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A PHYSICAL OPTICS MODEL FOR SCATTERING
BY IRREGULAR TERRAIN AT HF

Abstract

Physical optics models were developed for scattering of HF radiation by irregular terrain
when an antenna is located on or near the scattering surface. The primary interest was in
skywave radiation patterns for communication links using the ionosphere. Second-order
reflections were included in the solution through an image approximation, and the UTD
result for an impedance half-plane was used to reduce reflections due to truncating the

, current distribution on the surface. Arbitrary 2-D or _D terrain profiles can be entered into
the codes, and the source can be an antenna with currents generated by the NEC method-
of-moments code or a point source. Results are validated by comparing with 2-D integral
equation solutions for actual terrain contours.

1. INTRODUCTION

Terrain irregularities, such as hills and valleys, can have important effects on the fields
radiated by an antenna on the ground. The prediction of these terrain effects is difficult due
to the size of the region involved and the variety of conditions that may occur. Also, the
terrain scattering depends on the radiation pattern of the antenna, which itself may present a
difficult modeling problem. Various methods have been used to model terrain effects, ranging
from knife-edge diffraction to more computationally demanding integral equation methods.
Much of the work has addressed problems of communication between points on the ground
surface, since the ground contour is often a critical factor in these cases. However, terrain
scattering can also have significant effects on the skywave radiation pattern of an antenna.
This report descV,bes the development and validation of physical optics (PO) models for
scattering of HF radiation by two- and three-dimensional terrain surfaces, with the primary
interest in the skywave radiation pattern at angles used in ionospheric communication links.
The source antenna can be a point dipole in 3-D or line source in 2-D or a collection of wire
segments and segment currents generated by the NEC antenna modeling program [1].

Several techniques for modeling terrain effects were considered in a previous study [2].
They can be divided into solutions based on integrating induced sources over the ground

• surface, ray-based methods of geometrical optics or GTD/UTD and differential equation
solutions [3, 4]. In the work reported in [2] a geometrical optics (GO) model was developed

, for arbitrary 3-D terrain surfaces. The method of Ray Launching [5] was used, in which
triangular ray tubes are traced to reflection points on the surface, with the phase, magni-

, tude and ray-tube divergence determined from the surface properties and curvature. Since
curved surfaces are modeled, diffraction is not needed to fill in the gaps that would occur in
reflections from flat plates. However, GO yields zero field in shadow regions and is limit.cd
by caustics in directions where separate reflected rays merge. Geometrical optics can yield

(_accurate results in illuminated regions and allows a relatively fast evaluation of the scatt(.r (i
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field from a 3-D terrain model. Also, in a related study by Breakall et al. [7] the GTD code
NEC - Basic Scattering Code [6] was applied to model scattering from plate approximations
of terrain surfaces.

In methods based on integration of surface currents the major effort is usually in de-
termining the induced currents. The most accurate numerical method is the solution of a
Fredholm integral equation by the method of moments. The surface usually must be divided
into about ten cells per wavelength. If Nx cells are used in the x direction and N_ in the y
direction, a matrix equation of order Nx Ny must be solved, with solution time proportional
to (NxN_) 3. Thus, while 2-D models of reasonable size are practical, the matrix solution
time limits 3-D models to regions of several wavelengths on a side. The computation time
can be greatly reduced by solving a Volterra integral equation derived from the parabolic
approximation c,f the wave equation [8, 9, 10]. Volterra integral equations can be solved by
advancing the solution in increments away from the source, with the solution time to the Nth
point going as N 2. In addition, particularly with the Volterra equation derived by Ott, the
increments on the surface can be much larger than those needed to solve the Fredholm inte-
gral equation. The Volterra integral equations are limited to 2-D terrain models and neglect
backscattering, but they can yield accurate solutions for many terrain conditions. However,
the computation time can become large if the solution is needed over a long distance from
the source.

The fastest way of obtaining the surface currents is by the physical optics (PO) solution,
which is equivalent to the Kirchhoff approximation in diffraction theory. In PO, the surface
currents are determined by the direct incident field from the source, so for N cells the time
to evaluate the current is proportional to N. As with the integral equation methods the
current can be computed once and used to evaluate the scattered field over many angles,
while in ray-based methods the entire solution process must be repeated for each radiation
angle. However, the time to integrate over the PO currents for many radiation angles can
become significant when the region of terrain covers many square wavelengths.

Results of some initial PO calculations for terrain scattering were included in [I 1]. It
has since been found that in order to get accurate results when the antenna is located on
the irregular terrain it is necessary to invoke reciprocity to put the source at the distant
receiver location and evaluate the field at the original antenna location near ground. In
addition, second-order reflections in the vicinity of the antenna and receiver were found to
be important. Reflected and diffracted fields from the UTD solution for an impedance half-
plane were added to the model to reduce ripple in the radiation patterns that would r_.'s_llt
from truncating the PO currents on the surface. This last extension saves computati_n time .
by reducing the range over which the PO currents must be integrated.

The development of the PO models for 2-D and 3-D terrain scattering is describ('d in *i

Section 2 of this report. In addition, a code for solving the Fredholm integral (_quati()ns ,
, .. _,,(MFIE for vertical polarization and EFIE for horizontal polarization) was de_elop.d t()

validate the PO models. The solution of these integral equations is described in Sccti_)n
3. Section 4 contains some results generated to validate the codes. The integral equati(_n
solutions are compared with solutions of Volterra integral equations and an anal?'tic, r_,s_xlt



for flat ground. Then the radiation patterns obtained by integrating the currents from the
integral equations are compared with patterns from the PO solution for a Gaussian hill and
an actual ground profile.

2. THE PHYSICAL OPTICS MODEL

In PO the current at each point on the surface is determined by the direct, incident
field from the source with the assumption that the field reflects as it would from an infinite
plane tangent to the surface at that point. Hence PO is sometimes called the tangent-plane
approximation. On a lossy surface an impedance boundary condition is enforced and reflected
fields are determined by the Fresnel plane-wave reflection coefficients. At points shaded from
direct illumination by the source the PO currents are assumed to be zero. PC) should yield

, reasonably accurate currents over illuminated parts of an electrically large surface where
the radius of curvature is much greater than the wavelength. The scattered fields obtained
by integrating the PO currents are expected to be most accurate in directions of strongest
scattering. In nulls of the total field, and particularly in shadow regions where direct and
scattered fields cancel, the accuracy of the PO result is reduced by the assumption of zero
currents on shaded surfaces and the abrupt shadow boundaries. The accuracy of PO for a

given application is difficult to predict, and usually must be determined by trial. Hence,
results of these models for terrain scattering will be validated by comparison with integral
equation solutions.

Both 2-D and 3-D PO models were developed. The 2-D code is faster than 3-D and it
is easier to enter the terrain description in 2-D than in 3-D. The 2-D model will often be
adequate for determining the radiation pattern in a given vertical plane, but 3-D is needed
when important scatterers lie out of the propagation plane.

2.1 PO for a 2-Dimensional Surface

For the 2-D PO model the terrain surface will be assumed to vary in height in the x
direction as z = hs(x) and be constant in the y direction, with surface normal fi and tangent
vector _ as shown in Figure 1. The lossy ground is characterized by relative permittivity
er and conductivity a, and these parameters may be functions of x. Also needed are the

wavenumber in air k0 = w _vf_ and in the earth kg = ko V_g, where _g = er -ja/weo. The

wave impedances in air and earth are 7?o= v/_/e0 and rig = rl0/v_, respectively. The time
dependence e j_t is assumed.

In the PO approximation, the surface fields over illuminated parts of the scattering
surface are the sum of the incident and reflected fields with the latter approximated as the

, incident field multiplied by the Fresnel plane-wave reflection coefficients for incidence on
the tangent plane. The reflection coefficient for TE polarization (E normal to the plane of

' incidence) is [12]

ko cos Oi - kg cos _t (1)
RTE -- E; / Ey -- ko cos Oi "{-kg cos 0t

where E_ and E_ are the y components of incident and reflected electric fields on the surface,
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0i

source _ s=yxn

Fig. 1. Coordinates forthe 2-D model of the terrain surface.

respectively. For TM polarization

. _ kg cos 0i - k0 cos 0t

RTM = H_ / H v = kg cos 0i + k0 cos 8_' (2)

The angle 0i is between the incident ray and the normal, so that cos 0i = -_s' fi, and 0t is
the complex angle of the ray transmitted into the ground

cos0t = [1 - (ko/kg) 2 sin 20i] 1/2.

An arbitrary incident field will be decomposed into TE and TM components, and in 2-D
these components are not coupled by scattering. It is possible to solve two scalar scattering
problems for the transverse field components, but the vector electric field will be computed
since that is the field most often measured. While the measurement points will be in the
far field of the antenna, they may not be in the far field of the terrain scattering surface, so
E/H = rio cannot always be assumed.

If the incident fields at point (x, zs) on the surface, where zs = hs(x), are Ei(x, zs) and
Hi(x, zs) the TM components of the total surface fields are

E rM( , =(1- nTM) • (3)
H_rM(z, zs ) =(1 + RTM)[Hi(x, zs)'.:9] :9 (4)

and the TE components are
|

F__E(X, Zs) =(1 + RTE) [Ei(x, Zs) "St] _ (5)
J

H_rE(x, z8) =(1- RT_,)[I-ti(z, za) • g]g. (6)

The fields from equations (3) through (6) will satisfy the surface-impedance boundary con-
t t if Ei/H idition E_,M/(H_ucosOt ) = cosO_E_E/HTE = rig = rio. Applying the equivalence
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principle with fields inside the surface equal to zero yields the following magnetic and electric
currents over illuminated parts of the surface

KTM(X) =- fi × E_rM(x, zs)= -(1- RTM)[Ei(x, zs)'fi] _ (7)

JTM(X) =fi x H_-M(X, z8) = -(1 + RTM)[Hi(x, zs) • :_] g (S)

and

KTE(X) = -- fi × E_rE(x, zs) = (1 + RTE)[E_(x, zs)" _] _ (9)

JTE(X) =fix n_rE(x, zs ) = (1 - RTE) [n'(x, zs) • _] :_. (10)

. The total surface currents are then

, K(x) = KTE(X) q- KTM(X)

J(x)- JTE(X) 4- JTM(X).

At points where the incident field is blocked by other parts of the scattering surface K(x)
and J(x) are equal to zero in the PO approximation.

The field scattered by the terrain can be obtained by integrating over the surface currents
as

ES(x,z) = -j_# ['e(r, r'). J(z') ds' + VGc(r,r') x K(z') ds' (11)
1 1

where ds' is the element of length on the surface ds'= V"i + [h'(z')]2 and f'c(r, r')is the
dyadic Green's function. In two dimensions

'c(r,r')=(I+_2VV)Gc(r,r')

e (r, r')=4H 2)(klr - r'])

where r = x_ + z_ is the vector to the field evaluation point, r' = xt_ + hg(x_)_ is the vector

to the source point on the surface and H_2) is the Hankel function. The limits xl and x2
should be positive and negative infinity, but in practice the integral is truncated at points
beyond which the contributions are negligible.

The direct application of PO with the antenna near ground and a distant receiver is
illustrated in Figure 2a. The total field E a at the evaluation point (xr, zr) is the sum of the
direct field from the source and the field scattered from the terrain

i

= +

In initial tests of the PO model the antenna was assumed to be over flat ground at a distance
from a hill that was the scatterer. In this case the PO currents are significant over the hill
and under the antenna but are small over the flat ground between hill and antenna. If
the source point and integration point r t are on the fiat surface and the source produces a
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eval. pt.

b) 7,

Fig. 2. Illustration of terms in the PO solution for a source at the antenna location near ground, showing:
a) First-order PO; b) first-order PO with second-order reflections included at the source.

TEM field, the _, components of incident field vanish in equations (7) and (10) while the
reflection-coefficient terms vanish in (8) and (9). In this case, it is convenient to stop the
PO integral on the flat ground where the contribution is small. The field from the ground
under the antenna can then be evaluated by including the field of an image of the antenna
multiplied by a reflection coefficient for the ground. If the fields reflected from ground under
the antenna are included in the E i and H i determining PO currents on the hill, they represent
second-order corrections to the first-order PO solution. This situation is illustrated in Figure
2b.

This combined geometrical and physical optics model was found to give good results for
scattering from a distant hill. The second-order geometrical-optics correction for the source
is particularly important for horizontal polarization since the RTE reflection coefficient is
usually larger than RTM. However, this approach could not be extended to cases where the

antenna was located in the region of irregular terrain. If the near fields of the antenna are
used in evaluating E i and H z over the surface, the PO integral in (11) can be evaluated
through the region under the antenna to yield an exact scattered field for a ground that is
flat and perfectly conducting. However, it is not accurate if the ground is flat and finitely
conducting. While the radius of curvature of the ground can be assumed to be much greater
than the wavelength, and hence locally flat, a restriction on the ground conductivity is not
acceptable. An exact result for flat, finitely conducting ground could be obtained by using
the Sommerfeld-integral form for the incident field due to the antenna over ground, but this
involves too much complexity and computation time.

To get a result that is accurate for a flat finitely conducting ground, reciprocity was
invoked to put the source in the PO solution at the location of the distant receiver and



evaluate the field at the antenna location near ground. If the original antenna at (xa, za)
is a current element Iadg that produces a field E a at the receiver location (xr, zr), then by
reciprocity a current element Irdg at (xr, z_) will produce tile field Er at (xa, za) where

Ea(zr, zr)' It dg = Er (za, za). Ia clg.

While PO does not satisfy reciprocity exactly, similar results should be obtained within
the accuracy of the solutions. In fact, interchanging source and evaluation points might be
expected to make the solution more robust. When the source is near the ground, a small
peak in the ground can make a big difference in the extent of the ground that is illuminated,
while the distant source will illuminate all of the ground for typical terrain except at low

. incidence angles. With the source at a large distance, the plane-wave reflection coefficients
of (1) and (2) give accurate reflected fields over locally flat ground. Then with the near field

. used for the scattered field in equation (11), the result is exact for flat finitely conducting
ground if the distance to the source is sufficiently large. The components of the PO solution
after invoking reciprocity are illustrated in Figure 3a.

With source and evaluation points interchanged it becomes more difficult to include
the second-order reflections under the antenna for fields that have already scattered from
the terrain. A full second-order PO solution would require the evaluation of N 2 interaction
coefficients for N surface samples, which is the same as for an integral equation solution and
too time consuming for large models. A limited second-order PO would require decisions
about which interactions to include. It was found that a good approximation of second-order
reflections near the antenna could be obtained by evaluating the field at the location of the
image of the antenna reflected in the ground. If the field evaluation point (original antenna
location) is ra - XaX + ZaZ the image location, assuming locally flat ground, is

r_ = x_¢ + z_ = ra - 2[za - hs(x_)] [_' fi(za)] fi(Xa).

The sum of the direct and reflected fields is then computed as

E_(xa, za) = E'(za,Za) + ES(xa, z_) + Ra [E_(x_, z_) + ES(x_, z_)] (12)

where the two E s terms come from separate evaluations of (11). To first order, the total
field at the image location (x_, z_) should be zero, since that is the condition used in the
equivalence principle to determine the surface currents. The actual field evaluated at the
image will approximate the fields that have reflected or diffracted from the surface and th_'_n
would reflect from the surface again near the antenna. These fields pass through the surface
since the first-order PO currents do not know about them. The image will also pick up error
fields resulting from the finite integration limits xl and x2 or limited integration accuracy,
and these errors can be partially cancelled in (12) for horizontal polarization where they arc
usually most significant.

The fields at the image evaluation point are assumed to actually reflect from the sur-
face to reach the antenna. Hence they should be multiplied by the appropriate reflection
coefficients for the ground. For ground with finite conductivity, the reflection coefficient is
a function of the angle of incidence 0i, but this angle is not known for the field obtained by

7
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source

b) (Zr, z_)
5,R

117(z_,z_)

image"_

source

eval. pt.

"///II//////_\

image [

Fig. 3. Illustration of terms in the PO solution after invoking reciprocity to put the source at the location
of the distant receiver, a) is simple first-order PO; b) includes second-order image fields for the source and
evaluation point; c) adds the reflected and diffracted fields from half-planes extending to infinity•

evaluating the integral in (11). A varying reflection coefficient cannot be included in (11)
since that would invalidate the first-order PO solution. Hence an average reflection coeffi-

cient Ra was determined by scanning the surface to determine the average angle of a ray

from the image at (x_, z_) to points on the surface that are visible to the image. Fortunately
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the second-order image correction is most important for horizontal polarization where the
reflection coefficient is relatively insensitive to incidence angle.

The fields due to the image of the distant source are also added to the direct fields E i
and H i in (7) through (10) at points where the image illuminates the front side of the surface.
For typical terrain, the image of the source illuminates the front of the surface only at low
incidence angles. The PO evaluation with second-order corrections to source and receiver
is illustrated in Figure 3b. The direct field from the image of the source to the evaluation
point is a first-order term included in the PO evaluation, so it is not included separately.

The final addition to the PO model was to include the reflected and diffracted fields from

' half-planes extending from the limits of the PO integration at [xl,hs(xl)] and [x2,hs(x2)]

to negative and positive infinity. The UTD result developed by Volakis [13] for a half-plane
• with impedance boundary condition was used (see Appendix A). In the 2-D model, the

relatively simple result in [13] for incidence normal to the edge can be used. When the
direct ray from source to evaluation point intercepts the UTD half-plane it is omitted, while
in PO it is included but partially cancelled by the PO currents. UTD does not provide a
seamless transition from the PO solution due to the different treatments of the edge effects
in the two models. However, the inclusion of UTD half-planes allows a large reduction in
the range of the PO integration, and hence reduces the computation time. The total field
at the evaluation point is now

E'(_o,z_)=E_(_o,zo)+E'(_o,z_)+ E_P(_,zo)+E_P(_,z_)

[ ' °",' ,,:, ]+ Ra Ei(x_,z_) + ES(x_,za)+ r_: txa, z_)+ (x_,z_) (13)

where E_ P and E HP are the fields due to reflection and diffraction from thehalf-planes from
xt to -oo and from x2 to o_. The field contributions included in the model with UTD
half-planes are shown in Figure 3c.

In the code set up to evaluate terrain scattering the currents are computed at discrete,
equally spaced points in x. If the sample points are xi for i = 1,..., N, the integral in (11)
can be evaluated as

N

- + z°)..,,+ (14)

N

i=l

N

.:(.o,zo)= +g..,,:.o,zo)..,,+f..,,(.o,zo)..,,j
P "1

(16)
i-I

where gxz,i(xa, za) is the component from equation (11) relating the x component of electric
field at (xa,za) to the z component of electric current over the cell centered at (xi, z,), and
the f factors have the same interpretation for magnetic current. The Green's functions must
be integrated over the width of the cell for each i, but when the distance from the evaluation

9



point (x, y) to the cell at (x_, z_) is greater than several times the cell width, the value of
the Green's function at the center of the cell was simply multiplied by the cell width. For
smaller distances an adaptive numerical integration scheme was used.

In the above development a line source at (xr, zr) has been assumed while the electric
field vector was evaluated at the original antenna location (xa,za). The solution is equiva-
lent, through reciprocity, with obtaining the components of field Ea(xr, Zr)" Ir d_ along the
receiving dipole at (xr, zr) due to three sources at (xa, za) with Ia de equal to fc, S' and _.
Actual antennas will consist of lengths of wire and possibly conducting surfaces with currents
determined by an antenna modeling code such as NEC. If the antenna is described by M
wire segments with segment j at (xj,zj) with length Aj, direction fij and current Ij, the
total field at the receiver at (xr,zr) can be obtained by superposing the results of equation .
(13) for each segment as

M

Er = E b fij "Er(xj'zj)Aj" (17) '
j=l

From (14), (15) and (16), the contribution to E r due to the PO currents can be evaluated
as

N

ES = E [Gx,iJx,i + Gy,_Jy,i + Gz,iJz,i + Fx,iKx,i + F_,iK_,i + F,,iKz,i] (18)
i-'l

where, if the direction of segment j is fij = ux,¢_ + _dS' + uzd_ while its image is at (x}, _)
"I , I I M ,,

with direction uj = ux,jf¢ + uydy + u_,jz, the coefficients are

M

'
j-"l

M

j=l
M

{ u' ' ' ', }G,,i = E IjAj u,,jgxz,i(xj,zj) + uz,jgzz,i(xj,zj) + Ra[ ,,jg, z,i(x},zj) + uz,jgzz,i(xj z_)]
j-'l

M

j--I

M

{ ' ' U' " ''}
j--1

M

j=l

Since the G and F factors depend on the antenna, the ground and the index i, they
can be computed once and saved. Then in computing a radiation pattern, only the far field
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from the source (original receiver) must be computed over the terrain surface to determine
the PO currents and the scattered field can be evaluated from (18). The direct and UTD
terms in (13) must be evaluated for each antenna segment in summing (17). A disadvantage
of interchanging source and receiver is that the blockage of the incident field by the terrain
must be determined in evaluating the PO currents for each angle of the pattern, but this
can be done quickly by updating a horizon.

2.2 PO for a 3-Dimensional Surface

The extension of the 2-D PO model to 3-D is straightforward. The surface will be
defined by the function z = hs(x,y) with unit normal vector fi(x,y). To determine the

. reflected fields on the surface it is necessary to resolve the incident field into TE and TM
components relative to the plane of incidence on the tangent plane at each point. The vector

• 15= (_s x fi)/l_s x fi[ will be defined for this purpose, where _s is the unit vector from the
source to the point on the surface. If the incident electric and magnetic fields are Ei(x, y, z)
and Hi(x, y,z), the TE and TM components in the plane of the surface are

E½E = (E i' 15)f), and F-_rM= E i- (E i. 15)15- (E i. fi)fi;

H_rM = (H i. 15)15, and H_rE = H i- (H i. f))15- (H i. fi)fi.

The sums of incident and reflected fields on the surface are then

E rz=(1+ RTE)(E.
E_:M =(1 - RTM)[E i- (E i" I5)f)- (E i" fi)fi]

H_M =(1 + RTM)(H i. I5)15

H_E =(1 - RTE)[H i- (H i. 15)15- (H i. fi)fi]

and the total surface fields are

E t =FirE + E_rM = (1 - RTM)E i 4- (RTE + RTM)(E i" 15)15- (1 - RTM)(E i. fi)fi

H t =H_. E + n_rM -- (1 - RTE)H i + (RTE + RTM)(H i" 15)15- (1 - RTE)(H i. fi)fi.

With the condition that the fields are zero behind the surface, the electric and magnetic
surface currents are

K(x,y) = - fix E t = -(1 - RTM)(fl × E i) - (RTE 4- RTM)(E i. l_)(fl x _) (19)

J(x,y) =fi x Ht= (1 - _TE)(fl x H i) 4- (RTE 4- RTM)(H i' 15)(fl × 15). (20)

If the PO currents are computed over a rectangular region with xl < x < x2 and yl _<y _<y2
the scattered field is

ES(x,y,z) = - jw#f'(r,r'). J(z') + K(x') × _Ta(r,r')] (_. fi,)-I dx'dy' (21)
I 1
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where (i. fi)-I da? dy t is the element of area on the surface. F(r,r') is the dyadic Green's
function

e-jklr-r'l

a(r, r') - 4_'lr - r'l

with r = x_: + YS"+ z_ the vector to the field evaluation point and r' = x_fc+ y'_ + hs(x _,y_)_.
the vector to the source point on the surface. The limits in x and y should be positive
and negative infinity, but in practice the integral is truncated at points beyond which the
contributions should be negligible.

The second-order corrections for source and receiver, as illustrated in Figure _, were
also included in the _-D model. The UTD half-planes to infinity in the 2-D model become '

a rectangular frame around the PO region in 3-D. It was assumed that the points on the
boundary of the PO region are at a constant height of zg. Then the reflected and diffracted
fields from the frame are obtained from four horizontal half-planes, each of which may con-
tribute a diffracted field if the diffraction point falls within the limits of the aperture. The
more complicated results from [13] for diffraction at oblique incidence to an edge must be
used. The UTD extension of the plane to infinity significantly reduces the ripple produced
in radiation patterns due to truncating the PO integral. Although the UTD for oblique
incidence is more complicated than in 2-D, the time saved in computing the surface integral
makes its use worthwhile.

3. THE 2-D INTEGRAL EQUATION MODEL

Integral equation solutions for the current on the terrain surface were developed as a
means to check the validity of the PO results. From Poggio and Miller [14], the integral
equations for electric and magnetic fields with r ranging over a surface S are

TEi(r)- T/s [jw#(fi' x H)G- (fi' x E) x V'G- (fi'. E)V'G] ds' (22)
E(r)

and

THi(r) + T/s [jw_(fa' × E)G + (fl' × H) × _7'G + (fi'. H)V'G] ds' (23)
H(r)

where T = (1 - f2/41r) -1 and fl is the solid angle subtended by the surface at r in the limit
as r approaches the surface from the outside. A smooth surface will be assumed from here
on, so ft = 27r and T = 2.

The third term in each integral, which may be written in terms of an equivalent cur-
rent with second derivatives on the Green's function, can cause difficulties in the numerical

solution due to the order of the singularity. However, in a 2-D problem the last term in (22)
vanishes for TE polarization, and the last term in (23) vanishes for TM polarization. Then

12
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using the surface currents Ks = E_, K_ = -Es, Js = -Hv and Jy = Hs with the coordinates
shown in Figure 1 and r = x5¢-i- hs(x)_., the equations become for TE polarization

:Ks(z) + jw#gv(z')Gc- Ks(x') Ge (_. fi')-: dx' (24)

and for TM polarization

H_(r)= -_J_(z)+ j_o_g_(z')a_+J_(z') C,_(_._')-__:' (25)

where J_(a4) represents the y component of electric current at r t = x_i + hs(x_)_ on the
. surface and OGe/On _ = fi_. V_Ge. The 2-D Green's function is

ao( , -
l-t

Although equations (24) and (25) each involve two unknown currents, the Leontovich
impedance boundary condition can be applied to eliminate one unknown in each case. With
Ks/Jy = -Ky/Js = r/g, the equation for TE polarization becomes

1Ks(x) - Ks(x') -jw#/rlg + _ Ge(r,r')(_. fi,)-ldx, (26)

and for TM polarization

Y_(r) = --_Ys(x) + J,(x') -j_e77g + _ Ge(r,r')(_. fi,)-I dz' (27)
fl'L

where xm <_x <_xp. The impedance boundary condition is generally accurate as long as the
radius of curvature of the surface is much greater than the skin depth in the medium.

Equations (26) and (27) are related through duality, so only one code is needed to solve

them. The only difference in the solutions is that the source of E_ in (26) will be an electric

line current in the y direction, while the source of H_ in (27) will be a strip of vertical electric
current Jz extending over -oo < y < o_.

The numerical solution will be considered for equation (27). The equation was solved
by means of the method of moments with pulse basis functions and point matching. The
current is expanded in a set of N basis functions f._(x) as

N

Js(z) = Z Jjfj(x). (28)
j=l

Substituting (28) into (27) and enforcing the equality at match points xi = xrn + (i - 1)Ax
for i = 1,... ,N and Ax = (xp - xm)/(N - 1) yields the set of linear equations

N

c,j:j=E , i= 1,...,N
j-1

13



where

aij = + fj(x') -j erl9 + ac(ri,r')(e, a') -1 dz'. (29)

The excitation vector is E_ - E_(ri) and 6ij = 1 if i = j or 0 otherwise. The current can be
obtained by solving the matrix equation or inverting the matrix [Gij] as

[Ji] = [Gijl-I[EI].

Simple pulse basis functions can be used for the current expansion, since the kernel of
the integral equation is relatively well behaved. However, if the range of the integral equation
is truncated at finite limits of xm and xp, reflections will be introduced into the solution for '
current. To reduce these end reflections the first and last basis functions were extended

to infinity with the form of a decaying exponential function exp[-jkRs(x)]/Rn(x), where

Rs(x) = [(x- xa) 2 + (zs- za)2].1/2 is the distance from the point (x, zs) on the surface to the
source of the exciting fields E_ and H i at (xa,za). This form can be used even over parts
of the surface not directly illuminated by the source. The exponent n was chosen as 1/2
for vertical polarization in equation (27) and 3/2 for horizontal polarization in (26). These
choices do notseem to be critical as long as continuity of current is maintained. The pulse
basis functions for j = 2,..., N- 1 are defined as

1, if xj - Ax/2 < x <_xj + Ax/2; (30)fj(x)= O, otherwise.

For the first and last basis functions,

e-Jk[R,(z)-R,(:l)]

"' [R°(z)/R,(z_)] , if x <_xl - Ax/2;
fl (x) -- 1, if xl - Ax/2 < x <_xl + Ax/2;

0, if x > xl + Ax/2;

and

0, if x < XN - Ax/2;

fN(X) -" 1, if XN -- AX/2 < X < XN q- Ax/2;

e-jk[Re(:r)- R.(xN )]' [R;(Z)/R°(ZN)I ' ifx > XN +Ax/2.

The exponential functions start at the outer edges of the first and last pulse functions, but
are normalized to unity at the centers of the pulses so that they represent smooth extensions
of the stair-stepped approximation formed by the pulses.

For the pulse basis function, the integral in (29) was approximated by evaluating the
integrand at xj and multiplying by Ax as long as Jri - rjl > 6Ax. For smaller separations,
the singular and discontinuous terms were subtracted from the integrand and inte_ated
analytically, and three-point Gaussian quadrature was used on the remainder.

When ]'1(x) or fN(x) is substituted into (29) the lower or upper limit of the integral must
be extended to -oc or +oc, respectively. The integrals of the exponential functions oscillate

14



and converge relatively slowly along the real x axis. However, the integration contour can
be deformed into the complex x plane to obtain a rapid exponential convergence. Rs(x)
has branch points at x = xa 4- j(z - Za), but with the restriction that the source is located
between the limits of the integral equation range, xm < Xa < Xp, the branch cuts are not
intercepted in deforming the contour. The integrals of the first and last basis functions are
then evaluated as

Gil "- - _6il q- dxl-Axl 2 __,¢M£7_0 + _ Gc(rl,r I) (_. fi,)-t dx'

' + J,l-_/2+joo iR='_/='R:(=_I)-_ -jwe_g + _z Gc(rl,r')

and

1 f (-jw_r/g + 0 ) Go(r, r')(,GiN = - " _iN Jr" . xN+Ax/2 " fit) -1 d'xt
z. Jz,v-az/9 _ '

e-Jk[Rs(x)- Rs(X N )] ( °)fzN+az/2-j_ -ja;erlg + Gc(ri r') dz'.

The integrals to infinity were evaluated numerically with an adaptive Romberg quadra-
ture routine [15]. Typically fewer than 20 integrand evaluations are needed since both the
exponential function and the Hankel function in Gc decay exponentially on the deformed
contours.

When the source point xa falls outside the range of the integral equation, the evaluation
of the integrals to infinity becomes more difficult since a branch cut may be encountered in
deforming the contour. Also, a saddle point may lie near the integration limit, in which case
the initial convergence of the integrand will be slow. The same problems occur in evaluating
the integral for the radiated field due to the current, since the evaluation points for radiated
field will usually lie outside of the range x,n < x < xp. These problems could be handled
by developing asymptotic approximations or simply by working harder at the numerical
integration. However, there was not time to pursue these problems in the present effort. In
evaluating the radiated field, the contributions from the exponential extensions of fl and fN
were simply ignored. Hence the limits x,n and xp were located as far as possible from the
scattering region to minimize the ripples in the radiation pattern.

In the special case of scattering by raised regions on a perfectly conducting surface the
flat surface extending to infinity can be eliminated by including the image of the scattering
region. The integrals in (26) and (27) then include the currents on the raised surface and
their images, and the exciting fields E _ and H i include the fields of the source and its image.
The image currents and source also contribute to the radiated field. The pulse functions
of (30) can be used for all basis functions in this case. Codes were also developed to solve
(26) and (27) for perfectly conducting ground since the solution range can be truncated at
the points where the scattering surface meets the flat ground (z = 0) without concern for
perturbations of the current or radiation patterns.
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4. NUMERICAL RESULTS AND VALIDATION

Initial validation of the PO codes was based on comparisons with results from the
integral equation codes. Hence, the validation of the integral equation solutions will be
considered first. A similar integral equation code was developed by Janaswamy [16], and
some of the results from that report were useful for validating our codes. In addition, the
program WAGNER, developed by Ott [9], was used for validation. WAGNER solves a
Volterra integral equation derived from the parabr_lic approximation of the wave equation.
It is a 2-D model, and neglects backscattering, but is reasonably well validated and has been
widely used for a number of years. The surface field from Wagner is probably of sufficient
accuracy to be used directly to obtain radiation patterns for validating PO. However, the
field would need to be extended into the near-field region of sources near ground. Also, Ott
has recently developed a new code RING [17] which gives different results in some cases than
WAGNER, so there were questions about which code was correct.

The first test of the integral equation code was for a vertical strip of electric current
over a fiat ground plane. An exact solution for the field over ground is available from Wait
[18]

jkoAs _ _ sin[_(x- xa)le -r(z+z°)Hv(x,z) 2H_(x, z) ,o + jk0A ) (al)
where r 2 = (2 _ k02,and As = Og/r?o is the normalized surface impedance. H_(x,z) is the
incident field from the source at (xa, za), which for a vertical strip of electric current is

jko (x - Xa) H_2)(k0Ra)'(z z) =
Hu , 4 Ra

where Ra = [(x- xa) 2 + (z - za)2] x/2 and H_2) is the Hankel function.

The problem modeled was a source at xa = 0 and za = 0.03_0 over a ground with

_g = 15- j6. The normalized attenuation function along the ground, IHu(x)/2H_(x) , is
plotted in Figure 4, where the solid curve is the result of solving integral equation (27) with
200 unknowns over the range -)_0 <_ x <_ 2)_0. The result from evaluating (31) is plotted
as a line with long dashes, but is mostly not visible since it lies on top of the solid line.
When the number of unknowns was reduced to 60, errors of about one percent were seen in
the integral equation solution. The visible line with short dashes in Figure 4 is the result
of solving the integral equation without the extensions of the first and last basis functions
to infinity, so reflections are seen at the ends. Much larg"r reflections occur for horizontal
polarization, but in either case the reflections are essen :jiy eliminated with the extended
basis functions.

The next test of the integral equation code was for a 1 km high Gaussian hill with a
source at a distance of 5 km. The 2-D line source is a vertical strip of electric current at
xa = e and za = 1 m. This is somewhat of a classic problem, having been solved by Berry

[19], Ott [9, 10, 20] and Janaswarny [16] among others. The Gaussian hill is defined by

hs(x) = He -g(z-_)2/_°2
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Fig. 4. Solution for the normalized field H_ for a source at height z = 0.03),0 over a flat ground with
_ = 15-j6. The solution of the integral equation with basis functions extended to 4-oo ( ) and the
result of equation (31) (-- -- --) coincide. The solution without extended basis functions ( )
shows reflections at the ends of the range.

\1 .FatE hi1.0 MHz

0.3
I \ If0 MHz /

"_ 0.1

0.01 • _ . A
0 1 2 3 4 5 6 7 8 9 10

z (km)
Fig. 5. Normalized field H, over the surface of a Gaussian hill from Berry's solution of Hufford's integral
equation. (Source: L. A. Berry, [19], IEEE © 1067. Reproduced with permission of IEEE.)

with H = 1 kin, c = 5km and w = 3km, and the ground parameters are er = 10 and a = 0.01

S/m. Berry [19]computed the field over the hill by solving Hufford's integral equation [8]
at 1and 10 MHz,with the results reproduced as Figure 5 in this report. Hufford's equation
is a Volterra integral equation derived from the free space Green's function. Ott and Berry
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Fig. 7. Integral equation solution for the normalized H,: over the surface of the Gaussian hill at 1 MHz.

[9]developed a new integral equation using a modified Sommerfeld attenuation function as
an elementary function. This alternate equation, which Ott used in the code WAGNER, is
easier to solve than Hufford's but apparently becomesunstable at high frequencies [21]. The
result of running WAGNER for the Gaussian hill at 1 MHzis shown in Figure 6.

The solution of the integral equation (27) for the Gaussian hill at 1 MHz is shown in
Figure 7. This solution used 1000unknowns over the range -0.5 km < x <_10 kin, although
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the result with 500 unknowns over this range was essentially the same. The integral equation
solution is in reasonable agreement with the solutions of Hugord's equation and WAGNER.
Each shows the characteristic peak on the near side of the hill due to height gain and focusing.
The field decreases toward the top of the hill, and is small behind the hill, with some recovery
at larger distances. Program WAGNER predicts a more pronounced secondary peak near the
top of the hill, while the integral equation solution is closer to Berry's solution of Hufford's
equation in this region, showing only a slight shoulder in the curve. Janaswamy's solution
of the integral equation [16] also shows a clear second peak, but it occurs at a higher level,
around x -- 4.5 kin, while that in the WAGNER solution is at x = 4.78 km. This second
peak may be a developing feature in the current at 1 MHz, and very sensitive to the solution
method. Results from the integral equation code and WAGNER for the Gaussian hill at 3
MHz are shown in Figure 8, and are in good agreement.

The integral equation solution for the Gaussian hill at 10 MHz is shown in Figure 9. The
equation was solved with 1400 and 3000 unknowns over the range -0.5 km <_x <_ 10 km.
With 1400 unknowns (Ax = 0.25A0) the low-level field behind the hill is inaccurate, but the
field on the front of the hill is close to that obtained with 3000 unknowns. The main features

of the integral equation solution are in agreement with Berry's solution of Hufford's equation
in Figure 5. The nulls in the region of x = 6 km are the result of interference between a
creeping wave and field diffracted over the hill. In this range Berry's result is larger than the
apparently accurate result with 3000 unknowns in Figure 9. It seems likely that Berry also
had problems with sampling accuracy, since his solution was severely straining the computing
power available at the time. At greater distances behind the hill the normalized field recovers
as the diffracted field becomes stronger. From 8 to 10 km Berry's result and the integral
equation solution with 3000 unknowns are again in good agreement.

The integral equation result for the Gaussian hill at 30 MHz is shown in Figure 10.
The equation was solved over the range -0.5 km <_x <_ 7 km with 3000 unknowns. With
Ax = 0.25A0, the low-level fields behind the hill are not expected to be accurate. However,
the main features of the solution are similar to those seen at lower frequencies and probably
are accurate. Some low-level numerical noise can be seen in the solution since the 3000-order

matrix was solved in single precision (32 bits).

Radiation patterns obtained from the integral equation solution and 2-D PO are com-
pared in Figure 1la for the vertical source and Gaussian hill at 1 MHz. The integral equation
was solved over the range -15 km <_ x _< 10 km with 1000 unknowns so that the current
is truncated at reasonably distant points. The PO solution included the terms depicted in
Figure 3c and equation (13), with PO currents computed over the range 1.5 km <_x < 8.5
km with 300 integration points. The integral equation result shows some ripple due to trun-
cating the current. The small peak near 0 = 80° in the PO result is probably an art:fact,
as the shadow boundary is passing under the evaluation point at x = 0. The geometrical
optics (GO) solution using Ray Launching [2] for this case is shown in Figure 1lb. A similar
interference pattern is seen in the GO result, but it is limited between a caustic at 19° and
the shadow boundary. The relative amplitude of the interference pattern is somewhat less in
the GO result, probably because the GO model is a Gaussian ridge with a point source, while
the integral equation and 2-D PO use line sources. This difference should be less noticeable
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Fig. 8. Normalized H_ over the Gaussian hill at 3 MHz: a) result from program WAGNER; b) solution of
integral equation (27).

with a smaller distance between source and scatterer• The results from 2-D PO and 3-D GO
for the Gaussian hill at 10 MHz are compared in Figure 12.

Most of the validation tests of the PO codes have made use of an actual terrain profile
for which measured radiation patterns were available. The U. S. Navy is currently sponsoring
a project to measure radiation patterns from antennas situated in irregular terrain as part
of the effort to validate the model development reported here and by other workers [7, 16].
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Fig. 9. Integral equation solution for the normalized H_ over the Gaussian hill at 10 MHz: a) result with
1400 unknowns; b) result with 3000 unknowns.

+

An initial set of measurements has been made at Cedar Valley in Utah [22], for which a

topographic map is shown in Figure 13. Antennas were located at three sites indicated on
the map as West Valley Monopole and Dipole, Hill Top Monopole and Dipole and East
Valley Monopole and Dipole; and patterns were measured by a helicopter flying along the
indicated route.

The PO and integral equation codes include interface routines to allow arbitrary terrain
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Fig. 10. Integral equation solution for the normalized H_ over the Oaussian hill at 30 MHz using 3000
unknowns over the range -0.5 kin_<= _<T km.

profiles to be entered. For the 2-D models (2-D PO, integral equation and WAGNER) the
terrain height is entered at points along the 2-D profile, and the code applies cubic-spline
interpolation to obtain the heights at points needed in the solution. Spline interpolation was
essential for WAGNER, since the solution became unstable with even small discontinuities
in the surface derivative. For the Cedar Valley site the 2-D contour was taken along the
helicopter flight path passing through Station 6, and x = 0 was chosen adjacent to the West
Valley antenna site. A reference elevation of 4990 feet on the topographic map was chosen
as z = 0. The hills actually continue to a large distance in positive x, but the numerical
profile was brought to zero height for x < -100 m and for x > 770 m. With the terrain
starting and ending at z = 0 the integral equation code using images can be run, rather
than truncating the current to infinity, when perfectly conducting ground is modeled. The
interpolated surface profile for the Cedar Valley site is plotted in Figure 14a. The format
of the terrain data file is described in Appendix B which also contains the data file that
produced Figure 14a.

Figure 14b is a Gaussian curve chosen to approximate the height and front surface of
the Cedar Valley profile. The Gaussian is defined by

hs(x) = 45 exp[-0.000114(x - 170)2].

Both the Gaussian and the Cedar Valley profiles have peaks at x = 170 m. In the Cedar
Valley profile the height at this peak ;s 50 m and the height at x = 0 is 6 m. For the Gaussian
hill the peak at x = 170 m is 45 m and the height at x = 0 is 1.65 m. The Gaussian hill is
the same as that used by Janaswamy in [16], and was included here to allow a comparison
of the radiation patterns. In addition, the comparison of results from the Gaussian hill and
Cedar Valley profiles can demonstrate the importance of small differences in a terrain profile
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Fig. 11. Radiation patterns of a vertical dipole source 5 km from a Gaussian hill at 1 MHz, with ground
parameters _ = 10 and a = 0.01 S/m: a) 2-D PO and integral equation solutions; b) 3-D geometrical optics
result.

thatmightresultfromdifferentreadingsofa map. Bothcurvesprobablydifferconsiderably
fromtheactualgroundshapeatCedarValley.

• Forthe3-D PO modela twodimensionalsplineinterpolationwas usedtodefinethe

terrainsurface.To generatetheterrainsurfacedescriptionparallellinesaredrawnon a
topographicmap inan arbitrarydirectionchosenasx. The spacingoftheselinesand of
pointsalongeachlineon themap arechosentodefinetheshapeofimportantfeaturesofthe
terrainandtheelevationsatthesepointsareenteredintoa file.The formatofthedatafile

isdescribedinAppendixB. A surfaceplotobtainedfromsplineinterpolationofthepoints
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Fig. 12. Radiation patterns of a vertical dipole source 5 km from a Gaussian hill at 10 MHz: a) 2-D PO
result, b) 3-D geometrical optics solution.

read from the Cedar Valley map is shown in Figure 15. For the plot the vertical scale was
multiplied by a factor of three to make the shape more visible.

Results from the integral equation solution and WAGNER for the normalized surfa_
field H_ over the 2-D Cedar Valley profile are shown in Figure 16 for a frequency of 8.015
MHz and in Figure 17 for 27.7415 MHz. The source was a strip of vertically directed electric
current at a height of 1 m above the surface at x = 0. These results are in reasonable
agreement, and show the typical increase in strength on the near sides of peaks and decrease
in the shadow regions. When PO is applied using the antenna at x = 0 as the source, the PO
surface current is zero beyond about x = 110 m due to blockage by the shoulder in the profile
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Fig. 15. Surface plot from cubic-spline interpolation of elevation points read from the Cedar Valleytopo-
graphic map. Coordinates are in meters and the vertical scale has been multiplied by a factor of 3.

of Figure 14a. It can be seen from Figures 16 and 17 that this is not a good approximation
to the current, although it is not as bad as might appear since the unnormalized surface
field decreases faster than the results shown in the figures. A few comparisons of PO and
integral equation currents with reciprocity invoked to put the source at the distant receiver
location, as in the PO codes developed here, have shown good agreement. Over illuminated
regions the currents almost coincide, while at shadow boundaries the discontinuities in the
PO current are replaced by continuous but rapid changes in the integral equation currents.

Radiation pattern measurements were made at Cedar Valley for antennas located at
the West Valley, Hill Top and East Valley sites [22]. Two antennas were measured at
each site: a vertical monopole with height of 16 ft and a horizontal A/2 dipole (adjusted
for each frequency) at a height of 15 ft and oriented normal to the helicopter flight path.
Measurements were made at frequencies of 8.015 and 27.7415 MHz. Also, 15.3415 MHz and
a frequency around 50 MHz were used, but not all of this data is presently available. The
ground parameters were measured as _r = 14.9 and a = 0.0065 S/m at 8.015 MHz, and
er = 9.5 and a = 0.0161 S/m at 27.7415 MHz.

For validating the PO model, the monopole and horizontal dipole antennas located at
the West Valley and Hill Top sites were modeled at 8.015 and 27.7415 MHz. Radiation
patterns from the PO code were first compared with computed patterns from the integral
equation code to postpone dealing with the real-world uncertainties of the measurements.
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Fig. 16. Normalized field H_ over the 2-D Cedar Valley profile at 8.015 MHz: a) result from program
WAGNER, b) integral equation solution.

Since the integral equation codes will only treat a single line source with vertical or horizontal
polarization, the vertical monopole was represented as a vertical strip of electric current at
a height of 2 m, infinite in the y direction and with Iz dz = 1 Ampere-meter, while the
horizontal dipole was represented by a horizontal electric line source with a current Iv dz = 1
Ampere-meter at a height of 4.57 m. When the PO code was run using a NEC solution for
the actual current on a 16 ft monopole and a ,_/2 dipole the patterns were very close to
those obtained with point sources, so the point-source results will also be compared with the
measurements.
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Fig. 17. Normalized field H_ over the 2.D Cedar Valley profile at 27.7415 MHz: a) result from program
WAGNER, b) integral equation solution.

The comparisons of the PO and integral equation solutions are shown in Figures 18 .
through 25. Each figure includes patterns for the antenna at corresponding locations on
the Cedar Valley profile of Figure 14a and on the simple Gaussian hill of Figure 14b. In
addition, patterns are shown for the actual ground parameters and perfectly conducting

ground. Perfectly conducting ground is of interest for two reasons. The integral equation
code using images was used to model perfectly conducting ground, so there will be no
distortions of the pattern due to truncating the current on the surface to infinity. Also, one
of the questions about the PO model is the accuracy of using a reflection coefficient for an
average angle of incidence in determining the second-order reflected field at (x_a,z_). For
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Fig. 22. Radiation patterns of a vertical dipole in front of the hill (x= = 0, za = surface +2 m) for the Gaussain hill and Cedar Valley terrain at
27.7415 Mllz. Results from the PO model ( ) and integral equation solution ( ) are compared.



1.5 i I i I i 1.5 I I i i i
IE -I00<z<400. N 600= IE:-1O0<x<800, N=I000 _

1.2- - 1.2- It; ! -

E 8.9- _ 0.9- -

_ 8.6- _ 13.6-

e.3- la.3- -

Perfectly conducting ground

B i i , i i B i i i i i
-98 -68 -38 • 38 68 98 -98 -68 -38 e 38 68 98

0 (degrees) 0 (degrees)

1.4 I i ! ! I I 1.4 I I I ! I
,_ [ IE -300<x< 700, N = 1000 IE: -400<x<600, N=I000

1.2 1.2- -

'°J /vt "
t 'X / t " "
IX/\ °>e6-m8.6-

e. 2- f Gaussian hill, 27.7415 MHz _ - 8.2- Cedar Valley, 27.7415 MHz

Cr -, 9.5, o = 0.0161 S/m
= 9.5, o = 0.0161 S/m .. _r =

8 , , , , i 8 , i , i , '
-98 -so -3o 8 38 68 98 -98 -68 -_a 8 38 6o 98

0 (degrees) 0 (degrees)

F'ig. 23. Radiation patterns of a horizontal dipole in front of the hill (x, = 0, z_ = surface +4.57 m) for the Gaussain hill and Cedar Valley terrain
at 27.7415 Miiz. Results from the PO model ( ) and integral equation solution ( _ are compared.



. o

z,I ' ' ' ' ' Iz.°l ' ' ' ' ' i -

! 8-[ 9 Gaussian hill, 27.7415 MHz _ l- i ) Cedar Valley, 27.7415 MHz t
1.4-III _ 1.6-tl , I-

v ,,,o ,E:_:,oo<,:<?oo.,,=.,,_ "-4 Iff[ __ ,,.:._,_<_<_ _: ,,_ _/,11'_i'!
"" Ill !i' "_, ,o__,.<.<_. _:_ / "ItilL _ e.,,Jll,_ _l!l'/, ,o.__,<_<_: ._:,-_ ._1_I_/',_I:_-

0.4 0.4 i I

-90 -60 -30 • 30 -90 -60 -:30 0 30 60 90

. 0 (degrees) - O (degrees)

e-,'l ' ' .. ' ' ' i o8t ' ' ' ' ' ;
r_ I, Gaussian hill, 27.,415 MHz l_ " [_ Cedar Valley, 27.7415 MHz L

06 _ _r = 9.5, a = 0.0161 S/m , t1_ 0.71[ I _r=9.5, a= 0.0161 S/m . |

\ /

0.2- 0.2 V!
IE: -ll00 < z < 1400, N =

tO: __ <_ < _o. ,'v= 6oo "-1"- -"J- 0

0--90 - 60 - 30 • 30 60 90
0 (degro_) 0 (degrees)

Fig. 24. Radiation patterns of a vertical dipole on top of the hill (x_ = 170 m, z, = surface +2 m) for the Gaussain hill and Cedar Valley terrain
at 27.7415 Mliz._Resu Its from the PO model ( ) and integral equation solution ( ) are compared.



I II I

Fig. 25. Radiation patterns of a horizontal dipole on top of the hill (x° = 170 m, Zo = surface +4.57 m) for the Gaussain hill and Cedar Valley
terrain at 27.7415 Mllz. Results from the PO model ( ) and integral equation solution ( ) are compared.
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perfectly conducting ground the reflection coefficient is independent of incidence angle, so
this source of error is eliminated. However, the approximation that the field reflects in a
plane tangent to the grotnld under the antenna remains in question.

The patterns were computed with the receiving antenna (source in PO) sweeping an arc
with radius 104 m and positive 8 is toward the hills, in the direction of positive x in Figure
14. All of the results show generally good agreement between the PO and integral equation
solutions. The most noticeable discrepancy occurs in the results for a vertical source in front
of the hill for 0 around 75 degrees. The rapid drop in the PO result in this case seems to be
associated with the shadow boundary passing under the antenna on the ground. It might be
possible to reduce this error by applying a smoothing window to the current at the shadow
boundary.

The 2D PO results are compared with the measured patterns from [22] in Figures 26
through 29. It should be noted that these patterns have been reversed from left to right as
compared to those in Figures 18 through 25 so that the patterns can be compared directly
with those in [7]. As expected, the agreement between PO and measurements is not as good
as that between PO and integral equation solutions. Most of these differences are probably
due to factors in the measurement situation that have not been taken into account in the

model. For example, the measured pattern for the monopole in front of the hill at 27.7415
MHz, in Figure 26, shows a distinct flattening of the monopole pattern in the direction away
from the hill for elevation angles from 10 to 60 degrees. Two separate measurements, with
the helicopter carrying a vertical dipole and a horizontal dipole in the x direction, show this
effect. However, the PO and integral equation solutions and the UTD results from [7] all
show almost no distortion of the monopole pattern in this region. Given the uncertainties in
the measurement situation and terrain shape, the agreement between PO and measurements
seems reasonably good.

5. CONCLUSION

The method of physical optics (PO) was used to develop numerical models for the
. scattering of antenna radiation by irregular terrain. Both 2D and 3D models were developed,

since the 2D model offers a faster solution and simpler definition of the terrain shape, while
the 3D model is needed when scattering occurs from obstacles out of the vertical plane from
transmitter to receiver. The codes were designed to compute the skywave radiation patterns
of antennas located on the ground. However, to get an accurate solution through PO it
was necessary to invoke reciprocity to put the source at the distant receiver location and
evaluate the field at the antenna location on the ground. The first-order PO solution was
combined with image evaluations at the source and evaluation points to account for second-
order reflections. Also, a UTD solution for a half-plane with impedance boundary condition
was included to extend the ground plane from the edges of the PO integration to infinity.

A 2D integral equation code was developed to validate the PO results. The EFIE was
solved for horizontal polarization and the MFIE for vertical polarization with an impedance
boundary condition on the surface. The equations were solved by the method of moments
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8.015 MHz

27.7415 MHz

Fig. 28. Radiation pattern of a vertical monopole at the West Valley site at Cedar Valley, comparing the
measured pattern (solid) with the 2D PO result (dashed). The patterns are in dB and were normalized to
match their maximum values.
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Fig. 2?. Radiation pattern of a horizontal dipole at the West Valley site at Cedar Valley, comparing the
measured pattern (solid) with the 2D PO result (dashed). The patterns are in dB and were normalized to
match their maximum values.
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Fig. 28. Radiation pattern of a vertical monopole at the Hill Top site at Cedar Valley, comparing the
measured pattern (solid) with the 2D PO result (dashed). The patterns are in dB and were normalized to
match their maximum values.
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Fig. 29. Radiation pattern of a horizontal dipole at the Hill Top site at Cedar Valley, comparing the
measured pattern (solid) with the 2D PO result (dashed). The patterns are in dB and were normalized to
match their maximum values.

41



with pulse expansion functions and point matching, and with the first and last pulse basis
function extended to minus and plus infinity to reduce edge reflections. The integral equation
solutions were found to be in good agreement with the exact result for a flat impedance plane
and with results of the code WAGNER for surfaces with hills. The radiation patterns from
the integral _uation and PO codes were compared for vertical and horizontal antennas at
the base of a simple Gaussian hill and also on top of the hill, and at similar positions on
an actual terrain profile from the Cedar Valley site. Generally good agreement was found
between integral equation and PO solutions in all cases. Comparisons of the PO results
with measurements taken at Cedar Valley showed agreement in the major features of the
patterns.

The PO codes are set up to model terrain of arbitrary shape and to read antenna geom-
etry and currents from a NEC-MoM solution to represent the source. Alternatively, point
or line sources can be used. The terrain shape is described by generating a file containing
elevations at a number of points read from a topographic map, and the code applies cubic-
spline interpolation to the points entered to determine the surface for the PO solution. The
formats of the input files and the use of the codes are described in appendices to this report.
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APPENDIX A

Diffraction Coefficients for a Lossy Half-Plane

The UTD diffraction coefficients devel-

oped by Volakis [A 1] for a finitely conducting _t5
half-plane with impedance boundary condi- '; _ _"N,_'--_"--_''--'--------.---.___.._
tion are summarized in this Appendix. The __' ()
formulas are considerably more complicated __

than for a perfectly conducting half-plane, .. i_B.
but remain correct in the limit of perfect con- -... ,_.

ductivity. Volakis developed the UTD solu- .... _.,_, --
tion for incidence at an arbitrary angle to the .. "
edge and also gave a simplified form for nor- " _t]

real incidence. The normal incidence form Fig. AI Geometry for diffraction by a half-plane
which was used in the 2D PO cx)de will be with incidence normal to the edge.

given first.

Incidence normal to the edge

The geometry for the ray incident normal to the edge is shown in Figure A I. Tile free

space wavenumber is k = w/c and 77= zs__Zo is the normalized surface impedance of the
half-plane. For the terrain model r/ = v/1/_g where gg = er- ja/weo with cr and a the
relative permittivity and conductivity of the ground. If the incident field at the edge is
E'(Qe), the diffracted field at P is

Ed(p)--, -Ei(Qe) . [_0D(_b, _'; 7r/2, rj)+ _'_D(cb, _b';_r/2, l/r/)] At(s) (A1)

e-JTr/4

[Ct(C,C';r/) sec(j3-/2)F(2kLcos2_-/2)D(q_, ¢'; _r/2, r/) =2_ (A2)

C2(¢,_b';r/) sec(/3+/2) F(2kLcos 2/3+/2)]
4-

where 13± = ¢ :i: ¢1 and

Cl (¢, ¢'; r/) = 2r/sin _b/2 sine'/2 4- 1 K+ (¢; Tr/2, r/) K+(¢';r/2, r/)
2sin ¢/2 sin 4//2

C2(¢,¢';r/) = 2r/sine/2 sin0'/2- 1 K+(¢;lr/2, r/) K+(¢'; r/2, r/).
2 sin 0/2 sin ¢//2

F is the Presnel integral

5F(z)- 2jlv/'51e3= e-J'2 dr
I

and L is the distance parameter

ssin 2 _ for a plane wave incident

s's for cylindrical wavesL= ,+--7

s'ssin2fl9 for conical or spherical wavess-t-$
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while A l contains the spreading and pha_e factors

(e-Jk'iv_ i for plane, cylindrical or conical waves incident
Al(s) ffi e_j_a ,, t/2a(_'+a) for a spherical wave incident.

K+ is the "split function" for the Wiener-Hopf solution and is given by

K+(@,/_o,O)- (v_i:[_?(11 - eos_)]'/' [g,_.(_"- (;b. X)¢_.(lr- (;b- X)] 2)(__ _-_ + I) *'(_'/2)g"(_'/2) CA3)

where

cosX = I/(T/sin_o)

and

[-1 f(_ lrsinu- 2v_ lrsinu/2 + 2Udu1¢_r(a) = exp _ ._o cos u

1-0.0139004a 2- 1.15772(10-s)a 4, O <_c <_7r/2, r <_4.60_<a<_lr/2, r>4.6

where c_= e + jr and 3'o= 0.69315. For other arguments the function _p=can be evaluated
from (A4) and the identity

¢_.(o_)- 0.93242c°s (_ - _)#.,,,(a-

with the relations ¢,r(a) = _,r(-a) and ¢,r(a*) = ¢_(a), where _* indicates the conjugate.

Skew incidence

The geometry for diffraction at skew incidence is shown in Figure A2. If the half-
plane is perfectly conducting and the incident field at the diffraction point (B_ = Bo) is

Ei(Qe) = E_ff0(Qe)/_ + L-_cl(Qe)o_othe diffracted field at P is [A2]

_(p)
[ E_(p) ] ..__A,(s)[Ds(¢,4];_ ) 00 Dh(gP,¢';_o)]'[___ (QE)(QE) 1'

Ds and Dh are the diffraction coefficients for soft and hard boundary conditions

D. (¢, ¢'; Bo)=-e-J_r/4 [ ( ¢-¢' ), 2v/_._sin_ ° sec 2 f[kLa(¢- ¢')]

see( ¢+¢'2 ¢')]1] f[kLa(¢ +
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Fig. 1. Geometry for diffraction by a half-plane with skew incidence.

where a(¢ :i: ¢') = 2cos2[(¢ ± _')/2]. When the half-plane has finite conductivity the ¢ and
X_0components of field are coupled so that the diffracted field is

[E cp) ]
-Dc(¢,¢';_,r/)D(¢,¢';lgb,I117) E"_,(QE).I

The diffraction coefficients from [A1] are

D(¢, ¢'; _0, r/) = A2(¢, ¢'; &)[E(¢, ¢'; &, 77)+ cos &F(¢, @';&, 1/r/)]

De(C, ¢'; _o, 71)= A2(¢, ¢'; &)[C(¢, ¢_;&, T/)+ cos/_og(¢, ¢';/_o, l/rl)]

where
e-J_14

A2(¢' ¢_;X_°)-- _'_'k(1 - sin2X_vsin2@')(1- sin2X_osin2 _)

and

G_ =- cos /_0sin ¢ cos ¢' cos¢cos ' Vn

grt = - - cos ¢ sin ¢' cos/_osin ¢ sin ¢' ' V n

The notation E'I _- E(¢, ¢_;/_o,T}),E,7 = E(6, d; _b, 1/7}), etc. has been used in the above
equations.

The UTD forms that Volakis developed for these coefficients follow. U is evaluated as

u_= uc¢,d;_o,_)= u_+ u_

where

U_ ---cos ¢ cos ¢' OI (r/) + C13(@,¢';&,_?)C,(@, ¢_;&)
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with

DI(r/) = 2Cll (¢, ¢'; _o, rl) sec(13-/2)f(2kL cos2 /3-/2)

+ 2C12(¢, ¢1;/30,77)sec(/3+/2)f(2kL cos2/3+/2)

and

C11(¢,¢_;/3o, r/) = 2r/sin Bo sin ¢/2 sin ¢'/2 + 1
8 sin/_ sin ¢/2 sin ¢t/2 K+ (¢;/_o, r/)K+ (¢'; &, r/)

C1_(¢,¢_;& 17)= 2r/ sin l3osin ¢/2 sin ¢'/2 - 1
' 8 sin & sin ¢/2 sin ¢I/2 K+(¢;13o, r/)K+(¢';13o, r/)

C13(¢, ¢'; & 77)= sin & cos Bo[2r/sin & cos ¢/2 cos ¢l/2(cos & - sin 23m) (cos ¢ + cos ¢')
' 2sin ¢/2 sin ¢s/2 (sin& + cos 27'7) '

The function 7 n = ?030, 77)is evaluated as

"y' = -?, = -j loge {K+(8;/3o, I/r/)/[v_K+(g; &, r/)]}

with

8 = 7r/2 + j loge(tan _3o/2).

Us is evaluated as

U_ = cos 213o(1+ cos ¢ cos ¢') OII (7?)+ C23(¢, ¢1;_o, r/)Ch (¢, ¢t; _o)

where

DH (r/) =2C21 (¢, ¢'; &, 77)sec(Z-/2)F(2kL cos2 B-/2)

+ 2C22(¢, ¢'; _3o,r/) sec(fl +/2)F(2kL cos2/3+/2)

and
sin ¢/2 sin ¢'/2 + 2r/sin & cos2 ¢/2 cos2 ¢1/2c2_(¢.¢';_o._)=

2 sin/30 sin _bsin ¢/

• K+ (¢; _o, r/)K+ (¢'; &, r/)

sin ¢/2 sin d/2 - 2r/sin &cos 2 ¢/2 cos 2 ¢'/2c22(¢.¢';&, _)=
2 sin Bo sin ¢ sin ¢/

. K+(¢; &, r/)K+ (¢'; 13o,77)

sin Bocos Bo(cos _o + sin 2?n)(cos ¢ + cos ¢')c_3(¢.¢';&. _)= -
2(sin & + cos 27 n) cos ¢/2 cos ¢I/2

•K+(¢; &, r/)K+(¢';_o,r/).

The functions Cs and Oh are related to the soft and hard diffraction coefficients for the '
perfectly conducting half-plane as

C, (¢, ¢'; _o) = eJ_/4v_"_ D, (¢,ff;&).
h h

The UTD form of the V function is

v, = v(¢. ¢;&, n) = c3(¢.¢;&,v)c,(¢, ¢';_o)+ c4(¢.¢;&, n)ch(¢,¢';_o1
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where

C3(q_,qb';/_o,r/) = sin/_ocos/3o_ K+ (qb;/3o,77)K+(qb';_, 1/17)
I

and
c4(_),_';_, n)=sin_ocos;_ov_sin_)K+(_);&),_)K+(4;_, I/n)

• { cos_b/2cosg/ V/'_cos_bcos_b'/2l
,
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APPENDIX B

Input for the Physical Optics Codes TPO2D and TPO3D

To compute the radiation pattern of an antenna located in irregular terrain the PO codes
need a description of the terrain shape and electrical parameters of the ground, the antenna
dimensions and currents and the transmitting frequency. In addition, the limits and number
of increments for integration over the terrain surface must be set to meet requirements for
solution accuracy. Both the 2D and 3D programs read six lines of input from the terminal,
and prompts are displayed for the required parameters. Since the terrain description may
involve a large amount of data it is read from a file, and only the file name is entered from
the terminal. The formats of the terrain data files for 2D and 3D are described in Section

B.3 of this appendix.

A name can also be entered for a file containing the dimensions and currents for an

arbitrary antenna. This file is produced by running a modified version of the NEC moment-
method code. Alternatively a vertical or horizontal point source can be specified without the
need for a file. When a file of NEC currents is read the antenna can be translated or rotated
about the vertical axis to position it in the terrain coordinate system. Normally the antenna
should be modeled over ground in NEC, and the height of the NEC origin above the terrain
surface in the PO calculation (ZORG on input line 4) should be zero so that the antenna
has the same height as when the currents were computed. However, for an antenna such as a
half-wave dipole the height can probably be varied over a reasonable range without running
NEC to recompute the antenna currents. In locating the antenna, the slope of the ground
must be taken into account to ensure that no antenna segments extend below the ground
surface. Also, the frequency used in the NEC run should be the same as that specified for
the PO calculation, but if the frequencies differ a warning is printed and the PO solution
will continue using the frequency on the first input line of the PO code.

The limits specified for the PO integration and the number of integration intervals
will depend on the terrain shape and the wavelength at the transmitting frequency. The
PO integration should cover all hills and valleys that may produce significant scattering.
Beyond these limits the ground is considered flat, and reflections are computed from the
UTD half-plane solution. The transmitting antenna can be located over the PO integration
region or over the UTD half-planes. It is probably not a good idea to locate it very close to
the boundary between the UTD and PO regions. The number of integration intervals must
be chosen so that the interval width is sufficiently small relative to wavelength for accurate

integration. The interval width in x is (XMIN - XMAX)/(NXPT - 1) with the same relation
for y in code TPO3D. The width on the surface will be somewhat larger than this when the .
slope is non-zero, but it is usually sufficient to consider the width in x for typical terrain
slopes. From initial tests with the Cedar Valley Utah terrain at 27.7415 MHz, an interval
width of 0.1A, where A is the wavelength, appears to be conservative. Results obtained with
an interval size of 0.2A were nearly indistinguishable from those with the smaller interval.
With an interval of 0.4A the general pattern shape was produced, and errors were less that
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one dB. However, since the ripple in the pattern due to scattering was also less than one dB,
the errors appeared significant.

The solution time will be approximately proportional to the number of integration
intervals, NXPT in code TPO2D and NXPT, NYPT in TPO3D. It is also proportional to
the number of evaluations of the radiated field NTH.

B.1. The 2D PO Code- TPO2D

The code TPO2D reads six lines of input from the computer terminal. Prompts are
displayed, and the data is read in free format using the FORTRAN READ(.,,) form. Num-

: bers can be separated by spaces or commas, but an entry must be made for every item even
if the number is zero. The second and third input lines ask for the names of auxiliary files

• containing a description of the terrain profile and the source antenna currents. These files
must be prepared in advance following the formats described in Section B.3 for the terrain
data and in Section B.4 for the antenna dimensions and currents.

TPO2D writes the computed radiated fields to an output file named TPO2D.DAT. The
program TPOPLT can then be run to plot the radiation patterns.

The input for running program TPO2D follows:

Prompt 1: FMHZ, EPSR, SIG >

FMHZ - frequency in MHz.
EPSR - relative permittivity of the earth er.
SIG -conductivity of the earth a in S/m. If a negative value is entered for SIG

the complex permittivity of the earth is set to _g = er - ja/weo = EPSR
-jISIGI.

Prompt 2: Enter name of terrain data file >

Enter the name of the file containing the 2D terrain profile. The format of the file is
described in Section B.3.

Prompt 3: Enter name of NEC current file >

To compute the fields due to an actual antenna modeled with the NEC MM code the
name of the file containing the NEC current data should be entered. The format of the
file is described in Section B.4. Alternatively, a simple point source can be used as the
antenna. For a point source the following symbols can be entered in upper or lower case:

. X - for a horizontal point source in the x direction
Y or H - for a horizontal point source in the y direction
Z or V - for a vertical point source•

No fiie is read with the point-source options. The point sources, as well as a NEC antenna
model, can be translated and rotated relative to the terrain coordinate system by the
parameters on the next input line.
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Prompt 4: XORG, ZORG, XANG >

XORG - X position of the origin of the NEC coordinate system (or the point source)
in the terrain coordinate system (meters).

ZORG - height of the origin of the NEC coordinate system (or the point source) above
the ground surface at position XORG on the terrain (meters).

XANG - The x axis of the antenna coordinate system from NEC is rotated by XANG
degrees from the x axis of the terrain. If a horizontal point source is used it
will also be rotated by XANG degrees.

Prompt 5: RAD, TH1, TH2, NTH, ISORC >

RAD -distance in meters of the receiving antenna from the origin of the terrain
coordinate system. The antenna sweeps an arc of radius RAD with angles
defined by 8.

TH1 - initial angle B of the receiver in degrees. The angle _ -- 0° is straight up, and
8 - 90° is on the positive x axis.

TH2 - final value of the angle 8.
NTH - number of values of _ ranging from TH 1 to TH2.
ISORC - flag selecting the orientation of the receiving antenna

1 for 0 polarization (in the vertical plane)
2 for horizontal cross-axis polarization (y directed)
3 for horizontal on-axis polarization (x directed)
4 for vertical polarization (z directed)

Prompt 6: XMIN, XMAX, NXPT >

XMIN - minimum value of x in meters for integration of the physical optics currents.
A UTD half plane will be added from XMIN to -oc.

XMAX - maximum value of x in meters for integration of the physical optics currents.
A UTD half plane will be added from XMAX to +c_.

NXPT - number of intervals in the PO integration from XMIN to XMAX

Array Dimension Limitations for code TPO2D

The following array dimensions are set as PARAMETERS in the code TPO2D. If any are
changed care should be taken to change all occurrences of the parameter to the same value
throughout the code.

MAXANG - maximum number of 8 values in the radiation pattern (NTH).
MAXSEG - maximum number of segments from a NEC data file.
MAXTR - maximum number of points that can be entered in the terrain descrip-

tion file.

NSPMAX - maximum number of increments in the PO integration (NXPT).
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B.2. The 3D PO Code- TPO3D

The input for TPO3D is very similar to that for the 2D code TPO2D. The radiated
fields are written to an output file named TPO3D.DAT. The program TPOPLT can then be
run to plot the radiation patterns by following the instructions in Section B.5.

The input for running program TPO3D follows:

Prompt 1: FMHZ, EPSR, SIG >

FMHZ - frequency in MHz.
EPSR - relative permittivity of the earth er.

: SIG -conductivity of the earth a in S/m. If a negative value is entered for SIG
the complex permittivity of the earth is set to gg = er - ja/weo = EPSR
-jISIG[.

Prompt 2: Enter name of terrain data file >

Enter the name of the file containing the 3D terrain profile. The format of the file is
described in Section B.3.

Prompt 3: Enter name of NEC current file >

To compute the fields due to an actual antenna modeled with the NEC MM code the
name of the file containing the NEC current data should be entered. The format of the
file is described in Section B.4 and is the same as for the 2D code. Alternatively, a simple
point source can be used as the antenna. For a point source the following symbols can
be entered in upper or lower case:

X - for a horizontal point source in the x direction
Y or H - for a horizontal point source in the y direction
Z or V - for a vertical point source.

No file is read with the point-source options. The point sources, as well as a NEC antenna
model, can be translated and rotated relative to the terrain coordinate system by the
parameters on the next input line.

Prompt 4: XORG, YORG, ZORG, XANG >

XORG - X position of the origin of the NEC coordinate system (or the point source)
in the terrain coordinate system (meters).

YORG - Y position of the origin of the NEC coordinate system (or the point source)
in the terrain coordinate system (meters).

ZORG - height of the origin of the NEC coordinate system (or the point source) above
the ground surface at position (XORG, YORG) on the terrain (meters).

XANG - The x axis of the antenna coordinate system from NEC is rotated by XANG
degrees from the x axis of the terrain. If a horizontal point source is used it
will also be rotated by XANG degrees.
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Prompt 5: RAD, TH1, TH2, NTH, PHI, ETA >

RAD -distance in meters of the receiving antenna from the origin of the terrain
coordinate system. The antenna sweeps an arc of radius RAD defined by
the spherical coordinate angles 0 and ¢.

TH1 - initial angle 8 of the receiver in degrees. The angle 8 = 0° is straight up, and
8 = 90° is on the horizon with the azimuth angle ¢.

TH2 - final value of the angle 8.
NTH - number of values of 8 ranging from TH1 to TH2.
PHI - azimuth angle ¢ in degrees measured from the x axis.
ETA - polarization angle of the receiving dipole. For r/ = 0° the dipole is in the

direction, and a positive ETA rotates the polarization in the right-hand
direction in the transverse plane of the outward propagating wave.

Prompt 6: XMIN, XMAX, NXPT, YMIN, YMAX, NYPT, IPLOT >

XMIN - minimum value of x in meters for integration of the physical optics currents.
A UTD half plane will be added from x = XMIN to -o0 at z = 0.

XMAX - maximum value of x in meters for integration of the physical optics currents.
A UTD half plane will be added from x = XMAX to +o0 at z = 0.

NXPT - number of intervals in the PO integration from XMIN to XMAX
YMIN - minimum value of y in meters for integration of the physical optics currents.

A UTD half plane will be added from y = YMIN to -o0 at z = 0.
YMAX - maximum value of y in meters for integration of the physical optics currents.

A UTD half plane will be added from y = YMAX to +oo at z = 0.
NYPT - number of intervals in the PO integration from YMIN to YMAX
IPLOT - Flag to request a screen plot of the terrain surface: =1 to plot the surface,

=0 otherwise. IPLOT must be zero if the program is run in batch mode.

Array Dimension Limitations for code TPO3D

The following array dimensions are set as PARAMETERS in the code TPO3D. If any are
changed care should be taken to change all occurrences of the parameter to the same value
throughout the code.

MAXANG - maximum number of 0 values in the radiation pattern (NTH).
MAXGX - maximum number of increments in x for the PO integration (NXPT).
MAXGY - maximum number of increments in y for the PO integration (NYPT).
MAXSEG - maximum number of segments from a NEC data file.
NXMAX - maximum number of points that can be entered in any terrain profile

parallel to the x axis in the terrain description file (see Section B.3).
NYMAX - maximum number of profiles parallel to the x axis that can be entered '

into the terrain description file.

B.3. The Terrain Description Files

To compute the scattering by irregular terrain the PO codes need a description of th_
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terrain elevation as a function of position over the range of the PO integration. The electrical
parameters of the ground could also be functions of position, but in the present codes they
are restricted to single values. The codes obtain the elevation data from an auxiliary file con-
taining elevations at selected points read from a map. Cubic-spline interpolation is applied
to this data to obtain elevations at equally spaced points needed for the PO integration.

A topographic map was used to obtain the terrain data for the examples in this report,
although more automated methods could be developed. For the 2D code TPO2D a line
representing the x axis is drawn on the map through the point under the transmitting

• antenna and in the direction of propagation. For the Cedar Valley site the line coincided
with the helicopter flight path. A point on this line is chosen as x = 0. This reference point

• may be chosen under the transmitting antenna but can be anywhere on the line. Points are
then chosen along the line to define the important features of the terrain relief• These points
will generally be on contour lines, peak elevations or other points where the elevation can be
estimated. The positions of these points are then measured from the reference point x = 0,
and the (x, z) pairs (z = elevation) are entered into the file. The file format for N points is
illustrated below:

N
X1 Zl
X_ Z_

: :

XN ZN

The valuesarereadusingtheFORTRAN READ(,,,) form.The x and z valuesmust be in
unitsofmetersincodeTPO2D. The valuesreadfromthetopographicmap forCedar valley
areshown inTableB.l.

Table B.1 Elevation values used for 2D calculations for the Cedar Valley site.

36,
-500. ,O. , 97. ,31., 586. ,37. ,
-300., O. , 112. ,37. , 627. ,31. ,
-100. ,O. , 155. ,43. , 658. ,25.,

-50. ,3., 170. ,50. , 700. ,20. ,
-i0. ,6., 188. ,43. , 720. ,15.,
-5. ,6. , 220., 37. , 740. ,i0. ,

0., 6., 245., 37. , 750., 5.,
5., 6., 295., 37. , 760., I.,

20., 8., 320., 37. , 770. ,O. ,
47. ,12. , 378. ,43. , 780. ,O. ,
72. ,19., 433., 54. , 790. ,0.,

88., 25., 496., 43. , i000. ,0.,

To develop a 3D terrain description for the code TPO3D a line is first drawn ¢,n the
map as the x axis and a point on this line is chosen as the origin. Other lines are then drawn
parallel to the x axis at arbitrary intervals in y. Points are then chosen along the lines u,
define the important features of the terrain relief, and the x and y coordinates of each point
and its elevation are entered into the terrain description file• When the file is read the x
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and y coordinateswillbe multipliedby thescalefactorXsc_ and theelevationswillbe
multipliedby Zscsle.The coordinatesmay be enteredinanyunits,butalterscalingthey
mustbe inunitsofmeters.Also,.a referencevalueZ0,ininputunits,willbe subtracted
fromallelevationssothataninputelevationofZ0 willbecome0 metersinthecode.When
theUTD frame,made up offourhalf-planes,isaddedfromthelimitsofthePO integration
toinfinitythehalf-planesallhavean elevationofzero•Hencetoavoida discontinuityin
thesurfacetheterraindescribedintheinputfileshouldhaveanelevationofZ0 atthelower

and upperlimitsofthePO integrationinx and y. Ifthedefinedsurfacedoesnotreach
thereferenceelevationattheintegrationlimitstheUTD framewillstillprovideareflection
fromthez = 0 plane,buttheedgeswillintroducesomeextraneousripplesintothepattern.

The formatoftheinputfileforthe3D terrainmodelisillustratedbellow:

Xscale Zscale ZO

Textfory-cut#I orblank...
NI YI
XI,1 Z1,1
X2,1 Z2,1

XN_,I ZN1,1
Text for y-cut #2 or blank...

Y2
Xi,2 Z1,2
X2,2 Z2,2

XN2,2 ZN2,2

Last text or blank !ine
-1 O.

The first line contains the scale factors Xsc_lefor horizontal dimensions and Zsc_lefor vertical
dimensions, and the reference elevation Z0. The remainder of the file contains tables of (x, z)
values along lines parallel to the x axis. Each table begins with a line that can contain text
describing the position of the cut. The next line, for table number i, contains the number of
(x, z) pairs, Ni and the value of y for the cut _. Then Ni lines with x and z values follow.
After the last complete y-cut table, the file reading will terminate when a end-of-file is read
of when a negative value for Ni is read. The table read from the topographic map of Cedar .
Valley, and used to produce Figure 15, is show here as Table B.2.

B.4. The Antenna Current File

The antenna current file contains the description of the wire segments and segment
currents making up a radiating antenna. Normally this file will be produced by running a
version of the NEC antenna modeling code that has been modified to write the file. The
subroutine GEOOTF is called after the call to DATAGN to write out the segment geometry
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data,and CUROTF iscalledafterthecallto NETWK towritethe electricalparameters
and currents.An exampleofthefilefora monopoleantennawithfivesegmentsfollows:

°*" NEC MODEL GEOMETRY AND CURRENT DATA
Monopole for Utah measurements

5 0 900
"** SEGMENT DATA

I O.0000OE+00 O.0000OE+O0 4.87680E-01 9.75360E-01 2.00000E-02 O.00000E+00 0.00000E.O0 I.O0000E.O0
20.O0000E+00 O.00000E+O0 1.46304E.00 9.75360E-01 2.00000E-02 0.00000E+O0 0.O0000E+00 I.O0000E+00
30.00000E+00 O.00000E+O0 2.43840E+00 9.75360E-01 2.00000E-02 0.00000E+O0 0.00000E+O0 1.00000E*00
4 0.00000E*00 O.00000E*O0 3.41376E_00 9.75360E-01 2.00000E-02 O.00000E+O0 0.O0000E*00 1.00000E*00
50.O0000E+00 0.00000E*O0 4.38912E*00 9.75360E-01 2.00000E-02 0.00000E*00 0.00000E*O0 1.00000E*00

•"" CURRENT TABLES
!.67978E-010.O0000E+O0 7.10142E-OI-2.89613E-OI 3.76730E+02 0.00000E.00 7.64044E+01 3.11596E+01
0.00000E.00 0.00000E.00 1.00000E.00 0.00000E+00 0.00000E.O0 0.00000E+00 G.0000OE+00 O.00000E.00

0 2 -I 0
O.00000E.O00.00000E+00 O.00000E+00 2.67345E-02
•"* SEGMENT CURRENTS:

I 3.10327E-04 1.74533E-03
2 2.62608E-04 1.39491E-03

3 2.01407E-04 1.02861E-03
4 1.31944E-04 6.56274E-O4
5 5.10411E-05 2.48479E-04

The lines starting with • • • in this file are keys that the program reading the file must find.
The second line is the title line from the NEC input file. The third line contains the number

of segments, number of patches and the dimension of the data arrays (LD) when NEC was
run. The lines following ", •, SEGMENT DATA" are the segment number, x, y and z of
the segment center, the segment length and radius, and the direction cosines of the segment.

Following ", •, CURRENT TABLES" the parameters from the NEC common block
/GND/are printed in the following form:

XKU XKL ETAU ETAL
ZRAT2 FRATI CL CH SCRWL SCRWR

NRADL KSYMP IFAR IPERF
Tl T2 GSCAL

The first six of these parameters and T1 are complex numbers. Finally, following ",, •
SEGMENT CURRENTS" segment numbers and real and imaginary parts of the segment
current are printed. If the model includes patches additional data not shown in the example
will be printed. However, the PO codes do not at present use patch data.
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