectively with ellipticity x =
(1 + s5(a))/(1 — s5(a)) and trangularity § = s4(a). We will assume s, = 0 for n > 4 for

simplicity. Clearly if ¢ is a constant which corresponds to a flat current profile, f ~ p and

we have
() = (5)sa(0). (13)

In principle, for given p and g or f profiles we can determine all other quantities through



~ the above set of equations. For example,

v 1 [P 2pp’
& = — [} - ) pio | (14)
and
| p, N
9 = -'B—% - ;‘(Pfl)'- (15)

However, since we are only interested in the region within the g(p,) = 1 surface, i.e. p < p,,
we will retain only the lowest order solutions. Thus, a = ~p'/(2B2p), s; = (k—1)/(k+1)p,
83 = 6p%/(2a), A’ = (e + 1/4)p and g5 = 2(a — 1)p. The g-profile is chosen as

q=%+u—%x§ﬁ (16)

s

where go = g(p = 0) and p, = p(g = 1).

III. Bounce-averaged magnetic drift frequency

The toroidal precessional drift frequency of a trapped particle can be expressed as?:

1 0gJ

Wq = E:B;]—’ (17)

where the longitudinal invariant J = § v,d¢ involves an integral over the trapped particle

orbit. The parallel velocity is v, = \/ 2(E - uB)/M,, E = M,v?/2 is the energy and u is
the magnetic moment. Here M, and e, are alpha particle mass and charge respectively.

To first order in the inverse aspect ratio ¢, we find

Wda = Wdo H(I‘G, 6’ )\,p)')"giv (18)

where

Wy = — (19)



is the deeply trapped particle precessional drift frequency evaluated at the g = 1 surface,

and

H= {-—---G1 423G, - A'(1+2G3 + G) — 20(e — 1+ Go) - LGs}{1 - AGL}-

with

_ /05 de
0 \/2(cos0-0050b)’

G=K[ L YL
0 \/2(cose — cos @) K

9
Gr= K~ [ /2(cos6 — cos)db = 2{% _(1-#),

Gy = K™ f:b \/(cosf — cos()b)/2. cosfdf = -z-{(l ~- k%) + (2k% - 1)==},

Nltﬁ

cos? 6

~/ \/2 (cos@ — cos 0;,

Gy = K

1
= '3'{1 + 2(1 - 2k2)G1},

8
=K“1/ b cos 26 d8=2G, — 1,
\/2(0089 — costy)

§=

0,9.

SRS

',(20)

(22)

(23)

(24)

(26)

(27)

In the above expressions 6, is the bounce angle, k? = sin?(8,/2) = (1 + p — \)/(20), K(k?)

and E(k?) are the first and second complete elliptic integrals respectively, A = uBy/E is

the pitch angle, and p, = p(q = 1). For trapped particles we have 0 < k% < 1.

7

g



i L 1 L] ' T Ll L] ¥ ' L) Ll 1 1

0.5

<
S

~o_ /

~,

T T T
/
. N\

lllllll

-. -

|
o
(@]
LI L B
|
|
I3

PN SUSE YT YN SRR YO NN SO W Y WY W WO W
o] 1 ' 2 3
6y

Figure 2: The variations of function G with the trapped particle bounce angle 6, for ¢ = 0.1.

The effect of ellipticity « is mainly to reduce the mé,gnitude of the precessional drift
frequency while the triangularity 4, and plasma § will increase the drift reversal domain in
the pitch angle space. The finite § effect is very important when the plasma 3 approaches
the ballooning limit in which case § ~ € and § ~ O(1). Note that in the previous
calculations of a-particle effect on the internal kink mode,! the effects due to finite S,
plasma shape, and inverse aspect ratio corrections were not included, and wy = waG1p,/p
was used.

Fig. 3 compares the dependence of H as a function of the bounce angle 8, for the zero
beta circular plasma case and a general finite beta case with kK =1.5,§ = 0.5,8§ = 0.4,a =
0.75, and p = p, = 0.1. The effect of « is to reduce the magnitude of wy, and the effects of
a and § are to increase the drift reversal domain.

Figure >4 plots the trapped particle domain in (p, ) space and the w; = 0 curve (Solid

curve). For a given radial location, ws changes from being positive to negative as pitch A
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Figure 3: The variations of function H with the trapped particle bounce angle 6;,. The

solid curve uses the present theory with x = 1.5,6 = 0.5, = 0.4,a =0.75and p = p, = 0.1

and the doted curve corresponds to a zero beta, circular plasma.
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Figure 4: The wy = 0 curves in the trapped particle (r,A) domain. Curve (a) uses the

present wy = wyog With kK = 1.5,6 = 0.3 and o = 0.5, and curve (b) uses wy = wdo%Gl.

decreases from a deeply trapped state to a barely trapped state, which means that w./wy
also varies from being positive to negative. If the trapped particles are destabilizing to
a certain MHD mode for w,/ws; > 0 in certain pitch angle region, the trapped particles
in the pitch angle region with w./ws < 0 would be stabilizing. Thus, the net effect of
trapped a-particles must be integrated over the entire trapped a-particle population. If
the drift reversal domain is large enough so that the net contribution from the term w, /wy
is negative, then the ideally MHD stable kink mode can be destabilized by the a-particles.
Also shown in Fig. 4 is the wy = 0 curve (Dashed line) without the finite inverse aspect
ratio €, shaping factors x and §, and plasma [ effects . It is clear that the drift reversal

domain increases due to these corrections.
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IV. Dispersion relation

In discussing stability it is convenient to use the coordinate (r, ) rather than (p,w),

wherell

w dw
r?=2Ry [ dp , 0 =2r ,,_’?,z . (28)
kool % i
To second order in ¢, we have
r=p+ 0(53)’ (29)
and

6=w+(A"+ sinw + O(e?). (30)

T
E)
In this coordinate system, the volume element is

d% = 2w Ror{1 — (r + A') cos 8}drds. (31)

The kinetic-MHD dispersion relation after division by the constant 2rR(%E)% | & |2

has the following quadratic form*128

D(UJ) = §Wf + WL — 6K =0, (32)
where
w(w — wi)
0K = i +—m—— (33)
Wa

is the inertial energy, @4 = v4/(V33R), § = r,¢,, q(r,) = 1, and

Y 13 38; 12031 — go)?s3(r,) RE 12s§(r,)§(2,_} (34)
TONTGe+d) " d-¢  (A+026-0) ¢ 4+€ 7

.}

§W; = £(1

11




is the fluid potential energy due to the core components.
The energetic particle potential energy 6W; has two parts: one is the adiabatic p:;\.rt
§W{ and the other is the non-adiabatic part §W{"". The adiabatic contribution due to

both trapped and passing particles is independent of the mode frequency and is given by

a 3 Q,
5W,£ ) = - 4?‘3_E'—a A 2(7' + AI)W*aﬂad'l‘
— 3 Te 2 ] wnx
= 47‘2[) ré(r+ A )ﬁ d (35)

Since the plasma equilibrium is determined by the total plasma pressure, we will combine
the 6W,§“) term (which is from £, - VP,) with the core plasma §W; (which is from £ -VP,)

for convenience.

The non-adiabatic part due to the trapped a-particles is given by

na 213/27T2MC,R2 Te 14r
6WI£,t ) = ——B;;-Z'Eg——/ T dr - i
5/2
<[ gL k” (WBEF — ——8 F)(5°’°2) (36)
Wq — Q
where
1 dd 2 /2 9 '

kbv-27rf 1_)\/h—7rVr)\K(k ) (37)

and

= (cos(gf)) = G1 — (¢ — 1)Goa. (38)
We assume a slowing-down distribution function with uniform pitch, i.e.,

E3? {E<E,
F(r B, )) = { cn(r) if E<

(39)
0, otherwise

12



and the normalization factor c is determined through the hot component pressure

Eq
= /0 FM,Ed%
which gives
c= Po
427 M, n(r) E
We find
(na) _ 9 kz Wea i Wea w4
WG = gz [ rBatr)dr [ AR 4 L sy
where
2 E,
Wya = —58_—2:;6,. In n(r)

is the a-particle diamagnetic frequency,

Ba(r) = msw%az(r)

is the local trapped o-particle 38, and
In|1—d| 4o ify=0and 0<% <1

S(=)=1{ In(1-%)+2m, f T<0and 0< <1
In(1 — £2), otherwise.

Note if wy <€ w, the singularity is removed by using the analytic expression

Wea W Waq

...wd
-1 ~1- .
wd Wq Wq )S( ) 2w

(40)

(41)

(42)

(45)

(46)

The non-adiabatic part of the kinetic potential energy due to the circulating a-particles

is given by
13/2 M 1-r
(na) 2 T ]
= = ["e+ayar [Tar

13



oo wES? . 1
X /0 dE(l - q)2wi — w? (wopF Q.r

where - *

B,F)kgkg, (47)

1 df 1

b=5=f NSV R e | (48)

k,_.=<(1—-g%)cosa>=—8(l_)‘), (49)

and

_ {w) 2E(1 - 1))
The energy integral can be carried out and is given by

o0 ES/2 1
I _/0 B @0~

8,F)

cr

E,
=§fﬁ___-{wm+w( = _1)S.}, (51)

where

and

In|1-35|+m, if7w=0and0<‘i%ﬁ_<_1
Se={ In(1-35)+2m, f @<0and0< %z <1 (52)

w

0]

In(1 - %), otherwise.

Thus the nonadiabatic circulating particle kinetic potential energy is given by

(na) _ 3w Ts ﬂa,,.3 1-r Xi WeaW _ .
Wee “m3lo w2 dr/o =y e el ~ 1S (53)

14
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Figure 5: The comparison of the real part of W due to all components.

Figure 5 compares the nonadiabatic contributions of the energetic trapped and circulating
particles as well as the total energetic particle adiabatic contribution. In general the
magnitude of 6W,£::“) is much smaller that that of 6W,§ft"") and is negligible.

It is convenient to normalize all the qu'fmtities to the constant frequency wyo, i.e., let
A = Weaf/wa V= @4 /way ,Q = w/wa. Defining v, = —V(6Wf + 6W,£")), the dispersion

relation then reduces to
D(Q) = —iy/UQ-C) —m + VW = 0. (54)

V. Marginal stability analysis

The marginal stability condition can be understood by simplifying the dispersion re-
lation; the pitch angle integration is approximated with an expression evaluated at an

averaged value of precessional drift frequency @4. The effect of magnetic drift reversal is to

15




reduce the averaged precessional drift freqﬁency @4. Then the marginal stability conditions

for both the ideal kink and the fishbone modes are determined by

w(l - fro(w)?/B5) = weiy (55)
and
- ,Ba - Wa
T = W—ﬁ';(wd+wln|1— " D, (56)
where
o Ad]
Po= Ere (57)

Note that at 8, = 0, marginal stability for the ideal kink is possible for w.;/2 < w, < wai
and 75 < w.if2.

For G, > 0, the real frequency of the ideal kink mode at marginal stability is given by

Wi

W= — ] 58
1- Ba .Z_g_low 2 (58)
and the stability l;oundary is given by
3w*a(DAﬁa w*i ‘Dd
T e r— —-l 1 — —— . .
i a5, Gt mlt-gol (59)

As @, decreases, the marginal stability boundary curve for the ideal kink mode has a
steeper slope in the (Ba,7s) space. On the other hand, the contribution of w; is to reduce
T if | 1 — @a/wai |< 1, and vice versa. |

At marginal stability the real frequency of the fishbone mode is much larger than w.,

but smaller than @4, and in the lowest order is given by the equation
@a+woln|1— 22 |=0. (60)
Wo

16



Including the first order correction the frequency is roughly given by

0.37s@q

w = wp(1 Y (61)
for
4L | (62)
3Bawsa
where wp = 0.78w,. The marginal stability condition is given by
o) = gt 1= HE L (63)

Thus, for the fishbone branch, the effect of reducing @, or increasing w,; is to reduce the

critical 3,, and vice versa.

| VI. Numerical results

In the following we present numerical solutions of the dispersion relation, Eq. (54).
Consider ITER parameters £, = 3.5MeV, E; = 20KeV, n ~ 10%cm=3, B ~ 6 x
10*G, R = 800cm, a = 300cm, 7, ~ a/3, L; = —(8,n;)"! ~ O(a), Lo = —(8;na)~! ~
O(a/2j,‘and we have: A ~ O(5), v ~ O(20). The g(r) profile is chosen to be quadratic.
Fig. 6 shows the marginal stability curves in the (8.,7) space for w,; = 0.05. In the
domain under the curves, the plasma is stable; the left boundary is for the ideal kink
mode, and thé right boundary is for the fishbone mode. The solid curve is obtained by
using wy = wgH r,/r, and the dotted curve is obtained by using wg = waGi 7,5/ 80
that plasma beta and finite inverse aspect ratio effects are neglected. Here H < G;. It
is clear that the drift reversal effect is reducing the average @wg, and thus the critical 3,

for both the ideal kink and the fishbone modes. The drift reversal has a small stabilizing

17
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Figure 6: Marginal stability curves in the (G,,7;) plane. Curve (a) uses wy = wgH r,/r

with w,; = 0.05,a = 0.5,k = 1.5 and § = 0.3 , and curve (b) uses wy = waGy 7,/7.

effect on the ideal kink branch; the slope of the stability curve is proportional to 1/, near
Bo = 0. However, the drift reversal has a large destabilizing effect on the fishbone mode;
the threshold for the fishbone is substantially lowered since the critical 8, ~ @3. We note
that even when the total plasma 3 is below the ideal internal kink threshold, the fishbone
mode can be excited with large G,.

Figures 7 and 8 plot the marginal stability boundaries in the (8,,7s) space for ellipticity
k and trangularity é6 dependences. The fixed parameters are the same as in Fig. 6. In
general, as k increases, the magnetic field curvature decreases and so does wq. It is clear that
as k or § gets larger, the stable domain becomes narrower mainly due to the destabilizing
effect on the ﬁshbbne mode. The G, threshold for the stabilization of the ideal kink mode
is only slightly decreased by « and 4. But, the threshold for the fishbone mode excitation

can be significantly reduced by s. As pointed out by Connor,!? the ellipticity x has a small

18
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Figure 8: The trangularity § dependence of the marginal stability curves in the (Ba,7)

plane for k = 1.5,6 = 0.3 and w.; = 0.05.

19




LI a4 'j L) L] | T L} LB ' T 'q
[ L L X+ e T
[ ———a=0.5 i
03 ———=1.0 a ]
$ o2l e -
\g ] ..r.""{
- ‘/"’ -
o1r // ]
X X
L1/
e\
0 PRI W RN | ' "
0 001 002 003
Bn

Figure 9: The plasma § dependence of the marginal stability curves in the (G,7s) plane
for k = 1.5,6 = 0.3 and w,; = 0.05.

destabilizing effect but the triangularity 6 has a strong stabilizing effect on the ideal MHD
kink growth rate 4. Thus, the effect of § through v, competes with its destabilizing effect
on the fishbone mode.

Figure 9 plots the dependence of the marginal stability boundaries in the (G4, 7s) space
on plasma § . The strong destabilizing effect of § is mainly due to the appearence of a
magnetic well which reduces the drift velocity. The case with o = 0.5 corresponds to about
2% average plasma beta for a quardratic pressure profile.

Fig. 10 shows the core ion finite Larmor radius effect (finite w.;) on the stability bound-
ary in the (B4,7s) space. For typical tokamak parameters we expect w.;/wa < 0.05. As
w,; increases the 7, threshold increases for the ideal kink mode, but decreases much more
for the fishbone mode. For the fishbone mode the (3, threshold is further reduced by w.;

besides wq, as predicted from our analytical analysis. The w,; effect is very important if

20
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Figure 10: The diamagnetic drift frequency (= w.i/wa)-dependence of the marginal sta-
bility curves in the (84,7s) plane for k = 1.5,6 = 0.3 and a = 0.5.

it is comparable with the averaged magnetic precessional frequency wy such as in Neutral
Beam Injection cases.

Figure 11 depicts the kink mode frequency w and the growth rate v versus G, with a
fixed ideal kink growth rate 7,. The stablization of the ideal branch and the destabilization
of the fishbone branch due to the fusion a-particles is very clear. Moreover, the a-particles
can still excite the fishbone branch even for 4, < 0, i.e. when kink mode was originally

stable in the ideal MHD limit in the absence of a-particles. For 7, = 0.075,5, > 0.013,
and the fishbone mode is excited.
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VII. Conclusions

In summary, the effects of trapped fusion a-particles on internal kink and fishbone
modes have been investigated. Finite Shafranov Shift, plasma §, and plasma shaping
effects can significantly enhance the trapped particle drift reversal domain in the pitch
angle space and reduce the magnitude of the precessional drift frequency. The stable
domain for both the ideal kink and the fishbone modes can be significantly reduced. For
typical tokamak parameters, the core ion diamagnetic drift effect can narrow the stable
domain in the presence of alpha particles, even though it has a stabilizing effect in the

ideal MHD limit.

22




‘ Acknowledgments

This work was supported by the United States Department of Energy under contract
number DE-AC02-76-CH03073.

23




References

1B. Coppi, S. Migliuolo, F. Pegoraro, and F. Porcelli, Phys. Fluids B 2, 927 (1990).
2M. N. Rosenbluth and M. L. Sloan, Phys. Fluids 14, 1726 (1971).

SM. N. Rosenbluth, S. T. Tsai, J. W. VanDam, and M. G. Engquist, Phys. Rev. Lett. 51,
1967 (1983).

L. Chen, R. B. White, and M. N. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984).
SR. B. White, L. Chen, F. Romenelli, and R. Hay, Phys. Fluids B 28, 278 (1985).
SR. B. White, M. N. Bussac, and F. Romanelli, Phys. Rev. Lett. 62, 539 (1989).

C. Z. Cheng, Fusion Technology 18, 443 (1990).

8C. Z. Cheng, Phys. Reports 211, 1 (1992).

9J. M. Green, J. L. Johnson, and K. E. Weimer, Phys. Fluids 14, 671 (1971).

103, W. Connor and R. J. Hastie, The effect of shaped plasma cross sections on the ideal

internal kink mode in a tokamak, CLM-M106, 1985.
UM. N. Bussac, R. Pellat, D. Edery, and J. L. Soule, Phys. Rev. Lett. 35, 1638 (1975).

120, 7. Cheng, Phys. Fluids B 2, 1427 (1990).

24



Figure Captions

Fig. 1 The flux contour plot in R-Z plane.

Fig. 2 The variations of function G with the trapped particle bounce angle 6, for
e =0.1.

Fig. 3 The variations of function A with the trapped particle bounce angle 6,. The
solid curve uses the present theory with k = 1.5,6 = 0.5,§ = 0.4,a = 0.75and p = p, = 0.1
and the doted curve corresponds to a zero beta, circular plasma.

Fig. 4 The wq = 0 curves in the trapped particle (r,\) domain. Curve (a) uses the
present wy = wgog with kK = 1.5,6 = 0.3 and a = 0.5, and curve (b) uses wy = wao2G1.

Fig. 5 The comparison of the real part of §W; due to all components.

Fig. 6 Marginal stability curves in the (8,,7s) plane. Curve (a) uses wy = waH r,/7
with w,; = 0.05,a = 0.5,k = 1.5 and § = 0.3 and curve (b) uses wy = wypG 7,/7.

Fig. 7 The ellipticity x dependence of the marginal stability curves in the (34,7s) plane
for a = 0.5,6 = 0.3, and w,; = 0.05.

Fig. 8 The trangularity 6 dependence of the marginal stability curves in the (Ba, )
plane for k = 1.5,6 = 0.3 and w,; = 0.05.

Fig. 9 The plasma  dependence of the marginal stability curves in the (84, Y) plane
for k = 1.5,6 = 0.3 and w,; = 0.05.

Fig. 10 The diamagnetic drift frequency ((= w.i/wao)-dependence of the marginal
stability curves in the (Ba,7s) plane for £ = 1.5,6 = 0.3 and o = 0.5.

Fig. 11 Sample mode frequency and growth rate for x = 1.5, § = 0 and 7, = 0.075.

25



DATE
FILMED

7/8 /9%







