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Abstract

The effects of alpha particles on the internal kink and fishbone modes are studied

analytically. The nonadiabatic contribution from untrapped alpha particles is negligible.

Finite inverse aspect ratio, pl_ma/3 and plasma shaping effects can significantly enhance

the trapped particle drift reversal domain in the pitch angle space and reduce the bounce-

averaged magnetic drift frequency. The drift reversal effect on the ideal kink mode is small,

but the/_ threshold for the fishbone mode can be much lower than previously predicted. 1

Moreover, the fishbone mode could be excited by alpha particles even when the plasma

is stable in the ideal MHD limit. In addition, the ion diamagnetic drift frequency (finite

ion Larmor radius effect) has a strong destabilizing effect on the fishbone mode when it is

comparable with the trapped alpha averaged precessional drift frequency, even though it
0

stabilizes the plasma in the ideal MHD limit.
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I. Introduction '

The effects of energetic particles on the ideal magnetohydrodynamic (MHD) kink and

fishbone modes have been studied extensively. 1-8 Most previous works were focused on

circular cross section tokamaks with zero plasma beta and assumed a narrow pitch angle

distribution. In the low-frequency limit, i.e., the wave frequency w is well below the

precessional frequency Wd and the diamagnetic drift frequency w,, the sign of the trapped

particle potential energy is proportional to w,/Wd and the energetic trapped particles have

a stabilizing effect if w,/Wd > 0 and destabilizing otherwise. When the hot particle beta

/3h is larger than a critical value, the fishbone mode is excited with w ,,_Wd. For fusion a-

particles, however, due to their uniform pitch angle distribution, w,_/(Wd- w) may change

from being positive to negative as the particle pitch angle/k changes from a deeply trapped

to a barely trapped state. The inverse aspect ratio ea, finite/3 and plasma shaping effects

can enlarge the drift reversal domain. Thus the net effect of trapped a-particles must be

integrated over the entire trapped a-particle population. Furthermore, since the trapped

a population averaged precessional drift frequency (Wd) may be comparable with the mode

growth rate 7 or even change sign, some of the previous conclusions 1-6based on zero beta,

large aspect ratio equilibrium will be greatly modified.

In this paper, we investigate the a-particle effects on the internal kink as well as fishbone

modes due to effects of plasma/3, plasma shaping, and the core ion finite Larmor radius

effect through the diamagnetic drift frequency. The effects of plasma/3, plasma shaping

and finite aspect ratio are included in calculating Wd, and both the trapped and passing

particle contributions are included in the kinetic potential energy. We find that the stable °

domain in the (/3_, %) plane can be significantly reduced due to these effects from that

previously predicted. 1
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' In Section II we briefly review an analytical equilibrium solution based on a low beta

ordering. 9,1° The plasma shaping effect is included. An analytical expression of the trapped
o

particle precessional drift frequency is presented in Sec.III, The dispersion relation for the

internal kink and fishbone modes is presented in Sec.IV and an analytical marginal stability

analysis is given in Sec.V. Numerical results of the dispersion relation are presented in

Sec.VI. A conclusion is given in Sec.VII.

II. The shaped equilibrium

Consider an axisymmetric toroidal plasma, consisting of a core (c) isotropic component

and _-particles (a) with n_ << nc and T_ >> To, but _ << _. We consider a trans-

formation 9'1°from the cylindrical coordinate system (R, Z, ¢) to a flux coordinate system

(p, w, ¢), where p labels magnetic surfaces and w is a poloidal angle, i. e.

n =n(p,_), z =Z(p,_). (i)

The transformation leads to a metrictensorgiidefinedby theelementoflength

(de)_=g..(dp)_+2g..dp&+g_(&)_+n_(d¢)_, (2)

where

g,j=o,nojn + o,zojz, (3)
• .

and the Jacobean 3, = R%/detg_i is given by

3" = R(O,,,ROpZ - OpRO,,,Z). (4)

The magnetic field/_ is represented in the form

.B = noBo(f(p)V¢ x Vp 4-g(p)V¢), (5)
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where Ro is the major axis of the torus, Bo is the vacuum toroidal magnetic field, and f °

and g are functions of p only. The safety factor q is then given by

g(p)q(P)-" 2'trf(p) R2 , (6)

and the equilibrium equation reads

•f [_ .fg_,,, f9_ P' . gg_
_,,.,, _ . a,, j ]+ ,. ,.-,-_=0, (7)RoBo

where the pressure p is afunction of p only, and primes denote derivatives with respect to

p.

Employing a standard low beta tokamak ordering 9 with p/B_ ,_,62, .f _ e and g ,,- 1,

equation (7) implies that g = 1 + e292 where the subscript denotes the order in inverse

aspect ratio _. We seek a solution for the equilibrium furfaces in the form

R= Ro-6pcosw-62A(p)+62_-_s,_(p)cos(n - 1)w +eZPcosw + ..., (8)
n..

Z = epsinw + e2y_ s.(p)sin(n - 1)w - eaPcosw + .... (9)
n

Substitution of these expressions into the equilibrium equation (7) and normalization

• of length to R0 yield equations for the Shafranov shift A, the imposed shaping functions

S., and P which corresponds to a relabelling of the surfaces. Thus, we obtain from the
\

coefficients of different harmonics of w in each order:

P_. , fl
+ g2 + p(P.fl) '= 0, (10)B-"_

8'

2(p.fl)_ Pl)_ 2(pfl)_ 1 2pg_2A" + ( Pfl fl f_ = O, (11) .
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Figure 1: The flux contour plot in R-Z plane.

and

(2(p/_)' 1 , s._"+ _ _)_.-(._- 1)_ =0. (12)

Note that equation (12) is not driven by the plasma pressure and requires an external

origin; it describes how shaping at the plasma surface propagates into the plasma. The

ellipticity and triangularity are described by s2 and s3, respectively with ellipticity _ =

(1 + s_2(a))/(1 - s_(a)) and trangularity _ = s_(a). We will assume sn = 0 for n _>4 for

simplicity. Clearly if q is a constant which corresponds to a flat current profile, f _ p and

we have

8.(p)=(_)"-_8.(a). (13)

In principle, for given p and q or ]' profiles we can determine all other quantities through



J

the above set of equations. For example, °

A, = : [0(:_ 20p',o Bo_)pdp, (:4) .
and

P2 /*(Of:)'. (15)g:= B_ p
However, since weare only interested in the region within the q(p,) = 1 surface, i.e. p _<p,,

we will retain only the lowest order solutions. Thus, _ =-p'/(2B_p), s2 = (_- 1)/(_+ 1)p,

s3 = 6p2/(2a), A' = (a + 1/4)p and g_ = 2(a- 1)p. The q-profile is chosen as

q= qo+(: - qo)(_Y, (:6)

where qo = q(P = O) and p, = p(q = 1).

III. Bounce-averaged magnetic drift frequency

The toroidal precessional drift frequency of a trapped particle can be expressed as2:

10vJ
Wd = (17)

e,, OEJ'

where the longitudinal invariant J = § vnde involves an integral over the trapped particle

orbit. The parallel velocity is Vll - V/2(E- #B)/M_, E = M_,v2/2 is the energy and # is

the magnetic moment. Here M_ and e_ are alpha particle mass and charge respectively.

To first order in the inverse aspect ratio e, we find

_gd "- Wd0 H(_, _, )_,p) AP--A, (18)
P

where

qE
WdO= -- (19) "

P_



* is the deeply trapped particle precessional drift frequency evaluated at the q = 1 surface,

and

2 6o __
= {..---r-G, + 2_G2 - A'(1 + 2G_+ G4) - 2p(_, - 1 + G4) - _G_}{1 - A'G_}-', (20)H

a

with

K(k=)= fo*' de (21)_/2(cose- coseb)'

G1 = K -1 _o°b cose d8 E
¢2(cos O- cos Oh) = 2_ - I, (22)

fo " 2 EG3 = K -1 e, _/(cos8- COS0b)/2cosOd8= _{(1- k2) + (2k 2- 1)_}, (24)

G4 = K -t fo °b cos2 8 d8 = 1
_/2(cos 0- cos 0_) g{1 + 2(1- 2k2)G1}, (25)

G5 = K -1 t/o, cos28 d8 = 2G4- 1, (26)
J0 _/2(cose- coseb)

qOpq"

In the above expressions Obis the bounce angle, k2 = sin2(0b/2) = (1 + p- A)/(2p), K(k 2)

and E(k 2) are the first and second complete elliptic integrals respectively, _ = #Bo/E is
I

the pitch angle, and p, = p(q = 1). For trapped particles we have 0 _<k2 _<1.

i__ii_!r,_'
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Figure 2: The variations of function G with the trapped particle bounce angle 8bfor 6 = 0.1.

)

The effect of ellipticity _ i8 mainly to reduce the magnitude of the precessional drift

frequency while the triangularity 5, and plasma fl will increase the drift reversal domain in

the pitch angle space. The finite fl effect is very important when the plasma fl approaches

the ballooning limit in which case fl _ 6 and 5 ~ O(1). Note that in the previous

calculations of s-particle effect on the internal kink mode, 1 the effects due to finite fl,

plasma shape, and inverse aspect ratio corrections were not included, and wa = wa0Glps/p

was used.

Fig. 3 compares the dependence of H as a function of the bounce angle 8_ for the zero

beta circular plasma case and a general finite beta case with _ = 1.5, 5 = 0.5, _ = 0.4, a =

0.75, and p = p, = 0.1. The effect of _ is to ;educe the magnitude of wa, and the effects of

and _ are to increase the drift reversal domain.

Figure 4 plots the trapped particle domain in (p, ,_) space and the wa = 0 curve (Solid

curve). For a given radial location, wa changes from being positive to negative as pitch _

8
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Figure 4: The wd = 0 curves in the trapped particle (r,),) domain. Curve (a) uses the

present wd = WdOgwith _ = 1.5,_ = 0.3 and a = 0.5, and curve (b) uses Wd= Wdo_G1.

decreases from a deeply trapped state to a barely trapped state, which means that w,/wd

also varies from being positive to negative. If the trapped particles are destabilizing to

a certain MHD mode for w,/wd > 0 in certain pitch angle region, the trapped particles

in the pitch angle region with w,/w,t < 0 would be stabilizing. Thus, the net effect of

trapped a-particles must be integrated over the entire trapped a-particle population. If

the drift reversal domain is large enough so that the net contribution from the term w,/w,_

is negative, then the ideally MHD stable kink mode can be destabilized by the a-particles.

Also shown in Fig. 4 is the wd = 0 curve (Dashed line) without the finite inverse aspect

ratio 6, shaping factors _ and _, and plasma _ effects. It is clear that the drift reversal

domain increases due to these corrections.
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' IV. Dispersion relation

" In discussing stability it is convenient to use the coordinate (r,8) rather than (p,w),

where u

dp R2 , = f20.-_ (28)
r2-- 2Ro

To second order in _, we have

=p+O(63), (29)

and

r

= w + (A' + _-_o)sin w + O(e2). (30)

In this coordinate system, the volume element is

d3x = 27rR0r{1- (r + A')cosS}drdS. (31)

_ The kinetic-MHD dispersion relation after division by the constant 2_rR( r_-B_22RjI _0 12

has the following quadratic form 4'12's

D(w) = 6Wf + 6Wk - 6K = 0, (32)

where

6K = i _/w(w
OP,i )

(33)

- is the inertial energy, 5_A= vA/(vf38R), 8 = r,q'.,q(r,) = 1, arid

13 3f_2 12£2(1 - qo)2S2(r.) R2o 1282(r.) R2

" 6Wf-e(1-q°){16(£+4) 4-£ (4+g)2(6-_) r4 + 4+_ r'-_} (34)

11
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is the fluid potential energy due to the core componenta.

The energetic particle potential energy 5Wk has two parts: one is the adiabatic part

5W_ ") and the other is the non-adiabatic part 5W_"_). The adiabatic contribution due to

both trapped and passing particles is independent of the mode frequency and is given by

3 _t_ fo_Or2(r -t- A')w.afl_dr= Eo

= 4r33 fo _or2(r + A')fl_w*'_dr---"wdo (35)

Since the plasma equilibrium is determined by the total plasma pressure, we will combine

the 5W (") term (which is from _.VP_) with the core plasma 51_f (which is from _.VPc)

for convenience.

The non-adiabatic part due to the trapped a-particles is given by

5ur('_a) 213/2_r2M_R2 fo""v_k,t l:72_,2¢2 r dr [_1+,= dA
_" "s _0 Jl-r

Jof_¢ dE ES/2kb (wOEF 1 . ._ok2__=_)2 (36)X
03d --03 gtcrO_F)( 2R "

where

1 f dO -- 2 _-_T_K(k2) ' (37)

and

k2 -- (COS(q0)) = G1 -(q - 1)G2. (38)

We assume a slowing-down distribution function with uniform pitch, i.e.,

{ ,c n(r) E -3/2, if E < E_
F(r, E, _) = - (39) ,

0, otherwise
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" and the normalization factor c is determined through the hot component pressure

foE°• p_(r) = FM_Edav (40)

which gives

P° (41)
c = 4v/_ _rM_ n(r) E_"

We find

ewff')=_ ,._°(,.1d,. + 1)
where

2 E_

w,_ = 3 f_r c9_In n(r) (43)

is the a-particle diamagnetic frequency,

_.(r)= s_p.(r)B2 (44)

is the local trapped a-particle _, and

/ lnll-_l+Iri, ifT=OandO< _ <1

w Wd --

S(W-_)--= In(1- _t)+ 27ri,if _7_O_d< 0 and 0 < _d <-I (45)

In(1 - _), otherwise. .

Note if Wd << w, the singularity is removed by using the analytic expression

w,. + w (w,_ _ 1)S(?) -_ 1 w,.- Wd (46)

. The non-adiabatic part of the kinetic potential energy due to the circulating _-particles

is given by

, XIAT(na) 213/27r2Ma_or° _01-r""k_ - _ (r+ A')dr dA

13



fo ¢¢ wES/2 (waEF 1 O,.F)k_k,, (47) "× dE (1 - q)2w_ w2 - _g-"_

where

1 r dO I

k, = _ _ _/1- A/h = _"-A'
(48)

k¢ = ((1_ ____)#Bcos0} = 8(1-A)'A2r (49)

and

w, = (vu)- = _/2E(1- A) (50)
qR qR "

The energy integral can be carried out and is given by

fO ° E 5/2I = dE (1 - q)2w2 _ w2(wi)sF ,_._rJi)_F)

•¢d,aW
--3cn--E--_{w,_+w( _ I)S_}, (51)2 E _.

where

_-_(1--_)

1-q 2_,wc = qR

and

lnll-_-l+_ri, if_w=OandO<@_<l

S_= ln(1-_)+21ri, if__ <OandO<@_ ___1 (52)

In(1 - _), otherwise.

Thus the nonadiabatic circulating particle kinetic potential energy is given by

,=_ _ (1-_1_/_{_*_+_'(: llSo}. (sa)

14
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Figure 5: The comparison of the real part of 6Wk due to all components.

Figure 5 compares the nonadiabatic contributions of the energetic trapped and circulating

,. particles as well as the total energetic particle adiabatic contribution. In general the

magnitude of 6W(_ _) is much smaller that that of _YV(__) and is negligible.

It is convenient to normalize all the quantities to the constant frequency Wd0, i.e., let
^

h -" W,ot/WdO , 1,/ -" _MA/WdO , _'_ = W/WdO. Defining '_b -- -//(6Wf Jr (_Wk(a)), the dispersion

relation then reduces to

D(_) = -i_/f_(fl -¢) -% + u6W(; a) = 0. (54)

V. Marginal stability analysis

The marginal stability condition can be understood by simplifying the dispersion re-D

lation; the pitch angle integration is approximated with an expression evaluated at an

• averaged value of precessional drift frequency COd.The effect of magnetic drift reversal is to

15



reduce the averagedprecessional drift frequency _d. Then the marginalstability conditions *

for both the ideal kink and the fishbone modes are determined by

w(1- n2<,(_)_ln2,)=_,.,, (55)

and

% = --'--'_-(Wd+ w In I i - -- I), (se)
_rpo- w

where

'_o= 3rw,<,_d"

Note that at/_: - 0, marginal stability for the ideal kink is possible for w,il 2 <_w, <_w,i

and % __w,_/2.

For _ _>0, the real frequency of the ideal kink mode at marginal stability is given by

W,iw= (58)
1 - #la(<,,)l,

#2,

and the stability l_oundary is given by

3W,_WA_a(1 + w,_In I 1 - _d I). (59)
7b = 4_d Wd W,--'_"

As _d decreases, the marginal stability boundary curve for the ideal kink mode has a

steeper slope in the (_,, %) space. On the other hand, the contribution of w,_ is to reduce

% if] 1 - COd/W,i]< 1, and vice versa.

At marginal stability the real frequency of the fishbone mode is much larger than w,_,

but smaller than _d, and in the lowest order is given by the equation

Wd-'1-WOIn 11- c3,ti=o. (6o) •
Wo
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" Including the first order correction the frequency is roughly given by

. w = Wo(1 0.3")'b_d_ (61)

for

4Tb_gd <<1, (62)
3_aW, WA

where Wo= 0.78Wd. The marginal stability condition is given by

37r_g,a_A4_d2 _1 1.28w,_d 0.3%Wd_aa(w) = (1 -_ _W,_A). (63)

Thus, for the fishbone branch, the effect of reducing _d or increasing w,_ is to reduce the

critical _, and vice versa.

VI. Numerical results

In the following we present numerical solutions of the dispersion relation, Eq. (54).

Consider ITER parameters E_ = 3.5MeV, E_ = 20KeV, n ,,_ 1014cm -3, B _ 6 X

104G, R = 800cm, a = 300cm, rs ,,_a/3, Li =-(O_n_) -1,,_ O(a), L_ =-(0_n_) -1,-_
.

O(a/2), and we have: A .., O(5), _ ,._0(20). The q(r) profile is chosen to be quadratic.

Fig. 6 shows the marginal stability curves in the (_, %) space for w,_ = 0.05. In the

domain under the curves, the plasma is stable; the left boundary is for the ideal kink

mode, and the fight boundary is for the fishbone mode. The solid curve is obtained by

using Wd = wdoH rs/r, and the dotted curve is obtained by using Wd = WdoG1rs/r so

o that plasma beta and finite inverse aspect ratio effects are neglected. Here H < G1. It

is clear that the drift reversal effect is reducing the average _d, and thus the critical #_
IP

for both the ideal kink and the fishbone modes. The drift reversal has a small stabilizing

' 17



Figure 6: Marginal stability curves in the (/_, %) plane. Curve (a) uses Cad= CadoHrs/r

with Ca.i = 0.05,c_ 0.5,_ = 1.5 and 6 = 0.3, and curve (b) uses Cad-- CadOG1r_/r.

effect on the ideal kink branch; the slope of the stability curve is proportional to 1/_d near

/3_ = 0. However, the drift reversal has a large destabilizing effect on the fishbone mode;

the threshold for the fishbone is substantially lowered since the critical/_ ,,, _. We note

that even when the total plasma _ is below the ideal internal kink threshold, the fishbone

mode can be excited with large _.

Figures 7 and 8 plot the marginal stability boundaries in the (_, %) space for eUipticity

and trangularity 6 dependences. The fixed parameters are the same as in Fig, 6. In

general, as _ increases, the magnetic field curvature decreases and so does Cad.It is clear that

as _ or 6 gets larger, the stable domain becomes narrower mainly due to the destabilizing

effect on the fishbone mode. The/_ threshold for the stabilization of the ideal kink mode

is only slightly decreased by s and 6. But, the threshold for the fishbone mode excitation

can be significantly reduced by s. As pointed out by Connor,1° the ellipticity s has a small •

18
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Figure'7:The ellipticitys dependenceofthemarginalstabilitycurvesinthe(/3_,_/b)plane

forc_- 0.5,6 - 0.3,and _,i= 0.05
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Figure 8: The trangularity 6 dependence of the marginal stability curves in the (_, _/_)

• plane for _ = 1.5, 6 = 0.3 and _o,i = 0.05.
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Figure 9: The plasma/3 dependence of the marginal stability curves in the (13_,%) plane

for _ - 1.5, _ - 0.3 and w,_ - 0.05.

destabilizing effect but the triangularity _ has a strong stabilizing effect on the ideal MHD

kink growth rate %, Thus, the effect of _ through % competes with its destabilizing effect

on the fishbone mode.

Figure 9 plots the dependence of the marginal stability boundaries in the (/3_,%) space

on plasma/3. The strong destabilizing effect of 13 is mainly due to the appearence of a

magnetic well which reduces the drift velocity. The case with c_- 0.5 corresponds to about

2% average plasma beta for a quardratic pressure profile.

Fig. 10 shows the core ion finite Larmor radius effect (finite aJ,_)on the stability bound-

ary in the (13_,%) space. For typical tokamak parameters we expect w,_/WdO__ 0.05. As

w,_ increases the % threshold increases for the ideal kink mode, but decreases much more

for the fishbone mode. For the fishbone mode the 13a threshold is further reduced by w,_

besides Wd, as predicted from our analytical analysis. The w,_ effect is very important if

2O



S

0.25 .... _'-0,0 /_
• # I

------_=0.05 t I

o._t- .... -_-o._ _ X i
I: ...._-o.3 f,"_ I I

_o.,,_ .... ,_.o.+.I."\I ir ,Ix"'#" I+%* '_i

01

0 0.005 0.01 0.015 0.02

P,

Figure 10: The diamagnetic drift frequency ('(= w,+/Wjo)-dependence of the marginal sta-

bility curvesinthe(/3a,%) planefor_ = 1.5,_ = 0.3and a = 0.5.

itiscomparablewiththe averagedmagneticprecessionalfrequencywd suchasinNeutral

Beam Injectioncase_.

Figure11 depicl.sthekinkmode frequencya)and thegrowthrate"7versus/3hwitha

fixedidealkinkgrowthrate%. The stablizationoftheidealbranchand thedestabilization

ofthefishbonebranchdue tothefusiona-particlesisveryclear.Moreover,thea-particles

can stillexcitethe fishbonebranchevenfor7b< 0,i.e.when kinkmode was originally

stableintheidealMHD limitintheabsenceofa-particles.For% = 0.075,/3a> 0.013,

and thefishbonemode isexcited.
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Figure II: Sample mode frequency and growth rate for _ = 1.5, 6 = 0 and _fb= 0.075.

VII. Conclusions

In summary, the effects of trapped fusion c_-particleson internal kink and fishbone

modes have been investigated. Finite Shafranov Shift, plasma/_, and plasma shaping

effects can significantly enhance the trapped particle drift reversal domain in the pitch

angle space and reduce the magnitude of the precessional drift frequency. The stable

domain for both the ideal kink and the fishbone modes can be significantly reduced. For

typical tokamak parameters, the core ion diamagnetic drift effect can narrow the stable

domain in the presence of alpha particles, even though it has a stabilizing effect in the

ideal MHD limit.
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Figure Captions

• Fig. 1 The flux contour plot in R-Z plane.

Fig. 2 The variations of function G with the trapped particle bounce angle _b for

6=0.1.

Fig.3 The variationsoffunction/-/withthetrappedparticlebounceangle8b.The

solidcurveusesthepresenttheorywith_ = 1.5,6 = 0.5,_= 0.4,(_= 0.75and p = po= 0.1

and thedotedcurvecorrespondstoa zerobeta,circularplasma.

Fig.4 The UJd= 0 curvesinthetrappedparticle(r,_)domain.Curve (a)usesthe

presentWd = U_d09withR = 1.5,6 = 0.3and c_= 0.5,and curve(b)usesUJd= UJd0_Gl.

Fig.5 The comparisonoftherealpartof6Wk due toallcomponents.

Fig.6 Marginalstabilitycurvesinthe(_, 7_)plane.Curve (a)useswa = wao/-/r,/r

withw._= 0.05,(_= 0.5,_ = 1.5and 6 = 0.3and curve(b)usesUJd= wdoG1rs/r.

Fig. 7 The ellipticity R dependence of the marginal stability curves in the (/_, 7b) plane

for a - 0.5, 6 - 0.3, and w,_ - 0.05.

Fig. 8 The trangularity 6 dependence of the marginal stability curves in the (X3_,'yb)

plane for _ = 1.5, 6 = 0.3 and w,_ = 0.05.

Fig. 9 The plasma X_dependence of the marginal stability curves in the (X_, 7b) plane

for _ = 1.5, 6 = 0.3 and w,_ = 0.05.

Fig. 10 The diamagnetic drift frequency _(= uJ,_/wdo)-dependence of the marginal

stability curves in the (X_,7b) plane for _ = 1.5, 6 = 0.3 and (_-- 0.5.

Fig. 11 Sample mode frequency and growth rate for _ = 1.5, 6 ---0 and 7b = 0.0?5.
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