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ICRF Heating on TFTR- Effect on Stability and Performance

Abstract
With the addition of two new antennas and two radiofrequency (RF)

generators, the TFTR ICRF system is complete. The total complement of four
antennas and six generators is designed for 12.5 MW operation. Experiments
with this system have been performed recently on TFTR in the low recycling
regime to increase the performance of supershot plasmas, in a non-resonant
regime to explore electron heating, and in high recycling discharges with
energetic ion tails to simulate fusion alpha particles. Noteworthy results
include: direct electron heating observed with absorption rates in agreement
with theory; electron heating of supershot plasmas (ATe0 - 2 keV) via energetic
ion tails that would increase the pressure of the alpha particles in DT plasmas;
and the first observation of the toroidal Alfven eigenmode (TAE) instability
driven by the energetic ion tail irl hydrogen minority heating.

1. TFTR ICRF Research Proc,ram

ICRF heatingisemployedon TFTR insupportofitsgoalto

explorealphaphysicsin two ways:first,by increasing_ during
DT operationseitherthroughelectronheating(toincreasethe a e

slowingdown time)orby improvingMHD stabilitypropertiesof

NBI drivensupershotplasmas;second,to simulatea particle

physicsin DD plasmas throughenergeticiontails.In addition,

the program exploresICRF heatingregimes,such as direct

electronheating,ofrelevancetofuturedevices.To pursuethese
objectivesan ICRF systemconsistingoffourantenna boxeshas

been installedon TFTR. Each box containstwo radiatingpoloidal
currentelements.The elementshavebeen usedwiththecurrents

eitherin-phase(monopole)or out-of-phase(dipole).The antennas

arefedby sixRF generators,two oftheantennaswitha generator

per elementand theothertwo with a singlegeneratorfeeding

bothelements.A fixedfrequencyof47 MHz hasbeen employedto

date at power levelsup to 7.8MW in L-mode plasmas.At this

frequency, allowed heating regimes include He-3 minority
fundamental or T second harmonic at the full magnetic field

value of 5.2 T (R=2.45 m) and H minority heating at 3.4 T. Heating w
of NBI fueled supershot plasmas in the He-3 minority regime is
presented in section 3. Experiments have been performed
utilizing direct electron heating at 2.4 T and at 4.8 T. Direct

11
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electron heating provides an alternative to minority ion heating in

the DT experiments that does not require a diluting minority ion
species. ICRF heating has also been utilized to study possible
alpha particle driven instabilities. In these experiments an
energetic hydrogen minority tail has been observed to drive the
toroidal Alfven eigenmode (TAE)instability.

2. Antenna Configuration and Performance
The original configuration of TFTR antennas consisted of

two antennas of significantly different design[I,2]. A considerable
difference in antenna loading impedance and hence operating
power level was found[3]. There were several possible

explanations for this difference, including the different kz
spectra, toroidal location (particularly with respect to limiters),
and radial build of the antennas. One of the antennas was rebuilt

to resemble the other as closely as possible and the resulting
a

system performed well at power levels up to 7 MW. Remaining
differences in antenna performance could be attributed to the

J , differences in the k z spectrum[4]. The design of the two new
antennas added for this last run period built on this experience,
but small changes in design were incorporated. Since radial build
appeared to be an impo_t variable, the Faraday shield designs
were modified to further reduce the separation between plasma
and radiating element, including on one antenna the elimination

of one Faraday screen layer[5]. To improve the k z spectrum of the
antennas, the slots in the side walls were doubled in width and

the internalseptum used to mechanicallysupportthe Faraday
screenwas reducedto a skeletonconsistingonly ofa seriesof

radialrods.This change,whileimprovingthe purityofthe kz
spectrum,ledtoa factorofthreeincreaseinthemutual coupling
between radiatingelements,which rendersitmore difficultto

phase theseantennasotherthan inmonopoleor dipole.Finally,

the Faraday screen elements are slanted at an angle of six
degrees to align with the total magnetic field for typical operating

" conditions.

SinceonlysixRF sourcesareavailable,each ofthe new

antennasisfedfrom a singlegeneratorwith thepower division
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and phasing being accomplished with external resonant
transmission line sections. This fixes these antennas in the

dipole phasing configuration. In the limited operating time to
date, both of the new antennas have performed at power levels of
over 2 MW with peak antenna voltages of 25 kV. In comparison,
the original antenna with the same toroidal width, operated at the
same power level, has a peak voltage of 32 kV, leading to the
conclusion that the reduced radial build of the antennas has

increased antenna plasma coupling. A total power of 7.8 MW has
been delivered to a TFTR plasma by the four antennas.

3. ICRF Heatin_ of SuDershot Plasmas

The principal goal of ICRF heating on TFTR is to enhance

performance of plasmas during the DT physics phase of
operations. Since the highest reactivity discharges are obtained in
the NBI fueled supershot regime, ICRF heating was combined
with these discharges. Supershots were first achieved by intense
NBI heating of a low density target plasma with major radius of
2.45 m and minor radius of 0.8 m[6]. To couple the ICRF power, it L
has been necessary to develop supershot plasmas at larger major
and minor radius (R= 2.6m, a= 0.99 m) so that the outer plasma
boundary is within 1-2 cm of the ICRF antennas. Though initially
supershot performance in these large plasmas was not as good as
in the smaller plasmas, good supershot performance (in terms of
plasma reactivity) has now been achieved in large plasmas[7].
The target plasma for supershots is fueled only by recycling from
the limiter. Upon injection of the beams, the density rises rapidly
and reaches a plateau in -0.3 s. During the density rise, it is
difficult to couple RF power because of the change in loading
impedance (the average level of which changes by a factor of five
to six) and the eigenmodes observed during He-3 minority
heating. RF power is applied during the flat top portion of the
dischargetoincreasetheelectrontemperature,whichwill,inDT

plasmas,increasethe a slowingdown timeand hence_, and to

stabilizethesawtoothinstability.Though ordinarilysawteethdo '

notlimitsupershotperformance,operationat thehighestpower
levelsofNBI and witha significantamount ofalphaenergymay

II
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require larger values of plasma current to avoid the observed
limit[8]. In Fig. 1, the effect of efficient rf heating of the electrons

' in the core of the discharge is shown. The addition of 4.5 MW of
ICRF power in the He-3 minority regime is seen to increase the
central electron temperature by 2 keV. In comparison, the overlay
shot with 5 MW of additional NBI power is 1 keV lower in central
electron temperature. While the DD neutron emission for the two

discharges is comparable, in a DT plasma the central _a will be
higher with the ICRF heating, thereby allowing study of alpha
particle physics over a wider range of _a. When ICRF heating is
applied in the H minority mode to a deuterium plasma, an
increase in neutron emission is observed. TRANSP simulations
and Fokker-Planck calculations indicate that this increase is due

to second harmonic heating of the deuterium beam ions. This
increase would not be as pronounced in a DT plasma where the
beam injection takes place near the peak of the DT fusion cross

: section. It must be noted that the effect of ICRF heating on DT
supershot plasma performance cannot be inferred from just the
behavior of the DD neutrons since, while the alpha particle

slowing down time depends strongly on the electron temperature
in high power discharges where the electron temperature is near
10 keV, the deuterium beam particle slowing down time is nearly
insensitive to the electron temperature in this range. Therefore,
simulations such as those provided by TRANSP are required to

fully evaluate the expected DT performance with added ICRF
heating.

4. Direct Electron Heatin_ Experiments

Direct electron heating offers an alternative to the normal
ion resonant methods. It can be particularly attractive in DT_

experiments on TFTR since it does not require the addition to the

plasma of a minority species which can deplete the reactive ion
species, and furthermore, in the case of He-3 minority heating,
the presence of energetic He-3 ions can make alpha diagnostic

. measurements difficult. In addition, direct electron damping

may lead to a viable current drive scenario for future steady-state
operation. Direct electron heating experiments have been carried
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out in two regimes of operation. Results are comparable to those
seen in previous work[9,10]. In order to maximize the electron w

heating, which is relatively weak, it is necessary to avoid ion
cyclotren resonmlces in the plasma. In the low field regime, BW=
2.3 T, the competing ion resonances include the fundamental
hydrogen resonance at the high field edge, the second harmonic
He-3 resonance at the center, and the third harmonic deuterium

resonance, 0.4 m to the low field side of the plasma center. In the

high field regime, BT= 4.8 T, the competing resonances include
the deuterium fundamental and shear Alfven resonances near

the high field edge and the He-3 fundamental resonance at the
plasma center.

Experiments were conducted in the low field regime with
He-3 as the majority ion species. The RF power was 100%
modulated with a 4 Hz square wave. The time evolution of the
electron temperature indicated that significant direct electron
heating was taking place. This heating was analyzed by two
methods. First the power deposition profile was inferred from

using the equation qe = 1.5neA(dTe/dt) where A(dTe/dt) is the
change in the electron temperature slope at the time of RF power
transition, assuming that at these times the electron heat
transport does not change and that there is no discontinuity in the
electron density. The second technique involves a Fourier
Transform (FT) of the electron temperature data. Good agreement
between the two methods indicates that the time scale of the
modulation is faster than the characteristic times of energy

transport. The results are consistent with the superposition of a
broad profile and a centrally peaked profile from transit-time
magnetic pumping (TTMP) and electron Landau damping (ELD).
Measurements of the ion temperature evolution using charge

exchange recombination from carbon ions shows only a small
response to the RF modulation, indicating that the second
harmonic He-3 cyclotron absorption is weak. Measurements with
a vertically viewing neutron collimator indicate that some third
harmonic deuterium absorption is taking place on the doping
beam used for the ion temperature measurement at a minor
radius of 0.3 m. The measured volume integrated power absorbed



7

IAEA-CN-56/E-2-2

by the electrons is found to be 30%-50% of the modulated power.
The remaining power is presumed to flow to the ion resonances,

' especially the hydrogen fundamental layer near the inner plasma
edge.

High field experiments, BT= 4.8 T, were conducted in the
He-3 minority regime with no He-3 present. In this case, the only

ion resonance present is the deuterium majority resonance on the

high field side, where damping is expected to be weak, so the

electron damping should totally dominate the results. A 5 Hz

square wave modulated 1.5 MW RF pulse was applied to a 24 MW

NBI preheated supershot plasma (Fig. 2). The time evolution of
the central electron temperature (R = 2.82 m) shows a strong

modulation. At these high toroidal fields, theory predicts that a

large target _e is required for good absorption. This is provided by
the NBI heating. The electron temperature response was again

, analyzed by the two methods describedabove and the resultsare

shown in Fig. 3. Again, a strong centrallypeaked electron

absorptionisobserved.Both calculationsindicatethat60% ofthe
J

power is absorbed centrallyon electrons.The FT analysishas

insufficientsignalto calculatedepositionfurtherout in radius

while the discontinuityanalysisimpliesthatan additional20% of

the power isabsorbed in the outer halfof the plasma. Central

electrontemperatureincreasesofup to 1.5keV were observedin '

thismode indicatingthat,sinceno dilutingminorityisrequired,

it may be a viable alternative to He-3 _Jnority heating for DT

experiments.

5. Observation of MHD Modes Driven bv RF Tail Ions

Energetic ICRF minority tail ions a_e a good candidate to

simulate alpha particle physics. In particular, alpha particle

driven instabilities which require MeV energies can be

approximated by ICRF heated tails which can reach the MeV

range.One classofalpha driveninstabilitiesthatisofparticular

interestisthe TAE instability.This instabilityhas been observed

, at low toroidal field strength, driven by passing NBI ions in the

100 keV range[ii,12]. This instability has also been predicted to be

driven by energetic trapped ions as weil[13]. Experiments have
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been conducted in gas fueled L-mode discharges with ICRF

heating of a hydrogen minority at BT= 3.4 T, Ip= 1.4 MA, and
<ne> = 1.5-3 xl019m "3.An instabilityisobservedwiththeMirnov
coilsand microwave reflectometer,shown in Fig.4, at an RF

power levelof5.2MW. Severalcloselyspacedfrequenciesare
observed.For power levelsnear the thresholdof 3 MW the

instabilityappears-100ms af_r theRF power isapplied.Thisis

consistentwiththetimeneededtobuildup theenergeticiontailto

exceed the instabilitythreshold.As expected,this time lag
shortens at higher RF power levels.Detailed magnetic

measurements suggestthatthe thresholdcan,alternatively,be

characterizedby requiringthatthestoredtailenergyexceed-100

kJ.The frequencyspectrumoftheinstabilityisquitenarrow.The

frequenciesare consistentwith the TAE mode frequency

o)=VA/2qRforne evaluatednearq=1.5.The instabilityfrequency
variesinverselywiththesquarerootofdensityas expected.The

multiple frequencies are assumed to be due to multiple poloidal
and toroidal modes being simultaneously present. The inability to
uniquely determine a mode number from the Mirnov coils

supportsthisconjecture.The fastionlossprobesmeasure an

increasedsignalwhose envelopecorrespondsto the envelopeof

the Mirnov oscillations(Fig.5).Note the clearthresholdas the

power levelisincreasedfrom 2 to3 MW. Estimatesofthepower

lostin fastionsindicatethatonlyan insignificantamount (-50

kW) is requiredto agreewith the probe signals.This is in

agreement with the globalenergy balance which shows no

additionaldegradationinenergyconfinementoverthenormalL-
mode power dependence.The oscillationcan be modulated by

other MHD modes present, such as sawtooth and m=l

oscillations.This modulationmay be due tothevariationofthe

energeticionpressuregradient.Allofthesefeaturesaresimilar

to the NBI drivenTAE modes previouslyobservedin TFTR[li].
Based on our currentknowledgeof thewave damping physics,

collisionaldamping due to electronsnear the trapped/passing

boundary shouldbe the dominant damping mechanism forour
experiment.Ifthisiscorrect,then theorypredictsthatat full

magnetic field-500 kJ of tailenergy would be requiredto
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destabilizethe mode. This levelshouldbe achievablein He-3

minority heating experiments, allowing an even closer
simulation of DT alpha parameters. It should be pointed out,
however, that as the background ion beta is increased, ion
Landau damping may become important and further damp the
mode.

6. Summary

ICRF experiments on T_'rl_ have been extended by utilizing
two new antennas and additional RF power. A new maximum
power level of 7.8 MW has been achieved. ICRF heating of
supershot plasmas has efficiently increased the electron
temperature in DD plasmas. These increases extrapolate to
increases in _ in DT plasmas. Direct electron heating has been
observed in low and high toroidal field regimes where ion
resonances have been placed only in the periphery of the plasma.
In this regime, as much as 80% of the RF power can be damped

directly on the electrons. Excitation of the TAE mode has been
J observed in L-mode discharges in minority heating experiments

which produce an energetic trapped ion population.
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Figure Captions

Figure 1 ICRF heating of supershot plasmas shows a stronger central Te(O)
" increasethan withsimilarpowerNBI. Time evolutionof,(a)Te(0),

(b)NBI power,(c)neutronemission,and (d)ICRF power.

(--NBI alone,---NBI + ICRF)

Figure2 Directelectronheatingofa supershotplasmaisobservedwith

modulatedrfpowerina D plasmawithno minorityspeciespresent.

(B_0)- 4.7T,frf=47MHz, R = 2.82m)

Figure3 Power depositionprofileanalysisand volumeintegratedpowerat

time3.6sofFig.2.

Figure4 ObservationofTAE mode at170kHz drivenbyRF tailions.(a)time

evolutionofMirnovsignaldata(b)frequencyspectrumofdensity

fluctuationsnearplasmacenter(r~ 10 cm),asmeasuredby a
microwavereflectometer.

Figure5 Correlationbetweenlostenergeticparticlesand TAE mode

amplitude.A clearthresholdisseenas thepowerlevelisincreased
J

above3 MW (a)Signalfromlostparticleprobelocated45°belowouter

midplane(b)AmplitudeofMirnovoscillationsbetween150 and

200kHz (c)centralsoftx-raysignal(d)ICRF powerwaveform
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