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Abstract

Recently a new point of view has developed for describing saturation of discrete

modes excited by weak sources. The method applies to the evolution of energetic

particles in the beam plasma instability as well as to the description of how alpha

particles evolve when they destabilize Alfven waves under reactor conditions. Over a

wide range of parameters the system produces pulsations, where there are relatively

brief bursts of wave energy separated by longer intervals of quiescence. There are two

types of pulsations; benign and explosive. In the benign phase, valid when particle

motion is not stochastic, the distribution function is close to that predicted by classical

transport theory, and the instability saturates when the wave trapping frequency equals

the expected linear growth rate. If the field amplitude in a burst reaches the level where

orbit stochasticity occurs, the quasilinear diffusion causes rapid transfer of particle

energy to wave energy and rapid flattening of the particle distribution function. The

bursting phase is followed by a relatively long quiescent time interval where the source

provides the necessary free energy to regenerate the cycle. The critical issue is whether

the instability develops to a high enough level to produce stochastic diffusion. In

general this question can be assessed by using mapping methods to obtain criteria of
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overlapping of orbit resonances. If overlap occurs, then the modes will saturate at a

high level which will result in significant anomalous transport effects. This picture is

consistent with recent observations of energetic beam losses in TFTR and D-III D due

to the TAE mode.
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I. Introduction

The aim of this paper is to discuss several physics issues related to the problem of alpha

particle confinement in an ignited tokamak in the presence of Alfven wave excitations. We

concentrate on the qualitative aspects of the problem, which are interesting in themselves

as they have applications to problems in other areas. Our intention is to exhibit how a

quantitative method of analysis can be developed to describe the nonlinear evolution of an

instability driven by eneI getic particles together with the resulting anomalous diffusion of

these particles. Though we have in mind Alfven wave excitation by alpha particles, we

will actually illustrate the mechanism of mode saturation by discussing the bump-on-tail

instability, the simplest example of the effect we wish to describe. An appropriate model

incorporates the following essential aspects of the problem: the discreteness of the mode

spectrum, damping of waves from dissipation which arises from the background plasma, the

presence of a particle source, and the effect of collisions which bring particles in or out of

the resonant region where particles are interacting with waves.

The key concept in this discussion will be "resonant wave-particle interaction." Therefore,

we will start with brief remarks on the pattern of resonances for alpha-particles with Alfv6n

waves and on how it can affect alpha-particle confinement. We will then use the model of the

bump-on-tail instability to describe various nonlinear scenarios for the evolution of unstable

modes. A single-mode regime will be considered first, followed by the case of many modes

that can overlap and cause quasilinear diffusion. An important result of this part of the

paper is the prediction of nonlinear bursts in the wave energy and in anomalous particle

loss. In the second part of the paper, we will indicate how a map model can be developed to

study the interaction of energetic particles with Alfv6n modes in a tokamak. Using this map,

we calculate the threshold of particle stochastic diffusion. Ii generalized to incorporate wave



dynamics, the map model can provide a self-consistent description of both mode saturation

and resonant particle transport.

II. Alpha Particle Losses due to Alfven Resonances

In a burning D-T plasma, the alpha particles produced by fusion reactions have an initial

energy of 3.5MEV with an isotropic angular distribution. These energetic particles slow

down collisionally, mostly due to drag from electrons. As a result of the balance between the

source and the drag, a stationary distribution of alpha particles is established with most of

the alpha particle energy being transferred to the plasma.

This simple classical picture can change and anomalous losses can arise when alpha

particles excite Alfven modes. When both plasma and magnetic field are uniform, modes

are excited by the particles which satisfy the resonant condition

- kll vii = 0 (1)

or

ull--- v A (2)

where Va is the Alfv6n velocity. In this case, the particles with initial parallel velocities below

VA do not interact with the mode. These particles transfer their total energy to the plasma

as drag brings the speed ali the way down to v = 0 in the shaded area 1 in Fig. 1. The

particles with larger para.llel velocities must pass through the shaded area 2 before they fit

the resonance. Regardless of whether or not these particles are lost due to their interaction

with the mode, they still release part of their energy as they pass through area 2. With the

pessimistic assumption that the particles are lost immediately when they hit the resonance,

one can easily calculate the efficiency of alpha particle energy deposition:

deposited energy (v___0) (v___0)277- initial energy =1- + . (3)

4



Here, v0(v0 > va) is the initial velocity of the alpha particles. Even though this "guaranteed"

efficiency is always larger than 75%, which may be tolerable in terms of energy balance, the

anomalous losses can still be very important for a reactor since the wall loading by energetic

particles could degrade the containment vessel.

Our 25% loss estimate is rather rough because the actual pattern of the resonances in a

tokamak differs from the idealized picture shown in Fig. 1. In a toroidal geometry, resonance

condition (1) changes to

co - nco_o+ rncoo= 0 (4)

where co is the mode frequency, co_,and cooare the frequencies related to the "toroidal" and

"poloidal" motions of the particle, and n and rn are integers. The resonance response of

the alpha particles to the Toroidal Alfven Eigenmode is illustrated by Fig. 2. This figure

presents results of numerical simulations performed by C.T. Hsu using the actual mode

structure and guiding center orbits in a tokamak. It is interesting to observe that there are

resonances for both passing and trapped particles. By numerically finding the resonances

and the collisional flow of the alpha particles in the phase space, one can generalize Eq. (3)

and evaluate the upper limit of the anomalous losses of the alpha particles for a particular

device. It is even conceivable that a proper choice of the magnetic configuration and plasma

profile can make this upper limit tolerable for a reactor. These calculations are now under

development. Another side of the problem, the one we concentrate on in this paper, is the

analysis of the nonlinear particle and wave dynamics associated with the resonances.

III. Saturation of a Single Plasma Wave with Particle
Source and Particle Annihilation

The problem we formulate in this section has much in common with the problem of nonlinear

damping of a finite amplitude wave studied by O'Neil 1 and Mazitov. 2 However our problem

is somewhat different in that it involves a particle source and sink which tend to establish
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an unstable distribution function in the region of phase space where resonance with a wave

occurs. Part of this problem was treated by Mikhailovskii and Pyatak. 3

The principal nonlinear effect in this problem is a modification of the distribution of

resonant particles produced by the finite amplitude wave. This wave-particle interaction

determines an energy transfer flora particles to the wave. The wave itself is assumed to have

the linear eigenmode structure. The tendency for the wave to flatten the resonant particle

distribution ultimately weakens the instability drive and allows the background dissipation

mechanisms to compete with the drive to determine the saturation level.

To proceed with the formal analysis, we consider a one-dimensional electrostatic wave

with a potential _ = _o cos(kx- cot). In addition to the background plasma we inject a

hot species with an injection velocity distribution Q(v). These particles are assumed to

annihilate at a rate v_. The kinetic equation for the distribution function, F, is

OF OF qk OF
0---t+ v-_z + --_0sin(kxm -cot) _ = -u_(v)f + O(v). (5)

The wave-to-particle power transfer is given by

7'= 2---_oq f dx dvsin(kx-cot) 1 + F (6)Jo

with v = co/k + u. The contribution to 7:' is from a narrow region in velocity space so that

,'kulcol<<1.

In linear theory we have the expression

(7)

which corresponds to Landau damping (7"L > 0), or growth (PL < 0), depending on the

slope of the unperturbed distribution function.

For the nonlinear problem we assume that F = F(_b, u), with _b = kx- cot, and u =

v-co/k. We also assume u_,/wb << 1, where cob= (qk2_2o/rn) _/2 is the trapped particle radian
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bounce frequency. Note that cobis also an estimate of the spatially periodic transit frequency

of passing particles that are near the separatrix.

We then introduce the energy E in the wave frame

u 2 q_0
y + cos¢=E (S)

and transfer from u to E. By expanding F in powers of u=/wb we obtain the equations

or:
4- k 0_b =0' (9)

with 4- sign referring to positive and negative values of u.

It is shown in Ref. 4 that the solution of Eqs. (9) and (10) for passing and trapped

particles results in the following expression for the nonlinear power transfer PNL:

--218 V/'2q2_c?2° k O f Q(v) _ l"_NL-- (11)

The ratio of PNL/"fi)L is

"PNL._ 1.9 u_.__. (12)
"PL COb

Suppose a positive background dissipative power transfer, Td, is present with --'PL > Pd,

so that there is linear instability. Then saturation arises when PNL = Pd or when the wave

reaches the level

cob= -- = 1.9u_ = 1.9u__ (13)

where"YListhelineargrowthrateassociatedwiththeunperturbeddistributionfunction

F = Q(v) (14)

and _d is the dissipation rate caused by the background plasma.

It follows from Eq. (13) that, for 7_ < v_, the source pumps the wave to an amplitude

that gives a bounce frequency higher than the linear growth rate. As we will see in the
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discussion in Section 4, this is actually a necessary condition for the stability of the steady-

state nonlinear solution.

IV. Pulsations of Isolated Modes

We now consider the case when 7d >> v_, i.e. the bounce frequency predicted by Eq. (13) is

lower than 7L, and show that in this case the above steady-state solution is unstable, basically

to the same linear instability that exists in the unperturbed state, s This observation readily

follows from closely examining the response of linear theory. The linear growth rate, "fL, is

given by the following expression:

-2w_r e2 t 1 OF

-rL= l/elm ImJdvw_kv Oy " (15)

For a smooth distribution function formed in the absence of nonlinear waves, 7L reduces to

2w_r2 e2 r OF

= iklm JdV_v6(_-kv). (16)
7L

In the case u_ << Td, the nonlinear distribution function found in Ref. 4 only differs from the

unperturbed one in a small resonance region where particles are trapped in the wave. There

the distribution is flattened over an area

_v _ _b/k = vb • (17)

Outside this region virtually the same F is obtained as in the unperturbed case. Hence, if

one attempts to evaluate 7L(W) in Eq. (15), with this locally flattened distribution function,

one finds that_ though 7L(W0) _ 0 with w0 the real frequency of the background oscillation,

when w is allowed to be complex, the value for 3' is hardly changed from the value 7z found

in the smooth case (the difference is O(Wb/TL)). Hence the steady-state solution is unstable

for sufficiently large Td, viz., 7a >> u_.

This result indicates that the nonlinear response in the 7d >> u_ limit cannot be a

steady state. Instead a pulsation scenario is appropriate. Suppose the linear bump-on-tail
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instability with the smooth F distribution develops at the rate ")'L. The distribution function

would initially look like the thick solid line in Fig. 3, just when instability begins. Then, as

basic and straightforward arguments indicate, the wave amplitude will grow until the bounce

frequency of the trapped particles reaches the linear growth rate 7L. The wave flattens the

distribution function in the resonant region, which destroys the resonant particle drive in

the manner described by O'Neil 1 and Mazitov, 2 and it is depicted by the thin solid curve in

Fig. 3. However, with background dissipation present, this wave will now damp according

to the equation d WE/dt = -2_,e WE where WE is the energy of the wave. Simultaneously,

the source and the annihilation attempt to reconstitute the unstable distribution function

in the flattened region, 5v/v _ wb/w _ 7L/W, at a rate va. Thus the time for the wave

energy to disappear is 1/Td, while the time for reconstitution is 1/v_. After a time 1/v_

the distribution is again ready to excite waves to an amplitude where cob_ 7L. During

intermediate times 1/O'd < t < i/u_, precursor instability may arise, for example when the

distribution is shaped like the dashed curve in Fig. 3. Low amplitude saturation will then

occur due to particle trapping with a trapping frequency wbl _ 7LU_ t < 7L. However these

precursor waves do not destroy the free energy of the distribution in the velocity range

_bl I COl _L-y< <-y.

Thus, low level precursor waves are expected prior to the largest "crash." After the largest

crash, when Wb -_ _/n, the distribution is again flattened over the interval 6v _ ]6vbl, with

_Vb "_ Vn/k, and then the process described repeats itself with an overall period-u_ "1.

The need for a pulsation scenario can also be explained in terms of energy balance, which

shows that it is energetically impossible to sustain a steady excitation level if u_ < _'4. Over

a long time scale, the average background dissipation can be estimated as _dWE, with WE

the time-averaged wave energy. This dissipation must be balanced by the free energy that

is brought to the resonant region by the source and the annihilation. In a time 1/ua the
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free energy of the particles is built up and then converted to the maximum wave energy

WEm_,x determined from the condition _b _ 7L. This free energy comes from the particle

distribution and is equal to the difference in kinetic energy in the distributions (a) and (c)

in Fig. 3. Hence the estimate for the feed power into the wave is u_,WEma,,. Equating the

feed power to the average dissipative power gives

Since us is assumed to be much less than _'e, the average wave energy is much less than the

maximum. Such a condition can only be achieved with relaxation oscillations, as depicted

in the solid curves in Fig. 4. In contrast, for u_/"/e > 1, as discussed above in Section 3,

the wave energy saturates at a stationary level WE* = (u_/_e)WEm_, as depicted by the

dashed line of Fig. 4.

The pulsation description also applies when other classical transport processes are present

besides particle annihilation. Rather than u_, one in general case has ue_. For pitch angle

scattering, ue_ ,_ ua_2/_o_where u is the 90° scattering rate.

V. Multiple Modes and Phase Space Explosion

It follows ft'ore the previous section that a single unstable mode can only modify the particle

distribution function locally. A different picture may arise when there are many unstable

modes in the system with the fluctuation level exceeding the stochasticity threshold. 5,8

This is because particles now really do diffuse in phase space as there are no longer barriers

to maintain an overall "inverted population" in the vicinity of the resonance region. This

regime of the bump-on-tail instability is illustrated in Fig. 5. Below the critical amplitudes

for mode overlap, the situation is depicted in Fig. 5a, where the distribution flattens locally

in the shaded regions, with an energy release proportional to N < _, the number of modes.

The picture changes drastically, as shown in Fig. 5b, when the resonances overlap.. Then ali
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the free energy of the inverted gradient is available to pump the waves to yet higher levels,

and to cause strong particle diffusion.

When the amplitudes of excited modes exceed the threshold of resonance overlap, the

effect of the waves on the particles is described as quasilinear diffusion, r's The corresponding

diffusion equation for the particle distribution function then has the form:

OF 0 OF

O---t= 0----_D _ - u_,F + O(v) . (19)

Here, the diffusion coefficient, D(v), is related to the spectral density of the wave energy,

IV(k), by
47r2 e2

D(v) = W(czp/v) . (20)
m2y

The function W(k) is normalized by

.[ W(k)dk= U (21)

where U is the wave energy per unit volume. The second and third terms on the right-hand

side of Eq. (19) describe the source and the annihilation of the fast particles. We choose

the source, Q(v), and the annihilation rate, u_, to meet the requirement that the "classical"

stationary solution (14) of Eq. (19) has a sufficiently large positive derivative OFOy to drive

the bump-on-tail instability in the presence of background damping. In order to simulate

the feature that ali potentially unstable modes are in a certain interval of phase velocities

ranging from Vmi_ to Vmi, we set D = 0 outside this interval.

We now add to Eq. (19) the equation for the evolution of wave energy,

ow(k)
= 27 W(k) - 2"ydW(k) (22)Ot

where

2_2d _ OF(_=_,/k)"r= k2m 0--_
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describes the wave excitation by energetic particles, while the second term takes into account

background damping. The damping rate, Td, is assumed to be much less than the typical

linear growth rate produced by the unperturbed stationary distribution (14) in the interval

(t'mj,, Vmax). Thus the distribution (14) is strongly unstable. The stable stationary solution

'9of Eqs. (19) and (2,_) differs due to quasilinear diffusion from Eq. (14) and is determined

from the following equations:

27r2e2 v 2 OF

m_°v _ - Ta = O (23)

0 OF

0--7D 0-'7 - u_,F + Q(v) = o . (24)

By integrating Eq. (23), F(v) is obtained to within a constant. This constant is found by

integrating Eq. (24), from Vmi,-e to Vmax+e with the boundary conditions D(v) _OfI,=Vma_+_--

D(v) OF -" 0, and we obtain-_-_Iv=vmi,-_

u,_Fdv Qdv (25)
J Vnfin ,;Vmin

With this condition taken into account, the solution for F(v) is

F = F_ + F2 (26)

where

,ma,,Q dv
min

['1 = [,,m,,x v_,dv (27)
._Vmin

74 7 u=dv - u=dv 7d
F2 = mwp min rain /" "_vrain rain vx2 (28)2r 2 e 2

/,,max ua dv
_,Vmi n

The ratio of F1 to F2 is roughly of the order of 7L/7_ where 75 is the linear growth rate for

the unstable "classical" distribution function (14). When ")'L is assumed much larger than
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Td, one can neglect the velocity dependent contribution to F and then the distribution is

nearly constant,

f_m_, Q dv
f = ""_" . (29)

vm_, v_,dv
min

We now combine Eqs. (23), (24), and (20) to find

ml/3

f" (v_ F - Q)dv . (30)W(.,p/v) = 2.,p7a '_n

For the simplified distribution (29) we obtain
t

myz r O dr1
W(wp/v) _],. - -Q dr. (31)

This equation shows that in quasilinear theory the wave energy density W scales linearly

" with Q. However, when the source is very weak, the wave energy is insufficient to provide

for mode overlap and Eq. (31) is not applicable. In this case, most of the time, each unstable

mode forms a separate island in the phase space and quasilinear diffusion really does not

arise, since island-to-island transitions are strongly suppressed. The source will then build

up the slope of the distribution funct4on until overlap is achieved.

The overlap condition can be estimated as follows. Let E_ be the electric field amplitude

; of the i-th discrete mode. Then the energy density of this single mode, E_/8_r, can be

estimated as

E_ wp
8---_"_ v--ff W (32)

where N is the total number of modes. To overlap the neighboring resonances one needs

Av 1
• _ > _ (33)

v N

whereAu isthevelocityperturbationoftheparticlethatresonateswiththei-thmode. For

A v we have

Au = _/evE_ . (34)
V recap
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By combining Eqs. (32)-(34) we find the following criterion of resonance overlapping:

7722 U 2

W>_P8re 2N 3 ' (35)

Taking into account Eq. (31) we rewrite Eq. (35) as a condition on the particle source for

the validity of the steady-state quasilinear solution,

"Yd mt-alp2

Q > 4re _ N3v = Q_ " (36)

We then conclude that quasilinear stationary solution given by Eqs. (29) and (30) breaks

down when the intensity of the source is below the critical value, Q_, given by Eq. (36).

The "classical" stationary solution (14) is also inappropriate since we have chosen it to be

strongly unstable. This indicates again that the system does not reach a stationary state

but rather creates bursts which explosively release the free energy built up by the particle

source.

In order to estimate the energy of a burst, we first neglect the particle source and the

wave damping. As long as the excited discrete modes do not overlap (Fig. 5a) each mode

saturates when the bounce frequency of a resonant particle trapped by the mode reaches the

linear growth rate 7. In this regime, one has

Av 7 (37)
V _p

As time progresses the source causes the slope of the distribution to build up so that 7

increases and Av/v eventually reaches the value 1/N. At this critical value of 7, the total

free energy of the unstable distribution becomes available for the burst (Fig. 5b). This energy

can be estimated as the energy that is released through global flattening of the distribution

_dp.with 3' = 3'_nt = N"

F/22C¢}2 1
,_ pe (/)max -- Ymin) 3 (38)

Uburst 24r z e2 N Vm_x+ V_n "
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This consideration shows that a weak source is unable to build up a particle distribution

with a free energy exceeding the value given by Eq. (38).

By comparing Eqs. (35) and (38) we may note that the wave energy required for mode

overlapping is much less than Ubur_t:

Ub_
Uo_l_p~ N_ • (39)

Therefore, the burst is well described by quasilinear theory. This theory predicts buildup of

the wave energy and flattening of the particle distribution within a timescale N/wp. Then

the waves damp at a rate Td, while the distribution function remains flat since the source

is too weak to change the particle distribution within the damping timescale. The third,

longer phase, is the restoration of the free energy required for the next burst. The time

interval, rrst, of the restoration, is determined by the energy balance. Hence, vrst is inversely

proportional to tile intensity of the source:

gburst

T_t~ mQv3m_' • (40)

It is interesting to note that when _'crit _ _'L the average power transfer from particles

to waves is rather insensitive to whether the system reaches quasilinear stationary state or

creates bursts. This result is straightforward to observe when one writes the average power

transfer to the w_Lves,P_, as a difference between the power supplied from the source and

the dissipation from annihilation:

lfoTf_'xmv_-P,_= -_ dt _, ,,_, -_ (Q - u_ F )dv , (41)

where the averaging period, T, is over many burst periods. This expression only depends

on the particle distribution function which, when 3'¢rit<< 7L, is close to plateau (27) in both

cases. The bursts of the wave energy are obviously easier to observe than the corresponding

small deviations of the particle distribution function from the plateau. It should also be noted
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that, most of tile time between bursts, the distribution function is metastable. Therefore, if

an appropriate triggering mechanism is available, the system bursts before the accumulated

fl'ee energy reaches the critical value given by Eq. (38).

VI. Map Model for Alpha Particle Interaction with
Toroidal Alfven Modes

In this section, we address the problem of when alpha particle motion in a tokamak becomes

stochastic under the influence of Toroidal Alfven Eigenmodes. The stochasticity threshold

can be determined by studying the test particle motion in a given wave field. A similar ap-

proach has been used for studying the effects of magnetic field ripple 9'1° and low-frequency

perturbations. 11A procedure that allows for an analytic estimate, or rapid numerical calcula-

tion, is the reduction of the particle motion to a two-dimensional map. A detailed derivation

of this map is given in Ref. 12. Here, we only remind the reader of some key elements used

in Ref. 12 and present an example from our numerical results which illustrate the transition

to stochagticity. As the wave amplitudes are sufficiently small, a single-transit alpha particle

response to the linear mode can be calculated using linearized orbit theory. Longer time

nonlinear dynamics of the alpha particles is then simulated by following the map for many

transits.

The reduction to a map is made possible by a number of preliminary simplifications

based on the physical nature of the problem. First, we consider only the passing particles in

a large aspect ratio tokamak. Most of these particles are far enough from the trapped-passing

boundary so that their unperturbed parallel and perpendicular velocities can be treated as

constant. Second, we use the fact that it is the toroidal angular momentum, rather than

the particle energy, that primarily changes during the alpha particle interaction with TAE

modes. This means that variations in valand vi are negligible even when a perturbation is

present. Third, we take into account that there is an important range of parameters where
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the alpha particle response is insensitive to the finite Larmor radius effects, even if the scale

length of the radial mode structure is comparable or smaller thai: the alpha particle Larmor

radius.

With these simplifications, tile following "effective" Hamiltonian was derived in Ref. 12

for the alpha particle motion in a poloidal cross-section:

C p Z_p

Canonical variables are poloidal angle 0 and momentum po related to minor radius r by

el
Po =--- Bor 2 (43)c2

where B0 is the toroidal magnetic field on the magnetic axis. Other notations used in Eq. (42)

are as follows: Ro is the major radius of the magnetic axis,

g,(r) =_Ro Bo(r')dr' (44)

1 v2z)/DRo is the alpha particle drift velocity, f_ - eBo/Mcis poloidal flux function, vd -- (v_+:

is the alpha particle gyrofrequency, e and M are the alpha particle charge and mass, b - B/B

is the direction of local equilibrium magnetic field, p is a mode index, 5¢p is the electrostatic

potential of the pertarbed field, _p is the frequency of mode p. The form of the perturbed

fields is taken as

5E -V5¢ 1= --Or 5Aiib, 8B =-b x VSAII , (45)
C

with

0t 5Ali = -cb. V5¢. (46)

To treat the perturbation we use the following representation for the wave function of the

pth mode

5¢v(r,O,_,t) - _ ¢_)(r)e i(_-m°-_pO , (47)
m

Note that a given mode p has a particular toroidal mode number n.
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With the Hamiltonian (42), the equations of motion are

OH 0 = OH (48)
Do= O0 ' Opo

However, for the map model it is more convenient to use 0 as the independent variable

instead of t. With this conversion, H and t become the new canonical variables, and the

new Hamiltonian is po.

The equations of motion in terms of (H, t) are now given by

dH Opo dt Opo
dO - Ot ' dO - OH" (49)

Equations (42), (43) and (49) allow us to construct an area preserving map in a standard

way, with a single step of the map being one transit in 0 between -Tr and Tr.

To apply the map to TAE modes 13--ls one first has to specify the radial structure of the

mode. To illustrate the capabilities of the model we use the following form of .¢,,(r): ls

_ zXm+ c_m(r'-- r._)= _ ¥ (50)

where rm is the gap location and Am the "local mode width." Note that the map model itself

is more general than expression (50) which has some restrictions in regard to applicability.

The results can be improved by using the actual numerically determined mode structure.

Despite these simplifications, many important physical details are retained by the map.

For example, the structure of the resonant interaction for a given particle depends on where

the unperturbed orbit is located relative to the radial structure of the mode, and on the ratio

of the orbit width to the mode width. Of particular interest is the case when the particle

excursion (due to the guiding center drift) from the flux surface is comparable or even larger

than the radial width of the mode structure. For example, in the linear theory 16 that has

been developed, which is closely related to our map model, it was shown that the instability

drive is substantially reduced c_mpared to what would be extrapolated using the thin-orbit
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theory. Along with the changes in the growth rate, new resonances appear when the orbit

is thick; these resonances being negligible for the thin orbit case.

The resonances of the map and the nonlinear oscillations of the resonant orbits are

described in Ref. 12. In that work a Chirikov criterion 17 is formulated for the onset of

stochasticity, by equating the resonance width to the distance between ajacent resonances.

In terms of the amplitude of the perturbed radial magnetic field, the stochasticity threshold

has the form: 12

> rm 1 , (51)
B0 - 64mR0 qa

where q and s =_ rq'/q are the safety factor and the shear parameter £t the mode location.

For typical tokamak parameters, Eq. (51) gives the threshold aBr/Bo _ 1.5 x 10-a/ro. This

result is in qualitative agreement with the earlier numerical integration results obtained by

Sigmar et al.is

The transition from regular to stochastic motion, obtained with the numerical imple-

mentation of the map, is illustrated by Fig. 6. This figure shows a poloidal cross section

in which the rnode location is depicted by the solid line. The crosses indicate the points

where the orbit crosses the mode surface. The dotted lines depict inner and outer envelopes

of the particle orbit. These two boundaries almost coinside when the perturbation is small

(Fig. 6a), which means that alpha particle excursion from the equilibrium orbit is negligi-

ble. For a larger perturbation, (Fig. 6b) the orbit covers the whole area between the dotted

lines. If more than one mode were present in the system, the particle could diffuse all the

way to the boundary and eventually be lost. Ref. 12 presents additional numerical results

obtained with this map and a discussion of how the map can be generalized to describe the

self-consistent interaction of particles and waves. Thus time evolution of the waves depends

on the history of the particle distribution function.
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VII. Conclusions

In order to understand alpha particle transport arising from the excitation of Alfv4n modes,

we have considered mechanisms of nonlinear mode saturation and particle stochastic diffusion

for a simple model of bump-on-tail instability. This model has important features that are in

common with the alpha particle problem which include a weak source of energetic particles

and wave damping from the background plasma. These features clearly demonstrate the

likelihood that a bursting response characterizes the nonlinear behavior of the system.

Depending on the parameters, bursts can be either "benign" or explosive. Benign bursts

only flatten the distribution function locally and waves do not tap the overall free energy

source of the energetic particles. The waves grow only up to a natural saturation level where

the bounce frequency of particles in the wave equals the linear growth rate. At this stage, the

local free energy drive is saturated, and no further energy can be extracted from energetic

particles by the wave. Subsequently, the wave damps due to background dissipation, and

a time interval determined by classical transport processes needs to elapse before waves

re-excite. As the resonant particles cannot move beyond the island boundary of the wave,

the overall global distribution function is still close to the one predicted from the collisional

transport theory.

Explosive bursts arise when the estimated level of wave saturation, given by the equality

of the particle bounce frequency and linear growth rate, causes the resonances of neighboring

modes to overlap. Now, when there is wave activity, particles really diffuse in phase space

according to the predictions of quasilinear theory. For a sufficiently strong source the noise

level is steady. However, with a weaker source the system is quiescent most of the time.

The partMe distribution builds up from its flattened state until the stored free energy can

cause saturated modes to reach the point of overlap. During the build-up of the distribution

function there can be precursors, but they just lead to the benign saturation of the waves
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previously described, with the overall increase in tile distribution function continuing as if

there were no oscillations. However, near the point of criticality, typically determined by

mode overlap, the distribution will "explode," and again relax to the flattened quasilinear

state, where the cycle repeats. Sometimes the critical point can be determined by other

trigger mechanisms.

The application of this picture to more complicated problems, such as Alfv4n instabilities,

is clear. In the Alfv4n problem, the classical transport mechanisms involve drag and pitch

angle scattering in velocity space, while the quasilinear relaxation primarily involves spatial

diffusion. The phase space explosions then imply rapid radial diffusion, which can lead to

direct and rapid energetic particle loss to the plasma edge. Such an interpretation is quite

compatible with experimental observations. 19'2°Specific predictions as to how alpha particles

evolve for a given case will require determining the detailed instability growth rates for the

mode spectrum as well as analyzing the mechanisms for particle resonance.

To study alpha particle diffusion caused by Alfv4n modes we have developed a map

model which describes the nonlinear interaction between the alpha particles and toroidal

Alfven waves, in particular the TAEmodes. With this model we have obtained an analytic

expression for the critical wave amplitude for the onset of particle orbit stochasticity and

verified this estimate numerically, both are essential quantities for assessing the alpha particle

confinement in a fusion tokamak.

Using the stochasticity threshold and the estimates for the saturation level of a single

TAE mode driven by alpha particles, we can formulate the condition under which the effect

of the mode on alpha particle losses is expected to be insignificant. This is the case when

the mode saturates below the stochastic threshold, lt should be noted that the stochastisity

does not necessarily cause diffusion over the entire profile. Global diffusion requires the

presence of many modes with different radial positions over the poloidal cross section, and

it may occur that diffusion is only in a limited region of space. Global diffusion is of course
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unfavorable for the confinement of the alpha particles. However, even this regime may still

be acceptable because a substantial fraction of the alpha particle energy can still be absorbed

by the plasma, since typically the resonance condition occures at energies below the birth

energy. To get a better feeling about global diffusion we plan to study a self-consistent map

which would incorporate wave dynamics.
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Figure Captions

1. Collisional slowing down of the alpha particles in the presence of an Alfvdn mode. The

particles are injected at v = v0 and lose their energy due to drag on electrons . In

area 1, particles are not affected by the resonance. The particles from area 2 hit the

reaonance and then can possibly be lost before they deposit their remaining energy to

the plasma.

2. Resonance response of alpha p_rticles to the Toroidal Alfven Eigenmode. The change

in particle energy versus the pitch angle parameter is plotted for particles with an initial

energy 3.5 MeV and a given toroidal angular momentum; a-passing particle resonance,

b-trapped particle resonance.

3. Time behavior of the bump-on-tail distribution function near the resonant mode phase

velocity. The thick solid curve (a) indicates the distribution just before its relaxation;

the thin solid curve (c) is just after relaxation; the dashed curve (b) is for an interme-

diate time when the distribution is being reconstituted.

4. Relaxation oscillations. If v_ < Td, relaxation oscillations arise as shown by solid curves.

If u_ > 7e, the wave energy saturates at a steady-state level WE* = (u_/Td)WEm_,.

5. Effect of resonance overlapping. In (a) modes do not overlap, and the relaxed dis-

tribution is just locally flattened, with the general shape of the inverted equilibrium

distribution preserved. When modes overlap as in (b), the distribution flattens com-

pletely over the entire spectrum, with a much larger conversion of free energy to wave

energy.

6. Regular and stochastic poloidal motion.of an alpha particle interacting with a single

TAE mode; (a)- regular motion at low mode amplitude _B_/Bo = 10-4, (b)- stochastic
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motion at 8Br/Bo = 10-a.
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