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I. INTRODUCTORY COMMENTS

The search for the quark gluon plasma (QGP) is one of the major challenges posed by

QCD, both theoretically and experimentally [1]. At the experimental level, no compelling

evidence of this new state of matter has yet been found. Results are expected, however,

from the experiments at RHIC. Most of the underlying physics of the QGP can be studied

theoretically and computationally only by lattice simulations [2] [3] at this time. These have

been quite successful in describing the physics at zero density and finite temperature, while

simulations at finite density _nd zero temperature have been plagued in the past by many

uncertainties [4].

First, simulations of QCD with virtual quarks are difticult because the action is complex

at nonzero g, thus preventing the naive use of probabilistic methods in the evaluation of

functional integrals. Nonetheless, complex Langevin simulations of spin models which are

related to the strong coupling limit of lattice QCD have been quite encouraging [5]. We will

see below that complex Langevin simulations of lattice QCD will, however, face numerical

and conceptual problems which are not contained in toy spin models.

Second, while quark models of nuclear matter predict that the nucleon screening mass

will decrease linearly with increasing chemical potential _ and a chiral symmetry restoring

transition will occur at/_c = raN/3 where the nucleon becomes massless, past simulations

of the quenched theory have suggested that, in the limit of massless quarks, the system is

in the deconfined, chirally symmetric phase no matter how small the chemical potential

# is [4]! When massive quarks have been simulated, the results have suggested that the

critical chemical potential is m_/2. This has caused most workers in the field to claim that

quenched QCD is unphysical at nonzero/_. However, as we will discuss more fully below,

there are several explanations for this apparently pathological behaviour which are unrelated

to quenching: for instance, confinement is essential to obtain the correct _ dependence i.n

QCD. but it is a property of the ensemble average of configurations, and need not be apparent

configuration b3' configuration; the lattice spacing used in the simulations has been too
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coarse, and, as a consequence, flavor symmetry breaking caused by staggered fermions may

play an important role and suppress one's estimate of _t=[6]; finite volume effects are very

large at finite _t [7]; and, quark >. _pagator algorithms are very slowly convergent at nonzero

[2].

Attempts to clarify these issues by studying simpler models have not been decisive.

Although the quenched approximation failed qualitatively for single site models based on

the gauge group U(1) [8], it proved to be a good guide to such models based on SU(3) [7].

A number of studies have shown that lattice artifacts are particularly large and dangerous

at nonzero/J [7] [9]. Analytic arguments for lattice QCD have been proposed which suggest

that the correct behavior is recovered in the continuum [10].

Based on these considerations, we have decided to re-exaznine the quenched theory in

greater detail, and have successfully completed a first round of simulations [11]. As will be

discussed in the text which follows, our results, obtained for values of chemical potentials

ranging from zero to half the pion mass, are consistent with a critical chemical potential of

one third the nucleon mass, expected on physical grounds.

Unfortunately, we have not been able to adequately explore the more interesting region

> rn_/2 with our available resources. H,_wever,webelieve that by using larger lattices and

measurement techniques better tuned to the physics of nonzero chemical potential, we will

be able to simulate the model successfully for chemical potentials closer to rnN/3.

This paper is organized into three additional sections. In Sec.II we discuss several reasons

why the region of chemical potential between rn,_/2 and raN3 is di_cult to simulate by

traditional lattice gauge theory methods which are successful at zero/J. In Sec.III we present

our new 32 x 163 simulation data. These results include the first spectroscopy calculations at

nonzero g. In Sec.IV we summarize our results and give our strategies and plans for future

work which, we hope, will allow us to simulate chemical potentials closer to the critical

point.
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II. SIMULATION PROBLEMS AT AND BEYOND _ = M.¢/2

First recall the well studied case of zero chemical potential (zero baryon number

density). The normal QCD (lattice) action is quadratic in the fermion fields, so one can

perform the ferndon integral explicitly lea_ng to the determinant of the Dirac operator

1

M.,., = _ _ r/._(U.,_.+_,.,- U.t,,_6.__,.,) + m,_.,., (1)

where n and n' label nearest neighbor sites, U are the SU(3) gauge fields on the links and

r] the staggered quark phase factors. The new gauge action for N! flavors is then

S- E _(1- 3TroUUUU)- -_Tr(ln M) (2)o

whichproducesa partitionfunction

Z = / :DUe-s (3)

The expectation value of any observable f(U) is given by

1

(':)= -2f_u'f(v)_-scv) (4)

In the quenched approximation one sets N! to zero in the partition function. Standard

Monte Carlo methods then apply to the numerical evaluation of expectation values and have

been quite successful at vanishing #.

Now we turn to the case where there is a finite chemical potential/_ for quark number.

This is imposed by making the replacement

U,,,4"--.e"U,,.4 (5)

and

(6)

in the definition of M. This adds the complication that Tr(ln M) is no longer real and the

exponent in the definition of Z develops a phase when AT/ is nonzero [2]. This problem
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provides additional incentive to pursue the quenched approximation since complex actions

and their attendant simulation methods, such as complex Langevin algorithms, are not well

understood.

When # is nonzero we see from the expression for the Dirac operator that quark propa-

gation in the positive "time" direction is favored. In a diagrammatic expansion of an expec-

tation value involving quarks there will be closed loops of quarks winding preferentially in

the positive time direction. As discussed and illustrated in detail in [2], at suf_ciently large

/_large quark loops winding all the way around the periodic lattice in the time direction will

appear. Viewing a time-slice of the partition function, this means that positive/_ will favor

ground state with a net baryon density. • .

There are extra complications involved in inverting the Dirac operator when # _ O. A

row in the inverse of the Dirac operator is needed in spectroscopy and chiral condensate

calculations. If we use the conjugate gradient algorithm to invert M, we do this by inverting

MtM on the source multiplied by M t. This is necessary, since the conjugate gradient

algorithm is designed for positive definite matrices. From the definition of M given above,

it is clear that for _z= 0, MtM is block diagonal, connecting even sites to even sites, and

odd sites to odd sites. This halves the amount of work one might naively have expected to

perform. No such symmetry exists for p _ 0.

For the /_ = 0 case the diagonal term in M is hermitean, the hopping term is skew-

hermitean. Thus all eigenvalues have real part m_. The mi_iimum eigenvalue of MtM is

2 and convergence of the conjugate gradient is guaranteed. For/z _ 0 no such simple__rnq

analysis is possible. Small eigenvalues are possible and M tM is relatively ill-conditioned. If

no winding of the quark lines around the lattice in the time direction is possible, the matrix

elements will be simply related to their p -- 0 counterparts, and the fermion determinant will

remain real and proportional to its/z = 0 value. Once winding occurs, the system acquires

a ground state with non-zero baryon number density and physics changes. Although the

conjugate gradient aJgorithm continues to work when p is nonzero, it converges very slowly.

For example, requiring the "residual _ on a 32 × 16s lattice be less than 10-s then causes the
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conjugate gradient routine to use approximately 650 sweeps to converge when the coupling

is _ = 6.0, the bare quark mass is m_ = .02, and the chemical potential vanishes. When Vis

increased to 0.10, approximately 1,500 sweeps are needed for convergence. At/_ = .15 that

number grows to 5,000, and at/_ = .17 it is typically 8,500. Many past studies of quenched

QCD at nonzero g have not faced up to the slow convergence of iterative algorithms to invert

M. In fact, a number of Lanczos studies [12] simply noted that the computer time needed

to find the physically relevant small eigenvalues of M grew prohibitively large at nonzero _,

and only the largest eigenvalues were obtained [13]. These partial results motivated us to

study the stability and convergence of the conjugate gradient algorithm [14] as a function

of the stopping residual. We are, therefore, confident that the results we present in Sec.II

below are as reliable as possible.

Past studies of quenched QCD have also noted that problems begin to appear in their

calculations when the chemical potential approaches m,_/2. We shall argue now that the
I

two most important features of QCD, chiral symmetry breaking with a Goldstone pion

and confinement, are responsible for these di_culties. We will see reasons why traditional

lattice gauge theory calculational methods become very inefficient at nonzero tt, and we will

suggest minor ways to improve them. One set of problems arises because the expected result

g_ = raN/3 relies on confinement which is a property of an ensemble average rather than a

property of single configurations on which we make measurements. We will argue that there

are spurious effects in the quark propagators calculated on individual gauge configurations

which are large at substantial/J and yet should cancel in ensemble averages by virtue of

confinement. One telltale symptom of such effects is that the approximate realization of

continuum symmetries on individual configurations is no longer manifest. A second set of

problems arises because the natural dispersion in rely/3 and m,_/2 estimates calculated on

indi_'idual configurations overlap for lattice sizes typically used at present.

To understand why one might expect algorithmic problems in calculations of hadron

propagators near _ = rn_/2 when they are calculated on individual configurations, it is

simplest to consider point.to-point hadron propagators for a fixed source and sink on the

5
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lattice. For this discussion we will consider only the exponential behavior and ignore the

power-law multiplier. At # = 0 the average meson propagator has two terms at large

separations T and Nt- T, one proportional to ezp(-ra_T), the other proportional to

ezp(-m,_(Nt - T)). (Here, and in what foUows Uproportional tow (oc) is used to mean

proportional to up to a T dependent phase, or in the case of the quark Green function, be-

ing a matrix in colour space, up to a T dependent matrix in colour space of unit norm (the

norm of a matrix A is defined by x/TrA_A.)) Empirically the pion propagator measured on

individual configurations is also weU approximated by 2 such terms, so we assume such an

asymptotic form for the point-point meson propagator on a typical configuration. However,

a meson propagator from point z = (x,0) to point y = (x,T) on a given configuration is

just Tr(G(_/,z)G(z,y)) oc Tr(Gt(z,_/)G(z,y))where G(z,y)is the quark propagator. This

means that the quark propagator on a typical configuration must also have 2 terms, one

proportional to ezp(-_-_T), the other to ezp(-_-(Nt - T)), corresponding to the quark

propagating from y to x in the 2 different time directions allowed by the periodic lattice. We

see immediately that this requires the meson propagator on such a configuration to have a

third term, whose magnitude is less than or equal to constant x ezp(-_--_N_)._ (This constant

is the geometric mean of the magnitudes of those for the first and second terms so that this

statement has content.) This term is the contribution where the quark and antiquark go

around the lattice in opposite directions annihilating when they meet. Since such a term

is not allowed by confinement, contributions from different configurations must contribute

with random phases and so cancel. Of course, for _ = 0, this term is vanishingly small

for large Nt as are terms coming from the quark winding multiple times around the lattice,

so that the meson propagator remains the sum of 2 terms. The important p0.ing is that

confinement is not a property of a single configuration (we consider the effect of translating

x about the lattice as considering multiple configurations differing only by translation), but

rather a result of the ensemble average.

Now let us turn to the case where /_ # 0. Here the meson propagator

ReTr(G_,(y,z)G,_(z,y)) _ Tr(G_.(z,y)G.(z,y), where the inclusion of the Re is the re-
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sult of averaging over the given configuration and that obtained by time reversal, which is

equivalent to taking/_ _ -/_. For/_ sufficiently small, one can use the/_ = 0 form for the

quark propagator discussed above to argue that the quark propagator G, will have 2 terms,

one proportional to ezp(-(-_-/J)T) and the other to ezp(-(_"-+ I.t)(Nt- T)). This means

that while the first 2 terms in the meson propagator will be as before, the third term wiU

be replaced by 2 terms the more important of which has magnitude less than or equal to

constant x ezp(-( "n" - t_)Nt) Again, we expect such a term to cancel between configura-2

tions because of confinement. However, as/_ approaches m,/2 this term is no longer small,

and for /_ > m,,/2 it, in fact, becomes large! Thus we expect the behavior of the" meson

propagator to change near/_ = m,/2, varying greatly from configuration to configuration.

Now, quenched QCD has a global Z3 symmetry which means (on the lattice) that the 3

gauge configurations differing only by having the gauge fields pointing in the +t direction

from the top timeslice multiplied by a common element of Z3, occur with the same weights

intheensemble.Itiseasytoseethataveragingoverthesetripletsofgaugeconfigurations

removesthisthirdterm,andalltermswherethequarklinewindsaroundthelattice,except

whereitwindsaroundthelatticeamultipleof3 times.The casewhere'thequarklinewinds

exactly3 timesaroundthelatticedescribestheconfigurationwherethemesonconsis_sof

a baryon-antibaryonpairwhichgoroundthelatticeinoppositedirections.Sucha stateis

allowed, but contributes a term proportional to exp(--(rns -- 3/_)Nt). On a single config-

uration we would have predicted this state to behave as exiv(-3( _--L- _t)Nt), which again2

becomes large near/_ = rn,_/2. This ultralight 3-quark state on a typical configuration, pre-

sumably representing a state of 3 unbound quarks, must average to zero over the ensemble,

as a consequence of confinement, as must the contributions of any non-colour-singlet terms

leaving only the baryon contribution. Similar arguments can be applied to 6,9,... quark

states.

Similar arguments indicate that < _qJ > for individual configurations will start acquiring

extra contributions due to precocious winding of quark lines around the lattice near/J =

m_/2. but confinement will require these to vanish in the ensemble average for/_ < rnA./3.

#mr
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Similareffectswilloccurforthebaryonpropagator.The discussionhereismore complex,

sincethereisan additionalcancellationdue to confinementwhich occurseven at /_- 0.

The leadingbehaviourofthepropagatorfora 3-quarkstatewould be expectedtobehave

likeexp(- sm--_-_T)on a singleconfigurationfrom our discussionabove•Hence theremust be2 --

cancellationsofthisleadingbehaviourwhich describesthepropagationof3 freequarks,if

we aretoget the requiredexp(-rnjvT)behaviour.Much ofthiscancellationoccurswhen

we projecttherequiredcoloursingletstateand averagethesinkoverthetimeslicetoobtain

a zeromomentum state.The restofthecancellationmustoccurwhen theensembleaverage

bindsthese3 quarksintoa baryon.

Hence,evenwhen thefinite/_transitionoccursatrnN/3asexpected,oneexpectstofind

agreatincreaseinthestatisticalfluctuationsofthehadronpropagatorsnear/_--m,/2. This

isdue tothefactthatfullconfinementisnot realizedon a configurationby configuration

basisbut israthera propertyoftheensembleaverage.AveragingoverthethreeZsboundary

conditionsinthetdirectionisexpectedtoreducethesefluctuationsby enforcingtheZs but

' not the SU(3) requirementsofconfinement.Using,aswe do,not point-point,but rather

point-zeromomentum (orwall-zeromomentum) propagatorscouldpotentiallygiveussome

aspectsofconfinement.As willbe discussedfurtherinSec.III,we explicitlyaverageover

thethreeZs boundary conditionsforeachgauge configurationinan attempttoenforcethe

Za requirementsofconfinement.However,our evidenceisthatthisisinsumcienttoyield

allaspectsofconfinementon a singleconfiguration.

Anotherproblemthatcanleadtoconsiderablesuppressionofan estimateof/Jcfoundin

a lowstatisticscalculationfollowsfromtheknown, largefluctuationsseenincalculationsof

raN.As willbe discussedinSec.III,thedistributionsofrnjv/3and rn,/2measuredon each

configurationoverlapeven at/_- 0. So,on some configurationsrnN/3 willbe assmallas

rn,_/2rneasuredon thesame setofconfigurations!Inotherwords,thespreadinginrn.,_will

suppressestimatesof/_ctotheneighborhoodofm,_/2on 32x 16s latticesat13= 6.0.This

isa conventionalfinitesizeroundingeffectwhich shouldbe lessenedby simulatinglarger

lattices.

8
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For individual configurations, quark lines can wind multiple times around the lattice,

even below the transition. Because the contributions of such configurations can be very large

they can dominate the averages over a relatively small ensemble, giving false indications of

having entered the baryon rich phase.

Such windingisthesourceoflargefluctuations.One characteristicofsuchfluctuations

isthefactthatthehadronpropagatorsneedno longerobeythesymmetriesoftheensemble

average(sucha.stimereversalinvariance)on a configurationby configurationbasis.

Finally,letus discusshow ourscenariomight appearintheapproachof[12][13]which

firstpointedout severalpossiblepathologiesinquenchedQCD. The authorsusedtheLanc-

zosalgorithmto determineseveralfeaturesof the eigenvaluedistributionofM on a very

smallensembleof164 configurationsat_ = 6.2[13].Much oftheirwork concentratedon A,

the half-widthoftheeigenvaluedistributionof M. Ifwe axecorrecttheoutereigenvalues

ofM(mq - 0) which theycalculateand basetheircriticismon would correspondtothose

modes fortheDiracequationon a singleconfigurationwhichcancelinobservableswhen the

ensembleaverageenforcesconfinement.Our scenariowouldthenrequirethatatsmall_ the

eigenvaluesof M on the imaginaryaxisand, inparticular,nearthe originhave a similar

distributionto thatat/_- 0.Theseeigenvalues,whicharetheonl._..._yonesofdirectphysical

significancearedifficulttocalculate[13]and littleisknow aboutthem.

Attemptshave been made tocalculatethe distributionofsmalleigenvaluesofM from

thoseofM tM. However,thismethod haspotentialproblems.Ifwe wereindeedconsidering

zero,and thus degenerateeigenvaluesofa matrix suchas M, MtM couldhave a lower

degeneracyofzeroeigenvaluesthan M. The reasonisthat,ifM has n zeroeigenvalues,

itwillin generalhave onlyrn _<n eigenvectorswitheigenvaluezero(i.e.an incomplete

setofeigenvectors),inwhich caseMtAI has onlym zeroeigenvalues,not n. When this

degeneracyisbrokensothatM hasn smalleigenvalues,and a completesetofeigenvectors,

M tM wills' I have onlym smalleigenvalues.The factthatMtM might havemore of

itseigenvaluesfarfrom the originthan M shouldcome asno surprisesinceMtM admits

contributionsto observableswhere a quark-antiquarkpairwindingonce aroundthelattice

9
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together is enhanced by a factor of ezp(2pN,). These contributions are absent for M.

New Lanczos studies of the eigenvalues of M would be very instructive, especially if they

were accompanied by conjugate gradient calculation of < _ >, < Jo > and spectroscopy,

configuration by configuration.

III. THE SIMULATION

A. Observables

We first describe the measurements we have performed, with emphasis on the spe-

cial features of the theory at finite density. They are interesting, since some give rise to

relationships which hold exactly configuration by configuration, and are useful to check the

convergence of the inversion. Others imply relationships which must be true only in the

infinite statistics limit, and are useful to check the quality of our data sample. All of them

follow from the modified symmetries of the Dira£ operator:

it = -M_. (7)

or, equivalently, from the transformation of the quark propagator G. under time reversal:

TCC.C0;n)) = a.cn;0) = (-1)_Gt_.C0;n) (8)

For the chiral condensate < _ > we then have

< 5@ >= TrG.(0; 0)= TrG*_u(0;0 ) (9)

where the second equality follows from eq. 8. Note that eq. 9 implies that < _b > is real

only in the full ensemble average, when time reversal symmetry must be realized.

In our particular simulation, we used a noisy estimator for < _b >. So, in our case eq.

9 must hold only when the average over the noise is taken. We thus lose this convergence

test on isolated configurations, but we can check a posteriori the statistical quality of our

sample by verifying (9) for the ensemble.

10



Similarremarksholdforthe chargeoperator< J0 >, obtainedby differentiatingthe

actionwithrespecttothechemicalpotential.As discussedin[2]< Jo > istheexpectation

valueofthenumber ofpathsinthet direction.

In additiontoindependentcalculationsforpositiveand negativechemicalpotentialfor

each configuration,we calculatedallobservablesforthe threedifferentZ3 (antiperiodic)

boundary conditionsdefinedby

¢(t + N,) = (-1)e'(2"k/3)¢(t); k = (0,1,2) (10)

toenforcesome oftheconstraintsofconfinementconfigurationby configuration, i

The spectrumcomputationismore delicate:inthemeson sectorwe havetocompute

= TrG.(o;n)r,G.(.; o)(-1)" (11)

whereF_ standsforthegenericcombinationofgamma matricesassociatedwitheachmeson.

Inserting(8)we seethatC_(t)shouldbe computed accordingto

C_,_(T) = E TrG.(0; .)r, et_.(0;.) (_2)

(unless we want to compute the fermion propagator with a source at all points of the lattice),

and this requires the inversion of the Dirac operator with opposite values of the chemical

potential, representing the contributions of quark and antiquark, respectively.

The same property (8) together with shift invaxiance in t gives the following symmetry

for the propagators C_ which must hold for ensemble averages:

C_q(T) = C_q(Nt - T) (13)

In the ensemble average we thus recover (at least in the confined phase, where both of the

above mentioned symmetries hold) the usual paraxnetrization for the meson propagators.

The standard sum rule (Ward identity) holds configuration by configuration in the modified

form

< ¢¢ >.= m, _ C_#(T) (14)
T

11



< >_.=m,Z C;,(T)
T

which gives again eq. 9

< 5¢ >.=< 5¢ >'_. (16)

For the nucleon things axe different: the only exact relationship in the ensemble average

is:

N
C_,,(/) = (-1)rOg_(N, - T) (17)

and no simple relationships exist between Cqqq(T) and Cqqq(N, - T). In other words for the

baryon the usual parametrization is modified due to the different behaviour in backwaxd and

forward propagation induced by finite _: the "minima/" baryon propagator at finite density

contains at least two positive parity excitations. It is clear that finite size effects axe, also

from this point of view, especially severe.

In all our spectrum measurements we made use of a wall source [15], after the appropriate

gauge fixing. In this way our propagators reach their asymptotic regime faster, but we pay

the price of an amplification of the non-positivity effects connected with finite density.

Also, for the spectrum computation we calculated all observables for the three differ-

ent Za (antiperiodic) boundaxy conditions defined in eq. 10. Since masses axe non-lineax

observables, we may expect that the results obtained by averaging the masses obtained on

subsamples corresponding to fixed boundary condition are different from those obtained

after averaging the propagators on all the three boundaries, for our finite ensemble. Such

behaviour, if present, would provide evidence of winding loops, which have yet to cancel.

B. Numerical analysis

The theory at finite density was simulated on a 163 x 32 lattice, at bare quark mass

m_ = .02 and 3 = 6.0. For these parameters, the mass of the baryon at zero density is .77

and the mass of the pion is .34. The region of the chemical potential we have successfully

12



exploredrangesfrom zeroto rn_/2--.17.We have alsomade some exploratoryrunsat

F -.2.

The resultswe discussbelowresultfrom 30 configurationswith thefirstboundarycon-

dition,19 withthe second,and 19with thethirdanalyzedatF = .0,(30+19%19)x 2 at

/_= .I,(30+30+30) x 2 at/J= .15,and (44+44+44)x 2 at/J= .17,(2G+26+26)x2 at

/J= .2(recallthatat/J_ 0.we solvetheDiracequationforpositiveand negative/_).

Our configurationsweregeneratedby an admixtureofMetropolisand overrelaxedalgo-

rithms.We analyzedthem every10000sweeps,afterinitiallydiscarding12000_weepsfor

therrnalization.

W'ebeginby discussingthebehaviourofthe chiralcondensateand number density.A

few comments axe inorder.First,the fluctuationsincreasestronglywith_. Second,the

differentboundariesgiverisetoslightlydifferentresultsevenat/_= 0.Finallyby increasing

/_we observeseveralconfigurationsinwhichthe resultsobtainedwithopposite/_valuesare

completelydifferent.Clearly,a finitechemicalpotentialamplifiestheinhomogeneitiesofthe

singleconfigurations(notethatsuchdifferenceswould vanishwerewe toaverageoverour

noisysources).

We haveverifiedthattheresultsforthechiralcondensateand number densityobtained

with+/_,and withthethreedifferentboundaries,aremutuallyconsistent.We thusaverage

overthem configurationby configuration,and we show in Figs. I and 2 the resulting

histograms.Theirmain characteristic(whichiscommon toallthe/_values)istheabsence

ofa two peak signal,which would suggesta phase transition.The resultschangesmoothly

.':ore/_- 0 to/_= .17,whileat/_= .2theresultsaremuch noisier.The regularstructure

ofthedistributionsgivesusconfidencethatintheentirerangeof/_studiedherethesystem

isinthe chirallybroken phase (note,however,thatmost ofthe chiralcondensatecomes

from theexplicitsymmetry breakingmass term : at zero/_,< _ >= .13and only.03is

due to spontaneoussymmetry breaking[16]).From Figs.I and 2 we can alsoappreciate

theincreasingwidth ofthedistributionswith/_,and thepresenceofscatteredevents.As a

furtherconsistencycheck,we alsoperformedpartialanalysesdiscardingthosevalueswhich
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deviated most strongly from the average. Nonetheless, we consistently found compatible

results. So, the situation is well under control from the statistical point of view, and our

data for the chiral condensate and number density do not show any sign of a phase transition.

The spectroscopic analysis posed more specific problems. As stated above, we are dealing

with non-positive definite operators. Violation of positivity is also possible because of the

wall source we are using. These effects are so significant that they even produced a few pion

propagators which are negative at zero distance! Another dramatic feature in some of our

propagators are huge fluctuations: when that occurs, the shape of the propagator is altered

as well. This contrasts with the situation at zero chemical potential, where amplitudes may

be fluctuating, even strongly, but the hyperbolic cosine behaviour is preserved, even, for

instance, in the 'exceptional' configurations observed with Wilson fermions near _¢. To be

more specific, we show in Fig. 3 a(b) the collection of the pion (baryon) propagators at

p - .15, where the problem was observed first (note that the exceptional propagator even

has the 'wrong' symmetry!). In Fig. 4a(b) we show the same data at p = .17. The cha_ugein

behaviour while increasing p is dramatic: however, the expected hyperbolic cosine pattern

is still visible, and the average propagators do not show qualitative pathologies.

What is the origin of these exceptional configurations? What will ultimately occur in

thelimitoflargestatistics?The most naturalexplanationistheoccurrenceofzeromodes,

and thequestiontobe answeredconcernstheirphysicalsignificance.As discussedinSec.II,

isolatedzeromodes inquark propagatorscalculatedon individualconfigurationscan still

be compatiblewith confinementand chiralsymmetry breaking.

Here we want to suggestthat(i:)the originoftheseexceptionalconfigurationsmay

be completelytrivial,simplyrelatedtostatisticalfluctuations,asanticipatedintheIntro-

duction;and,(2.)toprovideargumentswhich supporttheirsuppressioninthecontinuum,

infinitevolume limit.

To make our pointclear,itisusefultocharacterizethebehaviourofa configurationby

theeffectivemasses,both forthepionand baryon.Fortheeffectivemass analysiswe have

extractedthedirectchannelaccordingto[17]
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= 2c(2t)+ c(2t + ]) + c(2t - 1) (is)

(We have systematically checked that the results of global fits give compatible, although less

accurate, results.) Also, for the baryon we took into account the modified parametrization

discussed above simply by analyzing half of the lattice, which is justified by the fast decay

of the baryon correlators.

To begin, we show in Fig.5 the results from the effective mass analysis at/_ = 0 for half

the pion mass and for one third the baryon mass performed on individual configurations.

From Fig.5 we cam see an overlap between half the pion mass, and one third of the baryon

mass, which is better demonstrated by the relative histogram, Fig. 6.

Let us now consider the behaviour at/J = .17, first for the pion mass (we are using now

only those propagators which give positive numbers for the effective masses). In Fig. 7 we

compare the distribution of (half the) pion mass at these two/_ values: the distribution

spreads out while increasing _, an effect already observed in the measurements of the chiral

condensate and the number density. Of course on the left the distribution is bounded by

zero, which results in an asymmetric shape.

Analogously, we show in Fig.8 the results for the baryon: in this case, in addition to the

spreading, we observe also a shift in its central value. (We will see later on that the shift in

one third of the baryon screening mass is/_. Here we also plot the distribution shifted by/_

which, modulo the spreading, coincides with the one at/_ = 0.) Again, the left wing of the

distribution is _missing".

In both cases (pion a_d baryon) we may associate the pathological configurations with

the ones which should populate the left part of the distribution. The following scenario

is certainly possible: the pion mass distribution has half-width A = A(rnq, L,/_,/3). The

pion mass (i.e. the central value of the distribution) does not change in the confined phase.

However, the first zero modes show up when m, - __(m_,L,/J, 3) = 0, around half the mass

of the pion in this simulation. Since limL-oo.e-oo A = 0 this pathology is a lattice artifact,

and the quenched theory should make perfect sense in the continuum, infinite volume limit.
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An analogousargumentcan be made forthebaryon.

Thismechanism,whichissimplyderivedfrom thenaturalfluctuationsatfinitesizeand

spacing,isenough toaccountfortheappaxentearlyonsetofthechiraJtransitionreported

inthepast.We cannotofcourseexcludethatothermore fundamentalpathologiesaffect

the theoryatfinitedensity.Only simulationson largerlattices,and possiblyclosertothe

continuum,can definitivelysettletheissue.

We now turn to the conventionaleffectivemass analysis.Again,theresultsobtained

forthethreedifferentboundary conditionswere fullyconsistent.We averagedoverthem.

At # - .15and .17we had toeliminatetheexceptionalconfigurations(onlyone,actually,

at /J-- .15)in orderto obtainrathercleanresultsforthe effectivemasses. We stress

howeverthattheresultsofglobalfitsperformedon thefullsample,althoughverynoisy,are

compatiblewiththoseobtainedby theeffectivemass analysison a selectedsubsaxnple.The

resultsfortheeffectivemassesaxeshown inFig.9 forthepion,and 10forthebaryon.

C. Results.

In tableI we reporttheresultsforthechiralcondensateand thenumber density.The

datawas averagedoverthe threedifferentboundaxies,and over:k/J.We quotealsothe

imaginarypaxts,which axe consistentwith zero,as theyshouldbe. Fig. 11 shows the

correspondingplots.

TableIIshows theresultsforthepionand baryonmasses.As discussedabove,atthis

stageinour ongoingproject,we quoteour resultsfortheeffectivemass analysisatp = .15

and .17,with the caveatthattheyhavebeen obtainedon a subsample.-We can justify

thisprocedureinpartby notingthattheresultsfrom thefitson thefullsample axefully

consistent,withenlargedstatisticalerrors,with theoneswe quote.The screeningmasses

areplottedasa functionof/JinFig.12.

The resultscan be summarizedasfollowing:

J0(/_)= Jo(0)

IG



< > (.)= < > (0)

m.(.) =

rnN(_) -- rnN(O) - 3_ C19)

This trend, if maintained, would give _c - raN3.

Again, recall that the term 3_ in the baryon screening mass is expected of simple quark

models of nuclear matter. They predict that the nucleon screening mass will decrease linearly

with increasing chemical potential _ and a chiral symmetry restoration transition will occur

at # = raN3.

IV. DISCUSSION AND PROSPECTS FOR FUTURE WORK

In summary, we believe that the criticism and pathologies of quenched QCD pointed

out in the past can be interpreted in terms of the fluctuations expected for _>_ m,,/2 as

discussed in Sec. 2 above. It need not be true that quenched QCD is unreliable at nonzero

_. We believe, in fact, that the difficulties in simulating quenched QCD at nonzero _ will be

equally severe in the full theory, but both classes of simulations will be ultimately successful.

The constraints of confinement are, we believe, absolutely essential to obtain physical results

from simulations at nonzero chemical potential and, as we have argued above, the traditional

simulation scheme for lattice QCD is not well suited for this purpose.

We are now preparing a new set of simulations. Our past measurements made use of a

wallsourceforspectroscopy,and ofa noisyestimatorfor(_¢).We arenow testinga "noisy"

wallsource.Such a sourceisobtainedfrom our simplewallsourceby performinga random

gaugetransformation.Thissourcegivesusa stochasticestimatorofthehadronpropagators

fora pointsource,averagedoverallpointson thesourcetime-slice.A pointsourcegi_,es,in

general,propagatorswhich aremore poorlybehavedthanthoseproducedby a wallsource.

However,averagingovera largeenoughensemble,a noisysourcehas theadvantageofalso

averagingoverallpointson thesourcetime-slice,increasingour effectiveensemblesizeby

a factorequaltothenumber ofindependentpointsourceson thetime-slice.Thisapproach
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should increase the effective ensemble size and reduce the variance by enforcing confinement.

We believe such an effect is the reason why our stochastic estimator for (_/is much better

behaved when we enter the region _> rn,/2 than the hadron propagators obtained from a

simple wall source [15].

We are also planning a simulation on a larger, 64 x 163, lattice. Larger lattices should

help control all the possible pathologies discussed in Sec.II : the constraints of confinement

are clearer on larger lattices, variances in effective masses are diminished and violations of

symmetries are suppressed. Since we will also be using the better measurement techniques

discussed above, we are hopeful that we will obtain more decisive simulation results for p

between rn_/2 and rnN/3. In addition, the increase of Nt further decreases the temperature

(1/Nt) of the lattice, which also helps suppress pathologies.
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TABLES
i

Re<_ .> Im< _ >

0.000 0.13769 (60) -0.0006(10)

0.100 0.13750(70) -0.0021(,11)

0.150 0.1362(18) -0.0001(13)

O.ZTO 0.z359(_) -o.o05z(2z)

0.200 0.121 (4) -0.0027(65)
,

# R,e< Jo > Im < Jo>

0.000 -0.00047(98) -0.00085(64)

0.100 0.00033( 83) -0.00010( 76)

0.150 0.00069(145) -0.0022(12)
I

0.170 0.00071(162) 0.0007(17)

0.200 0.004(,5) 0.0009(7)

TABLE I. Results for the chiral condensate and the number density as a function of p

m.r wT,N

0.000 0.3396( 36 ) O.741(15)

0.100 0.3374(7,5) 0.442(14)

O.150 0.3182(,52) 0.292(22)

O.1?0 0.313(1,5) 0.23,5(24)

TABLE 1i. Results for the pion and the baryon screening mass as a function of p
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FIGURES

FIG. I. Frequency plot for the chiral condensate at/z = 0 (a) and _ = .17 (b). For each

configuration we averaged over the three boundaries, a_d the opposite/_ values.

FIG. 2. Frequency plot for the number density < J0 > at # = 0(a) and/_ _- .17 (b). For each

configuration we averaged over the three boundaxiss, and the opposite/_ values.

FIG. 3. Pion(a) and baryon(b) propagators obtained with the first bounda.,T condition at

= .15

FIG. 4. Same as Fig. 3 for/_ -_ .17

FIG. 5. Effective masses computed configuration by configuration for the rn,/2 (circles) and

rnB/3 (squares) a.t/_ = 0.

FIG. 6. Histograms accompanying Fig. 5. Dash is for m_/2 and solid is for mN/3.

FIG. 7. Histograms for rn,/2 at # = .17 (solid). The histogram at p = 0 is shown for compar-

ison (dash).

FIG. 8. Histograms for raN3 st/_ = .17 (solid). The same, skirted by p (dot). The histogram

at p - 0 is shown for comparison (dash).

FIG. 9. Effective masses for the pion u a function of time, for/_ - (0, 0.1, 0.15,0.17), (crosses,

diamonds, squares, circles).

FIG. 10. Effective masses for the nucleon as a function of time, for /z = (0,0.1,0.15,0.17),

(crosses, diamonds, squares, circles).

FIG. 11. < J0 > (a) and < _p _>(b) as a function of/_.
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FIG.12. Pion (crosses)and b_ryon(circle)masses_sa functionof_. The strMghtlineis

y = ma(O)- 3/=.
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