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A. HIGHLIGHTS

1992 (March) Sede Boqer Symposium in Nonimaging Optics Sede Boqer,
Israel

1992 (November) Sacramento Municipal Utility District (SMUD) and
NREL Workshop on the potential of evacuated integrated CPC solar
thermal collectors for application to air conditioning. Sacramento, CA.
FUTURE CONFERENCESSCHEDULED"

1993(Julg) International Symposium on Nonimaging Optics: Maximum
Efficiency Light Transfer, SPIE 1991 Annual Meeeting at San Diego Ca.

1993 (October) Symposium onNonimaging Optics and lllumination
Systems, Optical Society of America Annual Meeting in Toronto Canada.

B. NONIMAGING OPTICS AT OTHER INSTITUTIONS

At the Sede Boqer Symposium, a Nonimaging Optics bibliography of
publications in peer-reviewed journals and books was presented. This
contains some 450 articles and 20 books. The following is a partial list
of active work:

Hewlett-Packard has constructed light emitting diodes encapsulated in
CPC collectors, so as to direct the light forward over a well-defined
range of directions. These are used in the '92 Ford Thunderbird rear
illumination red applique.

Midway Labs, a Chicago based company, is manufacturing assemblies
consisting of a Fresnel lens and a nonimaging secondary followed by a
photovoltaic ce!!.

The original work on focal plane nonimaging astronomical systems with
far infrared radiation carried out by Roger Hildebrand and co-workers has
continued and this system is now in wide use. An example is the John

Mather photometer for measuring the nominally 3° cosmic black body
radiation in space (COBE sattelite launched by NASA in '89).
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The University of Chicago has helped to set up a company to apply
nonimaging optics to a wide variety of problems; the company is NiOptics
Inc., Evanston, lllinois.

The New Energy Development Organization of Japan has selected a CPC as
their single choice for mid-temperature solar heat utilization. This is
being developed by Koto Electric Co. in Japan.

In the Weitzmann Institute of Science (Israel) second stage nonimaging
systems are being used for solar pumping of large-scale lasers and
other applications. Laser power has exceeded 300 Watts and is expected
to approach a killowatt. A large energy company in Israel is using and
marketing CPC solar heaters for space heating in institutions and
companies.

At Ben Gurion University (Sede Boqer, Israel) Nonimaging Optics is being
developed for solar collection and for illumination (J. Gordon and

colleagues).

In Madrid at the Polytechnic Institute, as adjunct to the work on
photovoltaics, significant theoretical and experimental work on
nonimaging concentrators is in progress, by Luque, I'linano and colleagues.

At the University of Sydney (Australia) nonimaging optics for solar
collection and for illumination is being studied.

At Lockheed/Sanders (J. D. Kuppenheimer) CPC designs for infra-red

countermeasure jammers are in use.
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I. OVERVIEW

Nonimaging optics began in the mid 60's with the discovery that
optical systems could be designed and built that approached the
theoretical limit of light collection (the sine law of concentration).
[A semi-popular account is given in R. Winston, Scientific American cover
article, March, 1991.] Since its inception, the field has undergone three
periods of rapid conceptual development. In the 70's the "string" or
"edge-ray" method [W. T. Welford and R. Winston, High Collection
Nonimaging Optics (Academic, New York, i989)]. (the "Hottei string" is a
useful construct for calculating radiative transfer between lambertian
surfaces) [W. H. McAdams, Heat Transmission (McGraw-Hill, New York,

1964)] was formulated and elaborated for a large variety of geometries.
This development was driven by the desire to design wide-angle solar
concentrators, lt may be succinctly characterized as: S ndl = constant
along a string. [Notice that replacing "string" by "ray" (Fermat's
principle) gives ali of imaging optics.] In the early 80's, a second class of
algorithms was found, driven by the desire to obtain ideally perfect
solutions in tr_ree dimensions (3-D). (The "string" solutions are ideal only
in 2-D, and as figures of revolution in 3-D are only appoximately ideal,

though still very useful). This places reflectors along the lines of flow of
a radiation field set up by a radiating lambertian source. In cases of high
symmetry such as a sphere or disc, one obtains ideal solutions in both 2-
D and3-D. The third period of rapid development has taken place only in

the past year; its implications and consequences have yet to be worked
out. This was driven by the desire to address a wider class of problems in
illumination that could not be solved by the old methods. (specifically an
infra-red counter-measure beam). Here are two examples: lt is well-
known that the far-field illuminance from a lambertian source falls off

with a power of the cosine of the radiating angle ox. For example, strip
radiators produce a cos3cx illuminance on a distant plane, while circular
disc radiators produce a cos4o_ illuminance. But suppose one desires a

predetermined far-field illuminance pattern e.g., uniform illuminance?
The old designs will not suffice; they simply transform a lambertian
source radiating over 2Tr into a lambertian source radiating over a
restricted set of angles. Another example is more technical. We recall

that older nonimaging designs require that reflectors be positioned very
close to the source (or receiver). Violating this rule introduces
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undesirable structure in the radiating or angular acceptance pattern of
the device, typically a dip in the forward direction. The limitation of the
old designs is that them are too static and depend on a few parameters
such as, the area of the beam A 1and the divergence angle e. One needs to
introduce additional degrees of freedom into the nonimaging designs to
solve a wider class of problems.

Nonimaging optics is the optics of extended sources. That is why
the subject has more in common with radiative transfer than with
conventional optical design and relies on such notions as "Hottel
strings". In contrast, imaging optics in its geometrical considerations is
the optics of point sources. But in considering extended sources, one is

led to distributions in phase space and inevitably to the theory of
Radiance. This is a mature subject: pioneered by Adrian Walther,
beautifully developed by many workers, notably by Emil Wolf and his
school. Our work in this area is driven by the desire to describe radiance
in nonimaging optical systems. The systems currently studied are quasi-
homogenous which means that the cross-spectral densityW(rl,r z) has the
form l[1/z(rl + r2)] g (r 1- r z) so that the correlation is translationally
invariant. [Carter, W.H. and E. Wolf JOSA 67,785-796,1977]. But

boundaries are significant in nonimaging systems (after all, the edge-ray
algorithm is one of the most useful in the subject), so that the quasi-
homogenous model is not suitable. We are collaborating with the
University of California/Berkeley group of Robert Littlejohn and Allan
Kaufmanto address this difficult problem. Our approach is to study the
evolution of various distribution functions along rays, since in classical
radiometry this evolution is null (the radiance is conserved along rays)

A. RECENT PROORESS IN NONIMAGING OPTICS

5lightly over one year ago, we presented the proposal that
nonimaging designs be regarded as functionals of the desired irradiance,
rather than depending on a static parameter such as the "acceptance
angle". [R. Winston, Nonimaging Optics: optical design at the
thermodynamic limit, in Nonimaging Optics: Maximum Efficiency Light
Transfer, pages 2-6. Prec. 5PIE 1528, Roland Winston and Robert L.
Holman, editors, July 1991.] The response of the "nonimaging optics
community" was gratifying; (! have not witnessed comparable excitement
since the solar collector developments of the '70's). Two journal articles
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from colleaguesare in press.Ourown work is bestdescribedin a paper
being prepared for publication in J.O.S.A.A. in collaboration with Harald

IRies. An earlier version elicited the following remark from an anonymous

referee: "I find the material (in section 4) to be new and original. [t
forms an important solution to a fundamental problem in illumination

optics that, to the best of my knowledge, has never been tackled

successfully, namely, generating a uniform far-field illuminance from an

extended radiation source. The method of solution also opens up a new

approach to the more general problem, which the authors show, of

producing almost any illuminance pattern from a given extended radiation

source." lt is reproduced here in its entirety. [The authors are Roland
Winston and Harald Ries.]

Abstract

Formany tasksinilluminationand collectiontheacceptanceangleisrequiredtovaryalong
thereflector.Ifthe acceptanceanglefunctionisknown,thenthe reflectorprofilecan be
calculatedasa functionalofit.The totalfluxseenby an observerbom a sourceofuniform
brightness(radiance)isproportionaltothesum oftheviewfactorof thesourceand its

reflection. This allows one to calculate the acceptance angle function necessary to produce
a certain flux distribution and thereby construct the reflector pro_e. We demonstrate the

method for several examples, including finite size sources with reflectors directly joining the
source.

1 Introduction

Nonimagingopticswu developedtosolvea wellposedbut narrowsetofproblems{I].A
prototypicalexampleistheconcentrationofa lightbeam withdivergencehalf-angle6 and
cross-sectional_reaAi intotheminimum possiblearea A2 withoutlossofthroughputor

conversely,thedesignofilluminationsystemsthatconverta lambertiansourceintoa beam
withdivergenceh_'-angle@ _nd no straylightwithoutlossofthroughput.Two classes
ofalgorithmshavebeenfoundwhichsolvetheseproblemsexactlyornearlyso.Theseare
summaxizedhere;thedetaiJJcan be foundinRef.[21.The firstisthe Ustring"or "edge-

ray_ method. The UIIottelstringn isa usefulconceptforcalculatingradiativetransfer
betweenILmbertiansurf's:es[3].Itmay be succinctlycharacterized_s:fn dl= conj_ant
alonga string,wheren denotestheindexofrefractionand _lthepathlength.Noticethat
replacingu_tring_by Urayngivesallofimagingoptics.The secondclassofalgorithmsplaces
reflectorsalongthelinesofflowofa radiationfieldsetup by a radiatingsource.Incases

" ofhighsymmetry suchas'asphereordisc,one obtainsidealsolutionsinboth two and
threedimensions.Ineitherc_se_refiectin8 andsometimesrefractingelementsareshapedin
specificways incombinationtosolvetheproblem.

A widercl_sofproblemscannotbe solvedbytheknown methods.Hereaxeafewexamples'



It is well.known that the irradiance on a distant plane at an angle 0 from a long, cylindric
larnbertian source of uniform brightness falls off with cos2(0). Strip radiators and spherical
sources produce a cos_(8) irradiance on a distant plane, while circular disc radiators produce
an irradiance proportional to cosd(0). The angular power density of the flat sources (disc and
strip) falls of_as cos(@)while the power density of cylindric and spherical sources is constant.
But suppose one desires a predetermined far-field power or irradiance pattern e.g. uniform
irradiance? The classical designs will not sufBce; they simply trandorm a larnbertian source
radiating over 21rinto a lambertian source radiating over a restricted angular range.

The limitation of the old designs is that they are too static and depend only on a few
parameters, such as the area of the beam Ai and the divergence angle 8. One needs to
introduce additional degrees of freedom into the nonimaging designs to solve a wider class
of problems. The purpose of this communication is to indicate the lines along which this
additional freedom can be introduced.

2 Determining the reflector profile for small sources

In the usual design methods the profile of the reflector is determined by the given constant
acceptance angle 8 and the geometry of the entrance and exit surfaces. Thus we can regard
the reflector profile a as a function of 8, R(8). However, in certain situations a "constant
acceptance angle" design is unduly restrictive. But suppose 8 is itself made a function of
some other parameter of the problem say, #. Then R is determined only after the functional
relationship of 8 and _ is known i.e., R is now a _actdo_ of 8, R = R{8}.

For illustrative and pedagogical reasonJ, we will consider _rst the simple case when the
size of the source is much less than the clo_,t distance of approach Ro to any reflective or
refractive component. Thus the angle subtended by the source at any reflective or refractive
component may be regarded as small. Our approximation of small source dimension d and
large observer distance D Lmounts to

_<< Ro << D. (i)

In this limit the ill-,-i-stion problem has been solved earlier [4] We briefly review the
classical solution before we introduce • novel approach capable of deriving in closed form
the reflector for large sources.

Polar coordinates are used to represent the reflector profile by R = R(#), with the source
at the origin. The angle of the reflected ray with the optical axis is denoted by 9, and
the incidence an_,,leat the reflector with respect to its normal is denoted by ,, u depicted

in Fig.1. The ,_eometry shows that the following relation between the re_qectorprofile and
incidence angle _,_lds:

 gl°S(a)= C2)

Note, that the underlying assumption for this equation is, th&t the edge rays incident onto
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Figure i' The reflector profile is represented in polar coordinates R(_b) with the source at
the origin. The reflected radiation has an angle 0 with the optical axis y and a with the
normal to the reflector•

the reflector travel along the vector R. Clearly,

== -'F' (3)
Equation 2 is readily integrated,

so that,

(Jo /= . (51

This determines the reflector profile R(_) for any desired acceptance angle function 0(@).

Suppose we wish to radiate power with s particular angular distribution po(0) from a source
which itself radiate= with a power distribution P'(_). The angular characteristic of the
source is the combined result of its shape, surface brightneu, and surface angular emissivity
at each point. A distant observer viewin s the source fitted with the reflector under an angle
0 will see &reflected image of the source in addition to the souxce itself. This image will
be magnified by some factor [MI if the reflector is curved. Ideally both the source and its
reflected image have the same brightness, so the power each produces is proportional to the
apparent size. The intensity perceived by the observer, P'(0) will be the sum of the two

P'(S) = P'(S) + IMIP'(_). (6)

The absolute value of the masni/ic&tion hu to be taken because, i( the reflected image and
the source are on different sides of the reflector and we therefore perceive the image as

reversed or upside down, then the m_fication ii negative. Actually, at small angles, the
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source a_ndits reflection image may be aligned so that the observer perceives only the larger
of the two. But if IMI is large one can neglect the direct radiation from the source.

Thus one is concerned with the magnification of the reflector. A distant observer will see
thin source placed in the axis of a trough reflector magnified in width by a factor

dm
M,,= (7)

This can be proved from energy conservation. The power emitted by the source must be
conserved upon reflection: P°d@ = M P'dO.

For a rotationally symmetric reflector the magnification M,_ as given in Eq.(7) refers to the
meridional direction. In the sagittal direction the magnification is

n. = d_,, sin(0)' (8)

where now #1 and _'2are small angles in the sagittal plane, perpendicular to the cross section
shown in Fig 1. Equation (8) can be easily verified by noting that the sagittal image of an
object on the optical axis must also lie on the optical axis. The reason is, that because of
symmetry, all reflected rays must be coplanar with the optical axis.

The total magnificat, ion Mt is the product of the sagittal and the meridional magnification

,/cos(@) (9)
Mt M.M,,, = dcos(O)'

ActuallyEq.(9)couldalsohavebeen deriveddirectlyfrom energyconservationby noting
that the differential solid angle is proportional to dcos(0) and dcos(@) respectively.

Thus inserting the magnification given in Eq.(9) or Eq.(7), as the case may be, into Eq.(6)
yields the relationship between 0 and _ which produces a desired power distribution P°(O)
for a given an_xlar power distribution of the source P'. This relationship then can be
integrated u outlined in Eq.5 to construct the shape of the reflector which solves that
particular problem.

There are two qualitatively dit[erent solutions depending on whether we assume the magnifi-
cation to be positive or negative. If Mm > 0 this leads to CEC-type devices, whereas Mm < 0
leads to CHO-type devices. The term CEC refers to Compound Elliptical Concentrator and
CHC to the so called Compound Hyperbolic Concentrator [5, 6, 7, 8].

Now the question arises of how long we can extend the reflector or over what angular range
we can specify the power distribution. From Eq.(5) one can see that if @- 0 = x then R
diverges. In the case of neg&tive m&gnific&tion this happens when the total power seen by
the observer between 0 - 0 and 0 -- _ approaches the total power radiated by the source

between _ -'- 0 and _ - w. A similar limit applies to the opposite side and specifies 0'_m.
The reflector asymptotically approaches sn infinite cone or V-troush. There is no power
radiated or reflected outside the range _ < 0 < _".

!
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For positive magnification the reflected image is on the opposite side of the symmetry axis
(plane) to the observer. In this cue the Limit of the reflector is reached as the reflector on
the side of the observer starts to block the source and its reflection image. For symmetric
devices this happens when _b+ 0 = w. In this case too one can show that the Limit is actually
imposed by the first law. However, the reflector remains finite in this limit, lt always ends
with a vertical tangent. For symmetric devices where _ = -r _'_and _"_= = -_bmm the
extreme directions for both the CEC-type and the CHC-type solution are related by

_-'--+ 6m'-: ,. (1o)

In general CEO-type devices tend to be more compact. The mirror area needed to reflect
a certain beam of light ii proportional to 1/cos(a). The functional dependence of 0 and
_bfor symmetrical probleml is similar except that they have oppolite signs for CHC-type
devices and equal signs for CEC-type solutions. Therefore a increases much more rapidly for
the CHC-type solution which therefore requ/res a larger reflector, usuming the same initial
value Ro. This is visualised in Fig.2 and where the acceptance angle function as well as the
incidence angle a are plotted both for the negative magnification solution.

2.1 Simple Example: strip source

For a narrow, one-sided lambertian strip, the radiant power is proportional to the cosine of
the angle. In order to produce a constant irrsdiance on a distant target the total radiation
of source and reflection should therefore be proportional to 1/cos_(0). This yields

The boundary condition is, in this case, _ = 0 at _ : +w/2 because we assume that the
strip only radiates on one side, downward. Equation I I can only be integrated for a : i:

sin(.) = I -I tan(S)- ,m(O)l. (i_)

The acceptance ,male function 0 as well as the incidence angle for the CEO-type solution
are shown in Fig.2. Integrating yields the reflector shapes plotted in Fig.3.

3 Reflector adjacent to a finite planar source

We have now developed the analytical tools to solve the real problems which involve reflectors
close to the source. We do this by combining the above technique with the edge ray method
which has proved so effective in nonimstfi _ designs [2]. That is, we apply the above method,
to edge rays. Ama first example, we design a reflector for a planar, lambertisn strip source
so as to achieve a pred_ed f_-field irradiance. We des'_gnthe reflector so that the
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Figure 2: Acceptance ansle function which produces s constant irradiance on s distant plane
from a narrow one-sided lambertian strip source (2DI ; 4= I.
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Figure 3: The reflector profile which produces a constant irrad/ance on a distant plane from
a one-sided lambertian strip _ource (2D) st the origin, R(_b= _/2) = i, a = I. CEC (inner
curve) and CHC-type solutions (outer truncated curve) are shown.
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reflected image is immediately Ldjscent to the source. This is only possible in a negative
mat_ification Lrr_ngement. Then the combination of source and its mirror image is bound
by two edge rays u indicLted in Fig.4. The combined angular power density for a source of
unit brightness radiated into s certLin direction is given by the edge ray separation

Rain(2•)= P'(O). (13)

0 so

-, |

-2

-3 _
-4 -1 -'0 l 4

Figure 4" The reflector is designedto produce • reflected imqe _lj_.ent to the source. The
combinedintensityradiatedinthedi:ection-e isdeterminedby the_paxationofthetwo

edgerays:R sin2a.

By takingthelogaxithnticderivativeofEq.(13)and substitutingF-xl.(2)we obtain

= _
de 2 de

Thisdescribesthe:illhthand side,wheree < 0.The othersideisthemirrorimage.

3,1 Deriving the reflector shape directly for finite source

For 2a = w, R diver|es just u in the c_e of the CHO-type solutions for small sources.
Thus in |[ener&l the full reflector extends to infinity. For prLcticM reasons it will have to
be truncated. Let's mmume that the reflector is truncated at • point 7' from which _he

edge ray is reflected into the direction eT. For angles e in between ±0T the truncation
hu no effect because the outer parts of the reflector do not contribute radiation in that

range. Therefore within this range the truncated reflector Mso produces strictly the desired
illumination. Outside this range the combination of source plus reflector behaves like a flat

source bounded by the point 7' and the opposite edge of the source. Its angular power
density is given by Eq.(13) with R : RT: constant. The total power/_r radii•ted beyond
eT is thus

=  ez) = R(eT)(I+ (15)
7



Inordertoproducean intensityP°(0r)at0r,R(#T)must be

R(OT)= P°(OT)
sin(2ar)' (16)

The conservation of total energy implies that the truncated reflector radiates the same total
power beyond #7"as does the untruncated reflector.

1 + CO,S(2aT) 1 foOTsin(2az) = P°(#z) _°_P°(_)d_ =: B(OT) (17)

This equation must hold true for any truncation # = 0T. It allows to explicitly calculate c_,
and with it _ and R, in closed form as functions of 0, if B(O), that is the integral of po(#)
is given in closed form. Solving Eq.(17) for a yields

2a=arccos _+1 " (18)

Substituting Eq.(3) yields the acceptance angle function

= o+ (19)

/,FromEq.(13)theradiusisgivenby

B_+I

R(O)= P°(O) 2B " (20)

Theseequationsspecifytheshapeofthereflectorina parametricpolarrepresentationforany

desiredangularpowerdistributionP°(O).A straightforwardcalculationshowsthatEq.(18)
isindeedthesolutionofthedifferentialequation(14).InfactEq.(14)was notneededfor

thisderivationofthereflectorshape.We havepresenteditonlytoshowtheconsistencyof
theapproach.

3.2 Example- constant irradiance

Forexampletoproducea constantirradianceon a planeparallelto thesourcewe must
haveP°(0)ffiI/cos2(0)and thusB(0) = cos2(0)(I+ tan(0)).The resultingacceptance
anglefunctionand the reflectorprofileareshown inFig.5and Fig.6respectively.The

reflectorshapeisclosetoa V-trough.Though,theacceptanceanglefunctionisonlypoorly
approximatedby a straightline,whichcharacterizestheV-trough.InFig.7we show the
deviationofthe reflectorshapedepictedinFig.6.from a trueV-trough.Note,thata
trueV-troughproducesa markedlynon-constantirradiancedistributionproportionalto

cos(O + 7r/4) cos(O) for 0 < -0 < _r/4.
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Figure 5: Acceptance angle function which produces a constant irraziiance on a distant plane
from a finite one-sided lambertian strip source. There is on/y a CHC-type solution.
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Figure 6: The reflector profile which produces a constant irradiance on a distant plane from
a finiteone-sidedlmnbertianstripsourceofwidthtwo units.Note thatthereisonlya
CHC-typesolutionmad itistruncLted.
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3.3 Example- specific non-constant irradi_nce

As a second example we design the reflector which produces the irrsAiance distribution on a
plane shown in Fi8.8. The corre_,pondin8 angular power distribution is shown in Fig.9. The
8cceptance angle function sccordin s to F.,q.(19) and (18) and the resulting reflector shape
according to Eq.(20) are visualised in FiS.10 and Fi8.11.

1 L
1.00

O.TS !O.6O

oJs

o.oo \! Ilr

-1J --1 --OA 0 OA 1 1J

Fis_e 8: Desiredim_li--ce distributionon a distant plane perpendicularto the optical
planedivided by the izT_ance produced_on8 the L_S by the sourcealone. Brokenline
showsthe hT_ance of a truncateddevice

2.S

2

1J

1

OJ

0
-410 -4O -1o o 2o 4o Io

Figure 9: Angular power distribution corrmpondin8to the irrscliancedistribution shown in
Fig.8. Broken line refers to & truncated device.

Althoush the desired irrsdiance in this example is 8is_ificantly different from the constant
irradiance treated in the example before, the refl,._'tor shape _in is utonishfugly close

to a V-troush and the reflector of the previous ex*mple. The subtle di/[erence between the
reflector shape of this example and • true V-troush are visualised in Pis.12 and Fig.13 where
we plot the slope of our reflector and _he distance to • true V-troush. Molt structure is
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Figure I0: Acceptance ansle function correspondin 8 to the desired is'radiance distribution
plotted in Fig.8.
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Finite strip source
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Fisure 11: The reflector profile which produces the desired irradiance shown in Fi8.8 on a

distant plane grom a finite one-sided lambertian strip source of width two units. Note that
there is only & CHC-type solution and it is truncated.
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confined to the region adjacent to the source. The fact that subtle variations in reflector
shape h&ve marked effects on the power and ir_sdiance distribution of the device can be
attributed to the large incidence angle with which the ed&e r,_ys strike the outer parts of the
reflector.

-0._

J Finite strip sovree
-.o.o

-1.0 i

-1.1

V,H'Sk_aldktNee from lumlm,lr
-1.2

0 I 2 $ 4

Fisure 12: Slope of the reflector as a function of vertical distance from the source.

02

0.1

0

-0.1

-0.Z
.O I Z $ 4

Fisum 13: Deviation of the reflector depicted in Fig.ll from 8 true V-trough.

Ai mentioned before, in pneral the reflector is of infinite sise. Truncation alters, however,
only the distribution in the outer pna-ts. To iUustr,te the effects of truncation for the reflector
of this example, we plot in Fi|.14 the ansle up to which the truncated device matches the
desired power dktribution, dm• function of the vertical length of the reflector. Thus for
example the truncated device shown in Fig II hu the irradiance distribution and power
distribution shown in broken line in FiS.8 and FiS.9. Note that the reflector truncated to a
vertical length of 3 times the source width coven more than 5/6 of the ans_ar range.
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Figure14: The eITectoftruncationisindicatedby theangleup towhich thetruncated
devicematchesthedesiredpowerdistribution,plottedasa functionoftheverticallengthof
thereflector.

3.4 What power distributions can be produced?

First, evidently the total desired power must match the total power emitted by the source
Here we investigate what other conditions P°(0) must meet.

The intensity desired at the center cannot be less than that produced b,y the source alone:

P°(0) _ Ro because the reflector can only wdd radiation. If the intensity and irradiance
d ,..siredat the center, at 0 = 0 is larger than that produced by the source alone, then the
r_flector shape starts with _ increasing at constant 0 = 0, thus a = q_/2. Equation(2)
c_=xthen be directly integrated. The shape of the first section is a parabola with axis
p,:rpendicular to the reference plane.

1

= a'1+

The parabolicsectionextendsuntilEq.(13)ismet.Forlargeranglesa sudden,step-increase
ofthepowerdensity,proceedingawaybom thecenter,canbeproducedby addingparabolic
sections.Notethatthereflectorremainscontinuousand smooth(diITerentiable).

The strongestdecrease,thatcanbe producedatany point,isthatproducedby truncation.
As the incidenceangleoftheedge ray increases,thisstrongestdecreasebecomesmore
marked.Thus a step-decreuecannotbe producedexceptinthelimitatP"_',wherethe
reflectorextendstoinfinity.Algebraicallythisisexpressedbytheconditionthat@,asgiven

inEq.(19),ismonotonousm thatfromeachpointon thereflector,theoppositeedgeofthe
source can be seen.

If the initial part of the reflector starts u &parabolic section then the view f_tor of the source
is larger and thus the maximum ansle up to which constant illumination can be achieved is

I



correspondingly smaller. However, the dec-ts of truncation sre the same: The radiation will
be strictly u desired in the central part of the range and some of the radiation wiU be spread
beyond the mJc_imum angle of the untruncsted device. The "smallest" possible maximum
angle is _" = 0. In this cue both sides of the reflector sre sections of a parabola with
vertical a.xis and the opposite source e6ge _ a focus.

Constant illumination over ansles larger then w/2 cmmot be ,w.hieved _Titha fiat 2D source
because tkis would imply that at 0 ffi 0 the combination of source and reflector radiates less
than the source alone.

4 Conclusions

The clusical nonim86ing reflector ahapes can be viewed u functions of sn acceptance angle
which is constant along the reflector profile. A v_ety of problems, however, require vaziable
acceptance angles. In these cues the reflector profile is s functional of the acceptance angle
function or the function describing the desired power ,tensity distribution. For the calculation
of the reflector based on the variable msq_dficstion there sre in general two different types of
solution, depending on whether the meridional msq_nification is positive or negative: a CEC-
type, characterised by positive msq_nific_tion in which the reflection of the source appears
on the side opposite to the observer, and a CHC-type, of negative magnification, where
the reflection is on the stone side. The CEC-type reflector is finite and always ends with a
vertic_l tangent, while the CHC-type solution is _te and approaches a constant slope.
The end point of the CEC-type solution and the uymptotic slope of the CHC-type reflect
the conservation of total radiant power.

For a fin/tc sise source, we have shown how to calcula_ s CHC-type reflector profile touching
the source. For &flat source the solution can be given in closed form. The method presented
here does not entail in any way ms optimisation procedure, lt yields the reflector profile
which produces a desired irrsdiance distribution from a given source by straightforward
calculation based on first principles.

The desired irrsdiance or power distribution in the app_ presented in this paper for the
finite sources wu produced by designing the reflection of the source immediately joining the
source. The price of this choice is that only CHC-type reflectors and no CEC-type reflectors
result. But the b,meflt is that, unlike the clmic_l reflectors designed in the small source
approximation, the reflectors described here for finite sources can be readily _d&pted to the
reverse problem, namely ss ideal nonim_ concentrators for given radiation. For example
the ideal secondsry concentrator for a Presnel primsry described in a recent publication [9],
can now be given in a closed form by equations.(19) and (20) with P'(0) ffi I1/cos(0)- a,)J
where 2a, is the angle subtended by the sun (__ 0.01 rzdisn).

Subtle differences in the reflector dmpo have strons effects on the produced power and
irrsdisnce distribution. Therefore a high precision is needed for the manuflcturing of such

ii reflector.
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1. Introduction

The relationship between classical radiometry and the electromagnetic theory

of light is now a well developed subject. Reviews have been give by Wolf I and

Apresyan and Kravtsov. 2 A basic problem in this area, first posed by Walther, 3'4

is how to define the radiance or brightness in terms of the electromagnetic fields

and their statistical properties. It is now understood that there are many possible

definitions, none of which has exactly ali the properties expected of the radiance

in classical radiometry, but all of which acquire these properties in the limits of

short wavelength and suiBcient incoherence. The various possible definitions of the

brightness are quite similar to the various phase space distributions used in quantum

mechanics, among which the Wigner function 5 is one of the better known.

This paper is concerne.d with the deviations from classical radiometry, i.e.,

effects oi"physical optics which occur when the wavelength is not negligable and

effects which occur only for substantially coherent light. We are particularly inter-

ested in the evolution of various distribution functions along rays, since in classical

radiometry this evolution is null (the radiance is conserved along rays). In this

paper we are concerned only with propagation in a homogeneous medium. This is

the simplest case in which to make a systematic exploration of the corrections to

classical radiometry, and we have chosen to work on it first. Since there are many

ways to define a distribution function representing the radiance, our examination

of the corrections to classical, radiometry is different for the different functions, and

we are able to make comparisons.

In Sec. 2 we lay out our physical assumptions and the mathematical formalism

we will use to describe them. The material in this section is standard in the, literature

on dit_action and radiometry and coherence. In Sec. 3 we discuss Walther's first

proposed definition of radiance, s which is essentially the Wigner function, 5 and

express its properties in terms of the Weyl correspondence e and the product formulas

of Moyal. 7 This material is standard in the literature on the Wigner function. Then

we present some new results, namely infinite series representations for the evolution

of the Wigner function along rays and for the components of the energy flux in

terms of the Wigner function. In Sec. 4 we discuss Walther's second definition



of radiance, 4 which we study in both its real and complex versions. We develop

various identities connecting the real and imaginary parts of Walther's complex

function, including in.Cmiteseries. We also develop both integral and infinite series

formulas connecting Walther's function with the Wigner function, and we illustrate

these series explicitly for a Gaussian-Schell model. Then we develop infinite series

representations for the evolution of Walther's function along rays, in both its real

and complex forms. Finally, in Sec. 5 we present a new distribution function which

has the property that it is exactly conserved along rays.

Our results allow us to draw conclusions about which function is better con-

served along rays, by estimating the order of magnitude of the first correction term.

In the case of Walther's complex function, such sn estimate was made by Walther

himself, 3 and our result, obtained by different means, agrees with his. This same

estimate has also been examined by Jannson. s In the case of Waiter's real function,

we find that the conservation of brightness along rays is better than in the case of

Walther's complex function, and we provide the appropriate estimates. As for the

Wigner function, we find that it is even better conserved along rays than Walther's

real function, especially for paraxial rays. Finally, our new distribution function

introduced in Sec. 5 is exactly conserved along rays.

2. The Physical Model and Its Mathematical Formulation

In this section we describe the physical model we will adopt for our study of

the propagation of optical radiation, and the mathematical formalism we will use to

represent it. The same physical model is common in work on diffraction, so we will

j_.lstquickly summarize our assumptions. The mathematics we use is basically the

ti'ilbert space formalism of quantum mechanics, which has also been used by other

authors in applications to optics. 9 One reason for using this formalism is the strong

analogy which exists between the correlation functions in optics and the properties

of the density operator in quantum mechanics.

We represent the optical wave field by a scalar function _(r), which can be

loosely identified with one component of the electric field. We consider only mono-

chromatic radiation of frequency w, and we suppress the factor e-i_t in _. The



field _ is complex. The r_diation is generated in the region z _ 0 by currents

and charges which need not be specified, and propagates into the source-free region
z _ 0 which is assumed to be homogeneous and isotropic with a constant, real _ndex

of refraction n. Thus, in the region z > 0, _bsatisfies the Helmholtz equation,

v2_+ _0_= 0, (2.1)

where k0ffimo/c.We assumethatintheregionz > 0 thewave fieldconsistsonlyof

wavespropagatingordamping inthedirectionofincreasingz.We taketheenergy

densitytobe n21_l2,and theenergyfluxtobe

nc

J= _0L__*V_. (2.2)

The modificationsrequiredto accoutforthe truevectorialnatureoflightaxe

straightforward,sincethe medium inthe regionz > 0 isuniform. Allthe as-

sumptionswhichgointothismodel arestandardinstudiesofdiffractionand inthe

literatureon radiometryand coherence,l-4's-ll

We will write rx - (z,y) and r - (z,y,z) = (r±,z). We will usually regard

z as a parameter and think of _(r±, z) as a wave function in the Hilbert space of

wave functions defined over the zy-plane. We use the Dirac notation to write I_)

or I_(z)) for the state of the optical field in a given plane z - const., regarded as

an abstract vector in the Hilbert space, and we write

@(rx,z)= (r±l_(z)) (2.3)

toshow therelationbetweentheabstractHilbertspacevectorl@(z))and theusual

wavefunction_b(r±,z)(whichisther±-representationofthatabstractvector).Sim-

ilaxly,we introducethek±-representationby theFouriertransforms,

_(k_,z) = /
d2r±
2-V-_-'k_''__,(r_,z), (2.4)

¢(r±, z) - /

d2k±

and we write

_(kx,z)= (k±l_(z)). (2.6)

ill



In these equations and below, we use tildes to represent quantities referred to the

k±-representation,andwe setkj.= (k:,ky).The normalizationconventionsusedin

Eqs.(2.4)and (2.5)make thetransformationbetweenther±-and kj.-representation

unitary,sothat

/ d'rx l_(r±,z)l' = / d2k± l_b(kx, z)l 2. (2.7)

To find the optical field on some plane z = const. > 0, given the optical field

atz = 0,we solvetheHelmholtzequationinthekx-representation.The solution

is

= e (2.S)

wherewe write¢0(k±) for¢(k±,0),and where

{x/ko 2-k_., ifk±<ko,k,= iV/k_" -k° 2, ifkx>_k0.
(2.9)

Here and throughout this paper it wig be necessazT to regard k=, not as an indepen-

dent variablelikek= and ky,but as a functionofk±. Exceptionstothisrulewill

be notedexplicitly.The waves forwhich k± < k0 aretravellingwaves,and those

forwhich k± > k0areevanescentwaves.Now we combineEqs.(2.5)and (2.8)to

obtain,

¢(r±, z) = --/d2k-"-A21re_k'r ¢0(kx). (2.10)

Here we write k = (k ±, k,), so that

k. r = k± • r± + k,z (2.11)

with k, regarded as a function of k±. Next we use Eq. (2.4) evaluated at z = 0 to

express the result completely in the rx-representation. We find

= / d2r_. K(r± - r'z, z)_b0(r_.),
(2.12)

where we write ¢0(r±) for ¢(r±,0), and where

aak_ e,k.,.=
(2.13)



Equations (2.8) and (2.12) express a kind of "z-evolution," which is specifled

by a certain operator/_(z), parameterized by z, which we call the "z-propagator."

The matrix elements of this propagator in both the r±-representation and the k±-

representation can be read off from these equations; we have

(r±l/_(z)lr_.) - K(r±- r_., z) (2.14)

and

(k±[ff(z)[k_.) = e'k"5(k± -- k_.). (2.15)

Thus, we can write Eels. (2.8) and (2.12) in the form,

l_(z)) =/_'(z)l_(0)). (2.16)

The matrix elements of/'_'(z) in the rx-representation can be expressed in terms of

the free-spax:e Green's function G for the Helmholtz equation,

eiko r i f d2kx e'k'r f d'k eik"G(r) = 47rr = -2 (27r)2 k, = - (21r)s k2 _ k02. (2.17)

In the second of these integrals, k, is an independent variable of integration, not a

function of k±. The Green's function G satisfies

V2G + k02G= 6(r). (2.18)

To obtain the relation connecting G and K, we differentiate Eq. (2.17) with respect

to z and use Eq. (2.13) to obtain

K(r±'z) ffi2OG(r)oz= ze'_°r (12"-'_ ;3 ik0)r2 . (2.19)

The operator _'(z) is not unitary, due to the evanescent waves, for we have

d f d fd_ , 1__zz d2r± I@(r±,z)l2= _ k± I_(k_ z)

d /d' exp(-2z '2_/k_= k± - k,,/[_,o(k±)]2_'_ <_0. (2.20)
k_ >ko

The finalintegraliscarriedout overevanescentwavesonly.Ifwe shouldhavea

wavefieldwithnegligablecontributionfromevanescentwaves,thenthenorm ofthe
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wave function ¢ in the sense of Eq. (2.7) or (2.20) is conserved by the z-evolution,

and/_(z) behaves as if it were tmita,,'y.

A differential equation like the Schr6dinger equation can be written down for
the z-evolution. It is

i 0
_zzlW(z))=/_rl¢(z)), (2.21)

where the "Hamiltonian"operator/_risgivenby its(diagonal)matrixelementsin

thek-L-representation,

(k-LIHlk_.)"=-k, 8(k± - k_.), (2.22)

orinther-L-representation,

ei'°r (1 iko)(r-Ll/tlrk)- 2,r pa p2 , (2.23)

where p = Ir-L- r_.[. These equations follow from

/_(z) = e-i_/= (2.24)

The Hamiltonian/_ is not Hermitian for the same reason that /_" is not unitary

(the e,_xnescent v_ves). It is sometimes suggestive to write H in terms of the

operator IC.L(which is _-iV2. in the r,L-representation, or multiplication by k.L in

the k-L-representation). That is,

= +
where the _uare root is defined as in Eq. (2.9).

Now we introduce the angular spectrum. We write s = (sr,sy, s,) = k/k0, so
thats isa unitvector.Then we.write

sz= sin0cosV,

sy= sin0sin0,

ss = cos0. (2.26)

so that

d2k± = k2od2s± = s,k_odf_, (2.27)



where d_ is the element of solid angle. When k ± lies outside the circle k ± = lc0 (or

s± lies outside the unit circle), then the angle 0 (like sz = kz/ko) takes on complex

values.Now we transformEq. (2.10)intoan angularintegral,

z) = / a(s)e (2.28)
where

a(s)- k°2 _0(k±). (2.29)s•

The quantity_(s)istheang_arspectrum,ltactuallydependsonlyon s1,although

itisconvenienttoimagineitasdefinedovera hemisphereon whichtheunitvector

slies.The hemisphereshouldproperlybeextendedsoastoincludecomplexangles,

on accountoftheevanescentwaves.

Next we introducea statisticalensembleofwave fields{_a(r)},a = 1,...,N,

withcorrespondingweightsca satisfyingca > 0 and

N

- I. (2.30)
a----0

In some cases, we may promote c_ into a continuous index and make appropriate

changes to our formulas. The statistical averages we will be interested in can be

expressed in terms of the mutual intensity,

r(r,r') - _ ca_a(r)_*(r') - _(r)_*(r'), (2.31)
Ot

where the overbar indicates the statistical average. Usually we will be interested

in r(r,r') only when z = f; in this case we will write r(r±,r_.;z), which is the

r±-space matrix element of an operator r(z) (the density operator),

r(r±,r_.; z)- (r±lr(z)Jr_) -- _(r±, z)_*(r_L,z), (2.32)

where

r(z) = _ I_a(z))c_(_(z) i. (2.33)

We will also write

r(kj.,k_.; z) -(k±lF(z)lk_.) (2.34)
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forthek±-spacematrixelementsofF(z)(witha tildetoindicatethekj.-represen-

ration).

The z-evolutionofI'(z)isstraightforward.The basicformulais

['(z)=/_'(z)I'(0)/_'(z)t, (2.35)

whichisespeciallysimpleinthek±-representation:

I'(k±, k_.; z) = • [i(k'-k',.)=] f0(kj.,k_), (2.36)

where kt: is given by a primed version of Eq. (2.9) and where wedefine r0(kj., k_.) =

I'(kj., k_.; 0). A differential equation for the evolution of I'(z) follows by combining

Eqs. (2.24) and (2.30) and differentiating with respect to z. The result is

id_(z----_)= Ht(z)- r(z)/1t. (2.37)dz

Ifthestatisticalensembledoesnotcontainany evanescentwaves(aconditionwhich

isindependentofz),thentherighthand sideofthisequationcan be replacedby

thecommutator it(z),/_].

3. The Wigner Function inRadiometry

In thissectionwe considertheWigner functionas a candidatedistribution

functionintermsofwhich thebrightnessorradiancecan be defined.The Wigner

functionhas certainadvantagesand disadvantagesincomparisontoothercandi-

datef_mctionsinthisrole.The principaldisadvantageseemstobe thattheexact

expressionforthe z-componentoi'theenergyfluxisnot identicalto theformula

expectedon thebasisofclassicalradiometry,althoughthetwo formulasdo agree

in thelimitsofshortw'_velen_hsand sui_cientincoherence.Thisdisadvantage

isoffsetby a number oi'advantages.First,inthepaxaxialapproximation(orany

approximationwhichleadstoqua_aticphasefactorsfortherj.-spacekernelofthe

z-propagator),the Wigner functionisexactlyconservedalongrays,not onlyina

homogeneousmedium (whichisour main interestinthispaper),butalsowhen the

rayspassthroughlenses,etc.Thisexactconservationisindependentofthedegree

ofcoherence,and applieseventocompletelycoherentlight.Second,theWigner



function has elegant analytical properties, which allow us to provide explicit forms

for the corrections to classical radiometry, out to ali orders in the appropriate small

parameters. Indeed, we have found it convenient, in exploring the properties of

other distribution functions, to express them first in terms of the Wigner func-

tion, so we could invoke the analytical properties of the latter. Third, we find that

the Wigner function is conserved along rays to a higher degree of approximation

than other distribution functions, even for rays which are substantially off-axis. We

begin this section with a summary of the usual properties of the Weyl transform

and the Wigner function, transcribed to the optical context in which we are inter-

ested. Reviews and other articles of interest on the Wigner function and the Weyl
correspondence include Refs. 12-16.

Let A be any operator which acts on the Hilbert space of wave functions defined

over the zy-plane, and let Aw(rx, k±) be its Weyl transform, which is defined by

/d2axe -'k_''_ (rx + ½a±lAIr±- ½a±)
A,(rx, k±)

-- /d2q± • +iqJ''r_"(k± + 1 j._lk lq±)._q± ±- 2 (3.1)

The Weyl transform has the following properties. First, if Aw is the Weyl transform

of operator A, then the Weyl transform of operator _,t is A*. In particular, the

Weyl tremsform of a Hermitian operator is real. Next, if A and/3 are two operators

and Aw and Bw the corresponding Weyl transforms, then

Tr(AtB) = / d'ar± d2k±(27r)2 A_(r±, k±)*B_(r±, k±). (3.2)

In particular, since the Weyl transform of the identity operator is unity, we have

= f d2r± d2k± Aw(r±, k±) (3.3)
Tr(_.)

The thirdpropertyoftheWeyl transformisgivenby theMoyal formula.Let

.4,B, C be operatorswithWeyl transformsAw, B_, C_, and letC = A]_.Then

Cw isgivenintermsofAw and Bu,by
4--- --=@ _ ---.#

i 0 a 0 0

C.(rx, k±) = Aw(rx,kx)exp[_(_-r--._x•O--l_--_±- -_-_-_±._--x)]Bw(rx, k±). (3.4)



In this expression, the arrows over the partial derivatives indicate the direction in

which the derivatives act, i.e., those with a left arrow act on Aw, and those with

a right arrow" act on Bw. The exponential in this expression can be expanded out,

and the first few terms give

i

ew = A,,,B,,, + -_{A,,,,B,,,} + ..., (3.5)

where the curly bracket represents the Poisson bracket in the variables r±, k ±,

OAw OB,,, OA,,, OBw (3.6)(A.,B.}= O%'-:"0k-"-;- 0k-'---L"O%'-:"

A variation on the Moyal formula is obtained if we let C = A.B- 1}2 = [,4,BI.

Then the Weyl transform Cw can be written,

0 O O O

We will find the Moyal formula useful in developing the corrections to classical

radiometry.

We now tabulate some Weyl transforms of various operators which will be of

use to us later. If ,3, is an operator, we will use a two-sided arrow to show the

correspondence with its Weyl transform, a function of (rx, k±). First, the Weyl

transform of the identity operator, denoted 1, is unity:

1 _ 1. (3.8)

Next, the operators _±, l(j. axe defined respectively by multiplication by r± and

-iV± in the r±-representation, or +icg/Ok± and multiplication by k± in the k±-

representation. The Weyl transforms of these operators axe given by

_± _ rx, l_j. _ k_. (3.9)

The Moyal formula can be used to compute the Weyl transforms of higher order

polynomials in f'±, I_±. More generally, if f and g are any two functions, then we

have

f(_±) _ f(rx), g(k±) _ g(k±). (3.10)



Next, we have the Weyl transforms of two projection operators,

Ir±o)(rxol _-_ 6(rj. - rj.o), (3.11)

[kxo)(k±o[ _ 6(kx - k±o). (3.12)

In these formulas, ra.0 and k±0 axe the parameters of the projection operators,

which axe distinguished from the variables r j., k ± upon which the Weyl transforms

depend.

Finally, we have the Wigner function itself, which is the Weyl transform of the

density operator ['(z):

F(z) _ W(r±, kx; z). (3.13)

This can also be written,

W(rx, kx;z) =/d2a±e -ik''.x F(r± + ½aJ.,rx - ½ax;z). (3.14)

We regard the Wigner function as a distribution function defined on the 4-dimen-

sional phase space (rx, k±), and parameterized by z. By writing the definition in

terms of a qx-integral as in Eq. (3.1) and using Eq. (2.36), it is easy to express W

in the plane z = const. > 0 in terms of r evaluated in the plane z = 0. We find

W(r±,k±;z) = daqa.e i[q_'r'+(_+-"*-):] F0(k± + ]qx, k± - 7qx), (3.15)

where

-- ± (3 6)
and with the square root of negative numbers interpreted as in Eq. (2.9). An

alternative version of Eq. (3.15) is

W(rx, kx;z) =/d2k'Ld2k_. 6(kx k_ +_.k'_ ,(k'-k"*).r- )e F0(k_., k_.), (3.17)

which is stated in a more symmetrical way.

Basic properties of the Wigner function include its marginal distributions and

lowest order moments. Ii' the Wigner function is integrated over k.L, it gives the

average value of the intensity I(r),

d2k± W(rx, kx;z) = F(rx, r±,z) = lth(rx, z)[ 2 =
l(r-'-_. (3.18)

(2,)2
l
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IftheWigner functionisintegratedoverrj.,itgivesan analogousresultin

k±-space:

f rj.(21r)2W(r±,k±;z) = f'(k±,k±;z)=]_(k±,z)l2. (3.19)

Finally,iftheWigner functionisintegratedoverallofthe(rA,k±) phasespace,it

givestheaverageofthenorm ofthewavefunction,inthesame senseasinEqs.(2.7)

and (2.9):

which is also the trace of the density operator P(z).

In these formulas, the Wigner function would look more like an ordinary prob-

ability densityon phasespaceifthefactorsof2_rwereabsorbedintothedefinition

ofW. Ifthisweredone,however,theWignerfunctionwouldno longerbe theWeyl

transformofthedensityoperator.We prefertoretainthelatterproperty.

Now we proposea definitionofbrightnessor radianceB(r,s)intermsofthe

Wigner function W(r, k; z), in which we use the classical definition of radiance as a

guide in order to obtain the correct factors of proportionality. To recall the classical

definition, we define B(r,s) by saying that the energy flux dJ passing through an

area element dA at position r into solid angle dr/centered on direction s is given

by

dJ - (n. s)B(r, s)dA dfr, (3.21)

where n is the unit normal to dA. On the other hand, the energy density of the

radiation at position r is n21_(r)[ 2, and I_(r)l 2 is given in terms of the Wigner

function by Eq. (3.18). Since the energy of a photon is Sw, we can interpret the

quantity
n 2

dN --" W(r±, k±; z) d3r d2k j. (3.22)
(27r)2

as the number of photons in volume element d3r centered at r with wavevectors k j.

lying in element d2k j.. Thus, with the multiplicative constants shown in Eq. (3.22),

the Wigner function can be interpreted as a photon number density in the 5-

dimensional (r, kj.) phase space. Next, since the photons have velocity ck/nko

and energy ?_, the energy flux crossing area element dA lying in the z!/-plane in



the given kx-interval is

ncs_ d2
dJ-_W(r±,k±;z)dA k±, (3.23)

which can be combined with Eqs. (2.27) and (3.21) to obtain the desired formula

connecting W and B:

B(r,s) - W(rj.,kj.; z). (3.24)

We will take this formula as our definition of radiance, and investigate to what
,.

extent it has the properties expected from classid_ radiometry. Notice that the

factor s z is not a constant, but depends on k ±. We could have absorbed this factor

into the definition of W, as other authors have done, but we prefer to leave things

as shown so that we can interpret W as a Weyl transform and use the various

properties which follow from this fact.

Let us now compute various moments of our radiance function and compare the

results with the expectations of classical radiometry. First, we expect the integral

of B over ali solid angles to be the photon velocity c/n times the average energy

density. Indeed, with our definition (3.24) we have

C r (2_') 2 ' ,

where we use Eqs. (3.14), (2.27) and (3.18). This result is exactly what we expect.

Next, in classical radiometry the average energy flux J(r) is the integral of

sB(r,s) over all angles. To see whether this relation is fulfilled by our definition

(3.24), we begin with the perpendicular components of J. From Eq. (2.2), appro-

priately averaged, we have
RC

J ±(r) -- _'0 Im V±¢(r) ¢(r)*

nc / dZk_.d2k_. , k'-k"')._-- _o Re_ (2a.)2 kj. e '_ to(k_., k_.), (3.26)

where we use Eq. (2.10). By swapping k_., k_J.and noting the Hermiticity of F,

Fo(k_., k_.)* " "= Fo(k±, k_.), (3.27)

|
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we can symmetrizeEq.(3.26)and removetheRe,obtaining

J±(r)= _0nc/d2k_d2k_(k_+k_)e'(k'-k''')'''°(k't''k'_')'(27r)'2 (3.28)

But withthehelpofEqs.(3.17)and (3.24),thisiseasilyexpressedintermsofthe

radiance.We find

f d2k_ k± W(rx, kx;z)= f sxB(r,s)dfl.

nc

= V0
(3.29)

Thus we seethattheperpendicularcomponentsoftheenergyfluxareexactlygiven

by theclassicalformula.

ltisinstructivetoderivethissame resultpurelyby means oftheWeyl trans-

form,sincethederivationprovidesan illustrationoftheapplicationoftheseprop-

ertiesina contextinwhich theanswerisknown. The basicstrategyistoexpress

thequantitywe wishtoevaluate(inthiscase,theperpendicularcomponentsofthe

energyflux)intermsofa traceofa productofoperators,and thentouseEq.(3.2)

tocompute thetrace.Inthepresentcasewe evaluateJ± at(rx0,z)and write

k_poj±(rxo, z) = LmV ±_(rxo, z) _(r±o, z)* = Re (r±o[i¢_[@) (_[rxo)
rrc

- Re(rxol_x_'(z)lrxo)= ReTr[lr±o)(r±ol l¢£r(z)]

- .
The operator in parentheses in the final expression is Hermitian and has a rem Weyl

transform, but the Weyl transforms of its two constituent terms axe not real. To

compute the Weyl transform of the first term in the parentheses we use Eqs. (3.9),

(3.11), _ud the Moyal formula, Eq. (3.4). The MoyM formula terminates after two

terms, and we find

i

Ir±0)(r±01k±_ kxS(r£ - r£0) + _Vx6(rx - rx0). (3.31)

The second operator in the parentheses in Eq. (3.30) is the Hermitian conjugate

of the first, with complex conjugate Weyl transform. Adding these together, the

imaginary terms cancel, and we have

!([r±o)(r±olk x + k±lr±o)(r±ol_ _ k±6(rx - r±o). (3.32)2 \ /
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Finally, since the Weyl transform of ['(z) is just the Wigner function, we can use

Eq. (3.2) to obtain

f d2r±d2k± )W(r±,k z), (3.33)

FlC

J±(r±0, z) = _0 (2_r)f k± 6(r± - rx0 ±;

which agrees with our earlier result in Eq. (3.29).

The z-component of the energy flux is more complicated. We begin as in

Eqs. (3.26)--(3.28), obtaining

_.- "' . . J,(r) = _o lm _(r)*

-nc f d2k_d2k_ (k_ +k'/*)ei(k'-k"')"'o(k_,k_). (3.34)- ko 2

On theotherhand,ifwe followtheformulasofclassicalradiometry,we expectJ,

tobe givenby

f .c/d'ks,B(r,s)dft- _0 (21r)2 k,W(r±,k±;z)

= k-_ (21r)2 2 e'( - f'0(k±,k±), (3.35)

wherewe haveusedEq. (3.17)inthefinalstep.The expressionsinEqs.(3.34)and

(3.35) are not equal, because

1- '
But if the function I'0(k_.,k_.) is sharply peaked about k_. = k_., i.e., if it has the
form

I'0(k_., k_.) _ F(k_.)6(k_. - k'_.), (3.37)

where _' is a slow function of its argument, and if we ignore evanescent waves so

that k_ is real, then both the expressions in Eqs. (3.34) and (3.35) reduce to

ncf d2k±S,(r) = _0 (27r)2 k, F(k±). (3.38)
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(Notice that the expression in Eq. (3.35) is not even real if evanescent waves are

allowed.) The condition (3.37) is essentially that of quasihomogeneity. 1'1TThus we

see that when the source is quasihomogeneous, the z-component of the energy flux

can be computed in terms of B by the formula expected from classical radiometry,

although the calculation is not exact and there are corrections involving an appro-

priate small parameter. We will examine these corrections in more detail later.

For now, however, let us consider another expectation of classical radiometry,

namely the conservation of brightness along rays. Since s: is constant along rays, B

will be constant if and only if W is constant. Let us therefore examine the quantity
• . . , t.

W(r± + _ k.t.; z + /co / = d2q.L e '[qJ''rJ'+(_+-_-)zi I'0(k± + ½q±,kj. - _q±)

× ei*[qj..kj. +(g+-,__ )k,]/ko (3.39)

where we have invoked Eq. (3.15) and denoted the distemce along the ray by s. We

are considering only real rays in this expression, so k z is reM, emd we also assume

__ is real. This expression will equal W(r±, k±; z) if the final exponential factor in

the integrand is unity. In fact, it is not exactly unity, so W" is not exactly conserved

along rays, but if the source is quasihomogeneous, so that the integral is dominated

by small values of q.L, then we can expand the final exponent out. We find

q± • k.L + (_:+- n-)/cz ffi--8-_z [k_(kj •q±)q_. + (kj. •qj.) s] +O(q_). (3.40)

In other words, the corrections are only of order q_, which are small ibr a quasi-

homogeneous source. These corrections are smaller than the ones which arise in

a similar treatment of Walther's (second) definition of radiance, which gives cor-

rection terms of order q_. (The difference is that the Wigner function is a kind

of centered Fourier traudorm, whereas Walther's definition is one-sided.) We will

return later to the fact that the Wigner function is better conserved along rays than
Walther's function.

Now, however, we will develop a systematic series of corrections to the con-

servation of W" along rays. We begin by assuming that the wave field of interest

contains no evanescent waves; the necessity for this assumption will become appar-

ent in a moment. This means that the right hand side of Eq. (2.37) can be replaced
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by a commutator, and we can write

.d_(z) = {/:/,I'(z)]. (3.41)t dz

Next we take the Weyl transform of both sides. On the left hand side, we get simply

iaW/az. On the right hand side, we call on the Moyal formula in the form shown

in Eq. (3.7). To use this formula, we need the Weyl transform of _/, defined in

Eq. (2.25);but by Eq.(3.10),thisisjust

= -_/k02-k2 (3.42)H
.L:

H istheray Hamiltonian,and isjustanothernotationfor-kz. Then we seethat

theoperatorinthesinefunctioninEq.(3.7)simplifies,becauseH dependsonlyon

kj.and Ml rj.-derivativesactingon itvanish.Altogether,we find

,/,= 2vk" - k_. sin W(rj., k±; z). (3.43)

Except for the neglect of the evanescent waves and the question of the conver-

gence of the series implied by the sine function, this is exact. The first term of the

sine series gives
-1

v/k_ - k_. k±. V_W, (3.44)

which can be brought over to the left side to give the total convective derivative

along a ray with respect to z,

dW OW 1 oo (_1) m 02,,,+Ik, o2.+_w
dz Oz + -_zk j" V "LW = E , "

(3.45)
-- = --- 2_'"(2m+I) a-'k'__r_" ad.,,,+I'

By multiplying this by ks/ko we obtain dW/ds, the convective derivative of W

along a ray with respect to distance s. It is the right hand side of this expression

which would vanish in classical radiometry; the series we see here gives us the

correction terms. In these correction terms, we have used a single dot to represent

the complete contraction of the two tensors involved; for example, the m = 1 term

is more explicitly written

-=.__1_ cgak, c3:)W (3.46)
223! _, O,_:±icgkj.icgk±t Or±_cgr±jOt ±t"

I
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The first correction term, shown in Eq. (3.46), gives an estimate of the error

committed in neglecting the right hand side of Eq. (3.45). The estimate depends on

whether the ray is paraxial (k± ,_ k= _ k0), substantially off-axis (k.t. _ k_ _ k0),

or nearly tangent to the reference plane (k_ _ k± _ k0). In the paraxial case, we

have the estimate

dW kz k± W 0 (_._ ad"7"~ ko ~ .--. w, (347)
where 0 is the paraxial angle, A is the wavelength, and L is the spatial scale length of

the Wigner function. This estimate may be constrasted with the analogous estimate

given by Walther 4 for his function A, which may be written,

d"_"_ _ A. (3.48)

This is one order of _/L worse than the estimate for the Wigner function, and does

not contain the paraxial factor.

For substantially off-axis rays the estimate for the rate of change of the Wigner

function along rays is

"_s _ _'0 _ + k_ ,/"_" "_ _" W, (3.49)

which is the same as F-at. (3.47) but without the paraxial factor. The factor in

parentheses in this expression is a schematic indication of the third derivative of hz

with respect to kx, with indices suppressed since we are interested only in order of

magnitude. The second term in the parentheses was neglected in the paraxial case;

here both are comparable.

One reason we are interested in rays which are substantially off-axis is that

such rays occur in nonimaging concentrators. Is Indeed, the rays in nonimaging

concentrators typically cover 2_r steradians at the exit aperture. Geometric optics

has proven satisfactory for most analysis to date of nonimaging concentrators, but

in newer applications diffraction effects are important. We have such applications

in mind throughout this paper.

For rays which are nearly tangent to the reference plane, the estimate becomes

d"_ _ k"_kSzL"_ ~ Aa--7 _,LJ W, (3.50)

i
|



where c_is the angle between the ray and the zy-plane. This expression obviously

diverges when _ --* 0, but since A/L is presumably also small, the Wigner function

will in many circumstances be conserved along rays even when c_is reasonably small.

However, the series (3.45) does break down when a becomes small enough, and it

becomes meaningless for evanescent waves.

The divergence of the estimate (3.50) as a --, 0 is caused mathematically by

the square root branch point oi"the ray Hamiltonian H at k.i. --- k0. Obviously

there is nothing physical about this divergence, since the ray does not know that

it is nearly tangent to an imaginary reference plane. The reference plane used in

ali constructions of this sort, not only in this paper but in the vast literature on

diffraction and radiometry and coherence, is essentially a surface of section in the

mechanical sense. There is no reason why other surfaces of section could not be

used, such as spheres, and these might have some advantages. More fundamentally,

it is a defect of the entire approach usually taken in treatments of radiometry and

coherence that a quantity such as radiance, which is supposed to have a physical

meaning if only it could be defined properly, should depend on the reference plane.

For rays which are not too close to k± -- k0, the series in Eq. (3.45) will converge

rapidly (or start to converge rapidly; the series may be asymptotic) if A/L is small.

The quantity L in certain cases has the significance of the spatial scale length of

the average intensity of the light. To show this, we write the mutual intensity in

terms of sum and difference variables,

=F( .9 '

where F is a new function and where we suppress the z-dependence for simplicity.

Then we have

W(r.L,k.L)=/d2a± e'k_+'_F(rj.,aj.), (3.52)

sothatL isthescalelengthofF withrespecttoitsfirstargument.IfL isinde-

pendentofthevalueofthesecondargumentof F, thenL isalsothescalelength

oftheaverageintensityoftheradiation,since

,=...,...mm

I¢,l2 = r(r±,r_)= F(r£,O). (3.53)

I
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Under theseassumptions,we can saythattheWigner functionisconservedalong

rayswhen A ismuch lessthanthescalelengthoftheintensity.

Indrawingtheseconclusionswe havenothad tomake any assumptionsabout

thescalelengthofF withrespecttoitssecond(difference)argument,but inmany

applicationsthislatterlength,which isessentiallythecorrelationlength,issmall

compared to L. In such a casethe radiationisquasihomogeneouson thegiven

planez ---const.(Som_::'mesquaslhomogeneityisdefinedby demandingthat'¢he

righthand sideofF/i.(3.51)factorintotheproductOfa slowfunctionofthcsum

variabletimesa fastfunctionofthedifferencevariable.But thisi_toorestrictive;

forexample,itprecludesthecaseinwhichtheccrrelationlen_¢hisa slowfunction

ofpositlor..)_'e denotethecorrelationlengthby £. Itisne'¢ermuch lessthanA,

and forquasihomogeneou._sourcessatisfies

< e <<L. (3.54)

Notice that for para.xial rays the Wigner function is conserved along rays even

if A/L is not small. In fact, if we return to Eq. (3.43) and approximate H in

accordance with the paraxial condition,

-ko+ (3.55)
2k0'

then the Moyal ser,es terminates after one term with no assumptions on W, In this

case we obtain
dW OW

d"_ = _ + {Wr,H} = 0. (3.56)

For example, in some cases of coherent light W has a spatial scale L which is

comparable to a wavelength, but along paraxial rays W is still conserved. This

result is a special case of a well-known result in quantum mechanics, that the Wigner

iimction iS'exactly conserved along classical orbits in the case that the Hamiltonian

is at meet a quadratic 'function of q's and p's. 16

The evolution of the Wigner function along rays has been considered previously

by Kim and Wolf, 19 but those authors did not derive explicit formulas for the

correction terms nor did they estimate their order of magnitude.

As a final calculation involving the Wigner function, we will work out the

correction terms in the z-component of the energy flux, i.e., the terms which express
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the difference between Eqs. (3.34) and (3.35). We begin by treating J, much as we

treated J ± in Eq. (3.30). We write

a_(rj.0, z)
k°jz(ra.o,Z ) - Ian qJ(r±0, z)* = - Re (r±01HIq)/(q)lr.l.0/
n¢ 0Z

Next we need the Weyl transform of the operator in parentheses in the final expres-

sion. We use the Moyal formula in the form (3.4) to compute the Weyl transforms

of the two terms in the parentheses, and add the results. In doing this we simply

treat/_ as Hermitian (and H as real), and ignore evanescent waves. Such waves do

not contribute to Jz anyway, and the Moyal formula will lead to divergences near

k± - k0, just like it cud in the calculation of the evolution of W along rays. The

result is ,._ _.,

Next we use Eq. (3.2) to compute the trace, obtaining

nc / d2r± d2ka.s.(_0,_)= _0j (2_)_
W(rj.,k±;z)

x _
The firsttermofthecosineSeriesistheterm expectedby classicalradiometry.In

thehigherordertermstherx-derivativesactingon the6-functioncanbetransferred

toW" by integrationby parts,and thenther±-integralcanbe done.The resultis

nc / aak±J,(r) - _o (2_) s k, W(r±,k±; z)

<-x),- o 'w O"k, (3.60)+ _0 = 2sm(2m) ! (2_r)''-'2 Or]." " Ok--'_£_"

This series is similar to that in Eq. (3.45), with the terms decreasing in powers of

(),/z)2.
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4. The Walther Distribution Function

In this section we examine Walther's (second) proposed distribution function, 4

in terms of which the brightness or radiance can be defined, and subject it to some

of the same kinds of analysis we applied to the Wigner function in Sec. 3. (Walther's

first proposed distribution function 3 is essentially the Wigner function itself, which

we have already examined.) We will also develop integral and infinite series formulas

connecting Walther's function with the Wigner function, and use them to find

corrections to the conservation of Walther's function along rays. We find explicit

formulas for these corrections, which are different depending on whether Walther's

function is used in its complex form or real form. In the case of the complex form,

an estimate of the order of magnitude of the first of these correction terms was made

by Walther himself4; this estimate was repeated above in Eel. (3.48). In the case

of the real form, we find a different estimate, which is more favorable than the one

given by Walther, but which is still not as favorable as the one given in Eq. (3.47)

for the Wigner function.

We begin by providing several equivalent definitions of a distribution function

A, which we will call the "Walther function"'

A(r±,kx;z) -'- (2z')e ikx'rz _(k±,z)_(r±,z)*

/ d2k_. e i(k'-k'x)'ra- ['(k±, k_.; z)

/ d2k_. e '(k-k'')'r ro(k±, k_.)

/ d2r_. e 'k_'(r_-r'_) F(r_., rx; z). (4.1)

This function is complex; often we will be interested only in its real part. This

definition parallels our earlier definition of the Wigner function in its dimensions

and normalization, so that Walther's proposed definition of the radiance can be

written,

B(r,s) -- cns, _ ReA(rj.,k±;z), (4.2)

just as in Eq. (3.24), with ReA replacing W.

I
|
!
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The Waltherfunctionhasthefollowingmarginaldistributions,

2k_ ----(21r)2 A(rj., k±; z)= r(rx, r_;z) = I(r), (4.3)

f d2r,,_,A(r±, kx; z)(4.4)
F(k±, k±; z),

inanalogywithF.,qs.(3.18)and (3.19)fortheWignerfunction.Inthecaseofboth

functions,the two formulasare exact.Also,sincetherighthand sidesofthese

equationsarereal,we can replaceA on thelefthand sidesby Re A; and we have

thefollowingidentitiesfortheimaginarypartofA,

/d'rx ImA(rx, k.t.; z)=/d2k.t. ImA(rx, k.L; z) = 0. (4.5)

As for the energy flux, it is straightforward to combine Eq. (4.1) with the
identities of Sec. 2 to obtain

/ dZkx k A(r± k±; z), (4.6)

TIC

J(r) = _0 Re (21r)2 ,

which can be compared to Eqs. (3.29) and (3.60). For the perpendicular component

of this equation, the Re operator can be pulled through the integrand adjacent to

A, so that the (exact) formula looks just like Eq. (3.29), with the Wigner function

W replaced by Re A. For the z-component, the same can only be done if evanescent

waves can be ignored, so that k* = k z. In that case, the Walther function gives a

formula for the energy flux which is simpler than in the case of the Wigner function,

j __ nc / d2k±k'-o (27r)2 k ReA, (4.7)

although in both cases it is the z-component which gives trouble. Walther's original

definition of hie function was designed to make this equation come out as shown.

Now we turn to the evolution of the Walther function along rays. To study this

question, it is convenient first to make a connection between the Walther function

and the Wigner function, so that the properties of the latter can be invoked. Since

both the Wigner function and the Walther function are related to r(rx, r_.; z) by
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invertible integral transforms, it is straightforward to find an integral transform

connecting W and A. The desired transform and its inverse are

W(l'.t., k.i.; z)-- --/'d_'"'!" _d2k_'71.2 • -2i(r&-r_-)'(k't'-k_-) A(r k, k_.; z), (4.8)

A(r., k_; z)= / d2r_d2k_11.2 e+2i(rJ'-r_')'(kJ'-k_')W(r_, k_.;z). (4.9)
These integral formulas are exact, but it is convenient to transform them into

another (differential) form in which the effects of short wavelength and/or short

correlation length will be manifest. We begin with Eq. (4.9), making the changes

of variable, r_. = r± + a±, k_. = k.t +qj., and then expanding W in a Taylor series

about q.I. = 0. For convenience, we also suppress the z-dependence. We find

A(rj., kj.) = --/d2a'k71. 2d2q'l" e 2iaJ''qJ" W(r.i. + a.t., k± + qj.)

= .m_q_ _,._._. _] _ q.. 0T_ w(_.+_.,k.). (4._0)m='--0

Next we note that the qj.-integral can be done in terms of 6-functions and their

derivatives, which in turn allow the a j.-integral to be done:
4---- --4

A(r I.,k.t.) _ / d2a.t, amq.t. :: 1 [ (0 0) m ]_r_ E e2_*''q" • W(rj. + aj. k±)m=oro!C20-. _ _ '
4---"- ,--I,

- ' ° kj.,]a-_i_a--k_Jwtr.,.+..,..,

.=o_ _£. 0k. w(_, k.). (4._)
In the the first and second of these formulas, we use a notation as in the Moyal

formula, Eq. (3.4), m which the arrow shows the direction in which the operand of

an operator lies. When no arrow is present, it is assumed that the operand lies to

the right.

Thus we have found an infinite series connecting A with W. It is convenient

to write this series in terms of an operator,

02 (4.12)
D: 0r± • 0kx'
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so that

A(r±,k±) = e(i/2)D W(r±, k±). (4.13)

We use a hat on D to denote an operator, but we must remember that this operator

and others to be introduced momentarily act on phase space clistributions, i.e.,

functions of (r±, k.L), and not on wave functions defined over r±-space, upon which

the operators introduced earlier,/_,/_, F, etc., acted.

The operator notation shows its power when we ask for the inverse of Eq. (4.13);

it is simply

W(r±, k±) -- • -(i/2)b A(r±, k±). (4.14)

Furthermore, since W is real, we can take the real and imaginary parts of Eq. (4.13)

tofind

ReA(r±,k±)= cos(½b)W(r±,k±), (4.15)

lm A(r±,k±)= sin(½D)W(r±,k±)= tan(½D)Re A(r±,k±), (4.16)

W(r±,k±) = sec(_b) ReA(r±, k±). (4.17)

We see that the real and imaginary parts of Walther's function A are not indepen-

dent of one another, but rather the imaginary part can be derived from the real
2o who derived the relation in aone. This fact was noted previously by Walther,

somewhat different form. (Evidently, the real part cannot be derived uniquely from

the ima&,ina.,'ypart without specifying boundary conditions, since the operator/)-1

is an integral, not a differential, operator. For this reason, we avoid the cotangent

and cosecantfunctionsintheformulasabove.)

In theseformulas,the transcedentalfunctionsoftheoperatorL)areunder-

stooda8shorthandforthecorrespondinginfiniteseries,suchasshown inthefinal

expressionofEq. (4.11).The seriesmay be convergentorasymptotic;inthelatter

case,thetermsmay eitherstartoutdecreasingrapidlyinmagnitude,ornot.Ifthe

termsdo notdecreaserapidlyinmagnitude,thentheserieswillnotbeofmuch use.

To fredoutwhen thesetermsdo decreaserapidlyinmagnitude,we make the

estimatethatther±-derivativeactingon W isoftheorderof1/L,asinEqs.(3.47)-

(3.50),where L isthespatialscalelengthoftheaverageintensity,and we estimate
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the effect of the k ±-derivative on W by a factor of the correlation length g. The rea-

son for the latter estimate is seen in Eq. (3.52), which shows that the k±-derivative

acting on W is of the order of the spatial scale length of the function F, defined

in Eq. (3.51), with respect to its second argument. This is the correlation length g.

Altogether, the estimate of the effect of the operator/) is

D ~ e/L, (4.18)

which is << 1 in the case of quasihomogeneous sources, as shown by Eq. (3.54).

Thus we see that the terms of the series in Eqs. (4.13)-(4.17) decrease by powers of

£/L, and that the convergence is good for quasihomogeneous sources. For coherent

or nearly coherent sources, however, we will have £ ._ L, and the series will converge

slowly if at all.

An example will inustrate these features. For the purpose of this example, we

suppress the z-dependence of A and W, and we replace the 2-dimensional zy-plane

by the 1-dimensional z-axis, writing z and k instead of r ± and k ±. To have a model

which is analytically tractible and sometimes even physically relevant, we assume

that F(z,z') has the Gaussian-Schell form, 21

LV_'_/0 [ -_" 1 ( x+x' 22 _ (z - z')2]2£'FCx, z')- exp / - , (4.19)

where I0 is a reference intensity, and where L and g are the intensity scale length and

correlation length as above, defined precisely in a r.m.s, sense. The normalization
is chosen so that

r( x,x)dx = ,ro. (4.20)

The Gaussian-Schell model shown is not physically realizable if £./L > 2, because in

that case the density operator F has negative eigenvalues; it corresponds to coherent

light if tIL = 2, in which case the wave field is given by

Io _z2 /4L 2= ; (4.21)

and it corresponds to incoherent light if g/L < 2, becoming quasihomogeneous as
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Now we compute both the Wigner sad Walther functions for the Gaussian-

Schell model, using 1-dimensional versions of Eqs. (3.14)and (4.1). We find,

I0e [ x 2 d_2k2] (4.22)W(z, k)= --_---exp 2L 2 2 '

210_ [2(-x' - L2d?2k2+ id_2xk)]A(z, k) - _f4L 2 + d_2exp 4L 2 + d_2 . (4.23)

We notice that for coherent light (f -- 2L) the two functions do not approximate

one another well st all, since A has a significant complex part and the two spatial

scale lengths, while of the same order of magnitude, differ by the factor J2. If,

however, we hold the dimensionless parameters z/L and fk fixed while letting e/L

become small, then we see that the imaginary part of A becomes small and the

real part of A approximates the Wigner function W better and better. These

conclusions are a special case of a general observation made previously by Walther, 2°

who noted that in the quasihomogeneous limit, A becomes real and equal to W.

Walther's observation was more general than ours because he considered lenses and

other complications, and we are restricted to a homogeneous medium. The same

conclusions were drawn i'or a homogeneous medium by Carter and Wolf'.lT

Now we will test a 1-dimensional version of the series shown in Eel. (4.13). First

we note that
d m _g_l

dz._.._e - (_l)mHm(z)e -z' , (4.24)

where Hm is the m-rh Hermite polynomial, so that

W(z,k)= "_ Hm . H,n W(z,k), (4.25/

sad

(
m--'--0

Next we use the identity,

2m /_oo )me_t, (4.27)= + it at,



' I

al

46

to replace the two Hermite polynomials in Eq. (4.26) and to make the series a

summable exponential series. This gives

e(i/2)bw(x,k) = -_ dsdt exp 2L 2 2

(.__=
flr, it) s 2

1

Finally, we do the s and t integrals, and find precisely the function A(=,/c) of

Eq. (4.23). In this Gaussian-Schell example, the infinite series is actually convergent

for ali values of £/L _<2 (it diverges for the nonphysical values £/L > 2). In general

we must not expect such luck.

To return to the problem of finding the rate of evolution of the Walther function

along a ray, we differentiate F.,q.(4.13) to obtain

aA (_/2)D eW" (4.29)a-T: a-7'
where we can pull the operator a/ez through the exponential since a/az commutes

with D. Next, for notational convenience we introduce the operators

a"k, a"
S" = ak_" ar--'_' (4.30)

using the same convention for the contraction of indices illustrated in F.,q. (3.46).

In terms of these operators, we write Eq. (3.45), the equation for the evolution of

the Wigner function, in the form,

aw oo
a--Tr )! (4.31)mffi022m(2m . 1

The m ffi 0 term of the right hand side is SIW = -(k±. V±W)/Ic,, which, when

brought over to the left hand side, gives dW/dz, the rate of change of W along a

ray with respect to z. The terms m > 0 are the corrections which go beyond clas-

sical radiometry, with m : 1 being dominant for short wavelengths. Substituting

Eq. (4.31) into Eq. (4.29) and using Eq. (4.14), we obtain an equation of evolution

purely in terms of the Walther function A,

OA oo (-1)m [ " e-('12)b]A. (4.32)
m=o 22m(2m + I
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theexponentialson therighthand sideaxeexpandedout,we geta triply

infiniteseriesfortherateofchangeofA alongrays;butitturnsoutthatthiscan be

simplifiedtoa singlyinfiniteseries.The firststepinthesimplificationistoinvoke

theidentity,

eA/}e-A = B + [,J,,BI+ _.IA,[,J,,]_]]+..., (4.33) ,

where,4and/} axeanyoperatorsand wheretherighthandsideisan exponentialse-

riesofiteratedcommutators.ThisformulaisstandaxdinthetheoryofLiealgebras,

and iscommonly usedinquantum mechanics,ltallowsustoexpressEq.(4.32)in

termsoftheiteratedcommutatorsofD and 5",.But a directcomputationshows

that

[b,9.]= 9.+,, [b,[b,_.]]= S.+2, (4.34)

etc.,sothatEq. (4.32)can be rc=expressedintermsofa doublyinfiniteseriesofthe

operators:

9_.+,+,A. (4.35)
b'7 ,.,=o2_,.,(2,.+ 1)!_= \zl

Now thisdoublyinfiniteseriescan be simplifiedfurtherto a singlyinfinite

series.Firstwe collectallthetermson the righthand sideforwhich theindexp

isevenor odd,callingthecorrespondingoperators/_and i(9respectively.Then,

witha redefinitionoftheindexp,we have

= = (_I)-+,
= _ _ 2,-+,,(2_+ tl!(2p)!9_'+''+'' (4.361

mm0 pm0

OO OO

0=EZ
m=o p,=022m+2_+*(2m+ l)!(2p+ i)!_2m+2p'j'2"

(4.37)

Working first on/_, we write Tr,s = ra + p, rearrange the summation, and drop the

prime to obtain

OG ( ._ 1) tlt _2 tlrt._ | wt
1

--E _ (4.38)22- ,---' (2m - 2p + 1)!(2p)!"
m=O pffi=O

]|
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The finitep-serieson therightiseasilyexpressedintermsofbinomialcoefficients

and summed; itturnsout tobe 22m/(2m . I)!.Thereforewe havea rathersimple

result,

_0 (_I),_
= _ (2m+I)!s_+_ (4.39)rn-----'0

Similarly,we find
OO

(2m + 2)I_2m+2'
(4.40)

mm0

Altogether, we find the equation for evolution of the Walther function along a

ray in the form,

O"_'A-(E+i())A--_ (-t).L(2m+ I)!+i A. (4.41)Oz (2m + 2)!rn_-0

The r = 0 termoftheE seriesis$IA, which,when broughtovertothelefthand

sideand combined with OA/Oz, givesdA/dz, the rateofchangeofA alongrays

withrespecttoz. The leadingcorrectionterm isthe r = 0 termofthe0 series;

thus,when theterms arerapidlydecreasing,we can estimatethedeviationsfrom

classicalradiometryby

dA _ i O'k. 0'.4 A I(A)'d'-7t,,A= . ~ k,L ~ "£A. (4.42)
Here we areassumingthatthe raysare eitherparaxialor substantiallyof["axis,

but not nearlytangenttothereferenceplane.This isthesame estimatemade by

Walther4and repeatedinF._I.(3.48),exceptthatherewe havenotjustan estimate,

but an explicitformulaforthefirstand allhigherordercorrectionterms.

In thequa_aomogeneous limit,theWaltherfunctionA isalmostreal,but we

seefrom F._I.(4.42)thatitsrateofchangealonga rayisdominantlypureimaginary.

Thissuggeststl_tthe realpartofA isbetterconservedalongraysthan A itself.

Indeed,takingtherealpartofEq. (4.41),we have

@ReA
--/72(ReA)-O(ImA)= [/_- Otan(½/))](SeA), (4.43)0z

where we havecalledon Eq. (4.16)toexpresstheanswerpurelyintermsofRe A.

ThisistheequationofevolutionofRe A alonga ray.Again,itisthern--0 termof



li

Q

49

the _7serieswhich,when broughttothelefthand side,givesd(ReA)/dz;and the

dominantcorrectionistheleadingtermoftheproduct,-C)tan(D/2).Thereforein

thequasihomogeneouslimitwe can approximateand estimate,finding

dRe A 1 Ia2k z 0 4(Re A)dz -_-_,9_b(ReA)ffi-_-0k"_'ar_.(arj.,ak_.)

_"k'_ (REA) _-_. (REA). (4.44)

Th;_isindeedbetterthantheestimateforthecomplexfunctionA, butitisnotas

good as theestimate(3.47)fortheWigner function,sinceitdoesnotcontainthe

paraxialfactorand sinceitdoescontainthefactorI/A,which can be large.

ltisinterestingthattheequationsofevolutionforboth W and A involveonly

the S operators,so thatthetermsoftheseriescan be estimatedintermsofthe

singledimensionlessparameterA/L,whichdoesnotcontainthecorrelationlength.

But theequationofevolutionforRe A involvestheadditionalparameter£/A.

Apart fromotherconsiderations,one wouldhavetoconcludethattheWigner

functionwould be preferableto theWaltherfunction,ifthe errorscommittedin

usingthe classicalrulesofpropagationare a concern.On the otherhand, the

Waltherfunctionmay haveotheradvantagesovertheWigner function,e.g.,itmay

be easiertocomputeinsome circumstances,inwhichcasetheresultsofthissection

can be usedtocontrolorcompensatefortheerrors.

5. A New Distribution Function

We now introduce a new distribution function, which has the property that it

is exactly conserved along rays. We follow Walther s in motivating this definition.

First we write down a formula for the energy flux,

ric/d2k_. _k_. (k' + k")J(r)ffi_'0 (2,1")2 2 e,(k'-k").,f0(k_.,kj.), (5.1)

which isa combinationof Eqs.(3.28)and (3.34).The same formulawas used

previouslyby Winstonand Ning,2awho usedittoconstructa conservedfluxfrom

planewaves.We havemade the z-componentsofk'and k" realinthisequation,

m

|
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assumingforsimplicitythatthewave fieldspecifiedby r0 containsonlytravelling

waves.Nextwe performa changeofvariablesintheintegral,(k_.,ke_)_ (k±,q_.),

where thenew variablesofintegrationaredefinedby

q = k' - k", (5.2)

k' + k"
k = , (5.3)

2D

D = I+ /_ = 2k0 " (5.4)

Since the independentvariablesof integrationare the 2-vectors(k',kl) or
(kj.,q±),the z-componentsofEqs.(5.2)and (5.3)must be understoodasfunc-

tionsofthe perpendicularcomponents.We do thisasfollows.First,if(k_,k'_.)

areregardedas theindependentvariables,thenk',,k",aredefinedasinEq. (2.9).

ThisgivesmeaningtoD, q,,and k, asfunctionsof(k_.,k_.),aswellastoq±, k±.

Noticethatwe have theimportantidentities,

Ikl 2 = k02, (5.5)

q.k =0. (5.6)

Next, if (k±, q_.) are regarded as independent variables, i.e., if we want the inverse

transformation, then we define k, as a function of k ± as in Eq. (2.9), we define qz

and D by

' kj..qj. (5.7)
q"- k, '

D = V/I-lqj.12/4k0_, (5.S)

and finallywe write

k' = Dk + q/2,

k" = Dk - q/2. (5.9)

Next,totransformtheintegral(5.1),we needtheJacobianconnecting(k_.,k'_ )

and (k±,q£). The calculationofthisJacobiantakessome effort;we wereunableto

-._|



finda cleverway ofdoingit,sowe reportheretheresultofa brute-forceapproach.
ltis

O(k_, k'_) ] k'_k"a(k_.,qj.)= k'_"-_" (5.10)

Thus,we areabletowrite,

J(r) : n_c/ d2k± kR(r, k_), (5.11)to (2 r)2

where the new distribution function R is given by

f t't"DR(r, k±) = d2q.t, k2: e 'q'r r'0(k_., k_.). (5.11)

Here the vectors k', k" are regarded as functions of (kj., q±) as in Eqs. (5.7)-(5.9).

Thus, by construction, the distribution function R reproduces exactly the formula

for the energy flux which is expected from classical radiometry.

But the most notable property of this function is its exact conservation along

rays. This follows by replacing r in Eq. (5.11) by r + sk/ko, where _ is the distance

along a ray. Because of Eq. (5.6), we have

R(r + sk/k0, kj.) = R(r, kj.), (5.12)

exactly.

As an example, let us compute the R-function for a plane wave,

x/_o iK.r
_(r) = -_-_--e , (5.13)

where/0 isa normalizationintensityand K isa realwave vectorsatisfyingIKI2 =

k0a.Then we have

f0(k_.,k_.)= 1o6(k_.- K±)6(k_.- K£) = 106(q£)6(k:-K±). (5.14)

SubstitutingthisintoEq. (5.11),we easilyfind

R(r,k_) = Io6(k_ - Kj.). (5.15)

Thisfunctionisindeedexactlyconservedalongrays,becauseitisindependentof

r;itiselsoexactlywhat we would expectforthephasespacedistributionfunction

representinga planewave.
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Ifwe trytocomputeR fora lesstrivialexample,say,a Gaussian-Schellmodel,

thenwe findthattheinteg.ralinEq.(5.11)cannotbe done intermsofelementary

functions.Thisisasitmust be,sincea Gaussian-ScheUmodel on some planez =

constdoesnot remainGaussianunder theexactfreespacepropagationdiscussed

inSec.2,and sincetheR-functionisexactlyconservedalongrays.Inotherwords,

doingthe integralofEq. (5.11)necessarilyincludesallthecomplicationsinvolved

inan exactpropagation.For a planewave thesecomplicationsarenotserious,so

we arenotsurprisedthatwe areabletodo theintegralinthiscase.Of course,ifwe

aredoingnumericalintegrations,thencomputingtheR-functionisnomore di_cult

than computingany otherdistributionfunction,and itmakes the z-propagation
much easier.

6. Conclusions

We will conclude this analysis with some proposals for further study. First,

the conservation of t]:.,,_Wigner function along rays is remarkably good, especially

when the paraxial factor and the numerical factor of 1/223! -- 1/24 are taken into

account. One suspects therefore that it might be possible to come rather close, say,

to an edge, and stil_ obtain good results by ray tracing. It would be interesting to

consider this question from a practical point of view. Next, it is easy to develop

various perturbation schemes which use the rays for a zeroth order approximation,

and which take the correction terms developed in this paper as perturbations. It

would be interesting to examine these questions more closely. Third, the results

developed here should be extended to more complicated optical systems, such as

those including lenses. Again, the Wigner function can be expected to be a useful

piace to start, although one must proceed carefully when discontinuitites such as

the transition from air to glass are present. Finally, the new distribution function

R presented in this paper should be understood better. For example, we would like

to know whet the most genera/distribution function is which is exactly conserved

along rays, and whether they can be generalized to take care of lenses, etc. We

hope to report on some of these questions in the future.
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