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Abstract

An analytical model and a numerical procedure are presented which give a kinetic

nonlinear description of the AlfvSn-wave instabilities driven by the source of energetic

particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by

the analytical theory are verified in the test numerical simulation of the bump-on-tail

instability. A mathematical similarity between the bump-on-tail problem for plasma

waves and the AlfvSn wave problem gives a guideline for the interpretation of the bursts

in tile wave energy and fast particle losses observed in the tokamak experiments with

neutral bealn injection.

Paper presented at the JIFT Workshop on Physics o/High Energy Particles in Toroidal

Systems, Aug. 30-Sept. 1, 1993
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I Introduction

Progress in confinement of plasmas in tokamaks has reached the stage where researchers can

now meaningfully address the plasma physics issues that will arise when there is appreciable

partial pressure present in energetic particles produced by the fusion reaction. These par-

ticles, unlike most thermal tokamak plasmas, have speeds that resonate with Alfv_n waves,

at frequencies that are below the diamagnetic drift frequency of the hot particles, which is

typically 100 times larger than the diamagnetic frequency of the background plasma. As

a consequence, the resonant particle Alfv_n wave interaction taps the "universal instabil-

it,y drive" of tile hot particles, which in turn may lead to enhanced radial diffusion. The

relevancy of the above concern is illustrated by the bursts of rapid particle loss that has

been observed in experiments in tokamaks that have been especially designed to simulate

the conditions of an ignition system. 1'2

One goal of the theoretical studies of this problem at the Institute for Fusion Studies,

is t,o _mderstand the nonlinear consequences of the alpha particle-Alfv_n wave interaction

at a flmdamental level, lye begin with the presumption that most of the nonlinear physics

can be understood as a consequence of weak turbulence theory, where the wave dynamics

is basically determined by linear theory, together with the nonlinear consequences of the

interaction of the waves with resonant particles.

Several other general properties of a system are needed to define the problem. First

of all, the instability driving component is established through the input of a very weak

steady source (in the ignition problem this source comes from the fusion products produced

by the background plasma; in present day experiments the source arises from the injection

of energetic neutral beams). Secondly, when the particles created by the source relax by

the classical transport processes inherent in a given system, a steady-state distributi(m is



l'ormed with a shape that can excite microinstabilities. Thirdly, tile waves of the background

plasma, in the absence of the source, have a finite clamping rate. The fourth consideratio_

is that in general the waves have a discrete spectrum, so that at small enough amplitmles of

the background wave, a particle resonates with only one wave, which cannot produce global

diffusion of the particles.

Tlmse considerations define a general problem, which the alpha particle-Alfv_.n wave

interaction satisfies. Hence, considerable basic understanding can be attained by studying

more simplified problems, such as the bump-on-tail instability of plasma waves, in which the

':burlap" is fed by an energetic source, and where simple models are used to describe classical

relaxation.

Now sllppose the steady-state system is predicted to be linearly unstable based on cl,_ssical

t,rmlsl_ort tlleory. Critical questions that can now be analyzed in a systematic way are: (1)

wlmtl_cr the excited waves are steady or whether they appear in pulsating bursts, (2) whether

the instability produces global diffusion or just local tailoring of the distribution function to

achieve stability without greatly changing the predictions of classical transport theory.

Tim case where global diffusion does occur needs a great deal of further study. However,

evv.n for this case, we have achieved significant insight which will be described below.

In t,his paper we primarily address a simple paradigq-n model of a bump-on-tail instability.

However, along with the description of the paradigm, we will also indicate what the analogous

featltres of tim alpha particle-Alfvdn wave problem.

II Generic Problem

As a paradigm, we consider the bump-on-tail problem for the excitation of plasma waves. The

"l)_1111p"is formed from t,he steady injection of energetic particles. Steady state is achiew_(l

by allowing for particle annihilation, which physically can arise from charge-exchange with

low energy neutrals. For simplicity we consider only a one-dimensional system with phase
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space coordinates (x, v).

In the absence of waves, the equation for the evolution of the distribution flmction f is

given by

of = (t)Ot

where S(v) is the particle source, and us is the rate of annihilation. The steady-state distri-

bution for Eq. (1) is

f0(v)= S(v).o(v) ' (2)

We assume fo(v) to have shape shown in Fig. 1. In this case the region where Ofo/c)v > 0

is the "free energy reservoir" region that can excite plasma waves. We further assume, that

the plasma waves can only be excited at discrete phase velocities (i_ Fig. 1 these are at

*'t, v2, va). In addition, in the absence of the beam, these discrete waves are damped from

transport processes that are inherent in the background plasma.

[For the alpha particle-Alfvdn wave problem the source is the alpha particles, produced

by fllsion. The rel_ation process is predominantly due to the drag on alpha particles from

background plm_ma electrons at a rate u_, and pitch-angle scattering from background ions

at a rate _1,. These processes do not cause significant spatial diffusion. As a result, a steady-

state ':slowing down" distributio forms with a space gradient arising from spatial variation

of the source. An analogous plot to Fig. l, would be fo(r) as a function of minor radius r (at

fixed energ7 and magnetic moment). The space gradient taps the universal instability drive
n 1 d

when co < co, = Rco_ m_ n_ dt (n_ E_} with n the toroidal mode number, n_ the alpha

particle density, R the tokamak major radius, E_ the mean alpha particle energy, m_, the

particle m_s and coCothe cyclotron frequency in the poloidal magnetic field].

The shape of the distribution function in Fig. 1 indicates that there is free energy available

from the region where "Ofo/c)v > O, to self-excite waves. However, with weak instabilities.

this free energy can only be tapped if the waves of the system can resonate with particles in



the region. For the plasma wave problem the resonance condition is

co- kv = 0. (3)

This resonance produces a contribution, 7L, to the growth rate that has the following struc-

ture,

o/
_/Lcx57' (4)

However, for instability to arise, we need 7L to exceed 7d, the intrinsic damping rate of the

waves in the absence of the energetic particle component. [The analogous parameters for the

alpha particle problem is that the resonance condition is given by co- n_co_o- me coe = O,

where co is the mode frequency, cowand cooare the frequencies related to the "toroidal" and

"poloidal" motions of the particle, and n_ and me are integers. When the Alfvdn frequency

is less than the alpha particle diamagnetic frequency, the growth rate 7L is proportiom,

to Ofo/Or]. When there is instability, we need to consider how to describe the nonlinear

evolution of unstable modes. When we have a sufficient number of modes, we can use

quasilinear theory. However, this theory is inapplicable in the case of isolated modes. The

transition between discrete mode theory and quasilinear theory can be determined from the

following consideration. If we have a single mode, the characteristic nonlinear parameter is

tl_e trapping freqlmncy, co_,of resonant particles which is given by

_b = _ (5)

with Ek the electric field amplitude of mode k, with k the wavenumber, m the particle mass

[the corresponding trapping frequency for the Alfvdn problem is somewhat complicated; it

is explicitly Wen in Ref. 3 and it has the structure that cobc¢ B_/2 with B, the perturbed

amplitude of the magnetic field]. When there is instability, the amplitude grows until

cob~ _'_. (_)



At this point a single wave will saturate in an undriven system and the single wave

has tapped all the free energy it is capable of. The distribution locally flattens around the

resonance velocity, v = Vph = co/k in an interval kay _ cob_ "YLas shown in Fig. 2 [in the

Alfvdn wave problem the distribution flattens in space at fixed energy and magnetic moment

by an amount g-iven by 8ra/Or(co-n: co:- rn0coo) = cobin the approximation co: = vii/ R and

a:o = Vll/qR which is used in Ref. 3, the flattened region is defined by _r = -cob/_(mo Vll/qR).

One can show that kinetic energy lost by the distribution function has been converted to

wave energy and that this balance is consistent with the condition cob_ 7L.

This picture is accurate if this natural saturation width, wb _ ")'Lis less than the spacing

l¢(vi- Vi+l) between adjacent phase velocities. On the other hand, when a given particle

can resonate with many different waves, the interaction is properly described by quasilinear

theory if 7:. >> k(vi-vi+l). Hence, there are two major divisions in the nonlinear description.

One is where the nonlinear evolution of the waves is determined by discrete mode theory,

and the other is where quasilinear theory plays a crucial role.

III Nonlinear Discrete Mode Scenario

As we have al:eady indicated, there is a natural saturation level for a discrete mode of an

tm(lrivell system, which is determined by setting the trapping frequency equal to the linear

growth rate. llowever, the mode amplitude of a driven system can be pumped to a level

above t,he natural level. The pumping arises because new particles arrive in the resonance

region because of the presence of the source and classical transport mechanisms (see Ref. ,1).

This allows the maintenance of a finite slope Ofo/Or in the resonance region. Roughly, the

slope is reduced by a factor V_/cob, compared to the zero field amplitude case. [For our

paradigm, L,,_ = u_, while for the alpha particle-Alfv_n wave problem u_ = up (co/a_t,)2.]

Hence, the wave can grow as long as _:L%--_> ud. When equality is achieved, a steady-state
a2b



wave is predicted whose amplitude is determined by the relation,

/]eft
_g- = /]d. (7)

_Ob

In order for the steady-state level predicted by Eq. (7) to be correct, it needs to exceed

the natural trapping level _ven by gq. (6), or equivalently,

/leer> I. (8)
Ud

It is shown in Ref. 5 that, if the field amplitude predicted by Eq. (7) is below that given

by Eq. (6), or equivalently,

! /]______.et< I (9) ,
' /]d

that tile lower amplitude wave solution is unstable, while the natural amplitude level, given

_ by gq. (6), cannot be a steady-state solution. The latter assertion follows from a basic

energy conservation constraint. If a steady solution were possible, more power would be

absorbed by the background plasma by dissipation, than is being injected into the system

by the source. As a result there cannot be a steady-state response. Instead, a pulsating

response is expected.

Thus the following scenario emerges when gq. (9) is satisfied. When the distribution

flmction acquires a slope close to the one given by classical theory, a wave grows to the level

predicted by gq. (6) and the distribution function flattens locally as indicated in Fig. 2. At

that point the linear drive is saturated, but the persisting dissipation from the backgq:ound

plasma remains, which then damps the wave at a rate/]a. After the wave is damped, the

source can build up the slope of the distribution function, which occurs at a rate/]_. When

the slope in resonance region becomes comparable to the one predicted by the transport

t.l_ec_rywithout, waves, the system is ready to produce another spontaneous wave pulse and

the cycle repeats itself. During intermediate times of the buildup of the distribution flmction,

its slope is finite, and precursor oscillations can conceivably arise. However, the saturation
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level of these precursor pulses are low and they cannot flatten the average slope that has

been achieved by the distribution function in the interval about the frequency resonance

condition given by Eq. (3) [or its generalization in the alpha particle-Alfv_n wave problem],

and thus the precursor structure does not change the general pulsation nature that has been

described.

Even with several waves present, these saturation and pulsation mechanisms apply to each

wave separately if the widths of the saturated waves do not overlap with neighboring modes.

Hence, with several waves, the saturated waves would cause the distribution function to look

like Fig. 3a. lit should be noted that the flattened regions at the different phase velocities do

not necessarily arise at the same time.] However, when there is mode overlap of neighboring

modes at the natural saturation level, stochastic motion of particles arises when adjacent

modes are at comparable amplitudes. Then mode overlap allows individual particles to

reach larger ph_e space regions than is possible when there is no orbit overlap. As a result,

with orbit overlap from several modes, the distribution carl flatten over a large region of

velocity space. This global diffusion causes a drastic change in the saturated distribution

_s indicated in Fig. 3b. The solid curve indicates the flattened distribution when overlap is

not Cl_titefulfilled, while the dotted curve indicates the globally flattened distribution that

arises when there is overlap. Observe, that much more particle kinetic energy has to be

released to aclnieve the flattening than arises when overlap does not occur. This apparent

loss of kinetic energy has been transformed into wave energy, which, according to quasilinear

theory, determining the diffusion rates. We therefore infer that when overlap occurs, there

is an explosion in phase space that rapidly flattens the overall distribution flmction. The

large conversion to wave energy that is attained justifies the use of quasilinear theory to

describe the explosive phase of the relaxation. [In the alpha particle problem, it is the

particle density gradient at constant energy and magnetic moment that flattens as a result

of stochastic motion due to the perturbed electric and magnetic fields. In this case energetic



particles may diffuse to the boundaries and then be lost at energies comparable to tile energy'

the particles are created at. Such a process then makes the achievement of ignition more

difficult. This is the crucial degradation mechanism that we would like to lmderstand and

ultimately quantify.]

IV Explosive Pulsation Scenario

The previous arguments indicate that when ")'Cexceeds a critical level, which we call 7Lc, there

will be an explosive collapse of tile distribution function. Now let us consider the evolution

of t,l_e syst;em when "/OLappreciably exceeds 7Lc where 70L is the linear growth predicted

froln cl_sical transport theory. In this case there are three distributions of interest _ shown

in Fig. 4. The dashed one is the one predicted by classical transport theory. The solid one is

the qu_ilinear plateau that results after the phase space explosion. The dotted curve is the

slope of the distribution function when 7c = 7L¢. After an explosive collapse the distribution

function is in the form of the quasilinear plateau shown by the solid curve. The steady source

t,hat is present would then allow the distribution function to increase and the slope will rise

on tl_e scale of the global relaxation rate Z_gbl,which is in balance with the particle input rate

S(r') (tJ_bl"_ L,_,for our annihilation model, while for the alpha particle problem tJgbl"-"u,,).

First. 2/L will become large enough to exceed t,d, which will allow discrete mode instabilities.

These' modes will saturate at a level determined by Eq. (6) and the distribution function

will locally flatten to quench the instability drive. However, the overall average slope of the

distribution does change significantly and f and Of/Ov continue to increase in time until the

clotted curve is approached. At this time, an onset of instability can trigger an excitation

of several modes which cause the rapid transformation of the kinetic fl'ee energy of the

distzibution function into wave energy. This energy conversion stops when the distribution

collapses to the flattened plateau-like distribution function. This transformation occurs on

the time scale _/-_ Afterwards the waves damp at the rate Udand the system is ready to[.,C " '1 "
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repeat itself.

kVe see t_hat in the case of the explosive scenario, the system stores appreciably less

energy in energetic particles, than is predicted by classical transport theory. In the alpha

particle problem, the alpha particles will be appreciably broadened in space than predicted

by classical transport theory and a significant number of energetic alpha particles may even

be lost to t,he walls. One of the principal goals of our investigation is to develop the tools to

quantify tlm description of this radial diffusion and loss process.

V Simulations
_

To verify our ideas we are in the process of developing numerical procedures and simulation

codes for the dynamics of kinetic instabilities driven by fast particles in presence of a steady-

state particle source and classical transport processes.

\Ve find that the Alfv_n wave-alpha particle problem is mathematically identical to the

l)tunI)-on-tail problem for plasma waves, except for the structure of particle source and sink.

It is possible, however, to include model source and sink terms into the bump-on-tail problem

in a physically relevant way.

In our mlmerical simulations, we use a mapping technique to follow resonant particles

on ti_ne steps long compared to the wave period, though short compared to a growth time.

This technique will be described elsewhere.

Here we present preliminary results for the bump-on-tail problem in a single mode case

assuming that the source and annihilation terms are described by Eq. (1). We demonstrate

two different nonlinear regimes discussed in See. III. The first one is where the background

clamping rate is sufficiently low so that a steady-state wave can be maintained according to

the prediction of Eq. (8). In this simulation the system starts with no energetic particles

bllt with the source turned on. As particles are injected and stored, the resonant particles =

excite a plasma wave, whose wave energy is shown as a function of time in Fig. 5a. We see

l0



that the wave energy approaches a steady state level. The distribution function is shown

in Fig. 5b and one should note the nearly flattened distribution function at the resonant

velocity, which here is taken at v = 0.

The calculated mode amplitude in the steady-state regime agrees well with the analytical

estimate given by Eq. (7). This is illustrated by Fig. 6 that shows the dependence of the

particle bounce frequency at saturation on the background damping rate.

The difference between the theoretical curve and the simulation results can be attributed

to the fact that, at a low clamping rate, the plateau around tbe resonant velocity v = 0

(see Fig. 7) extends beyond the interval where the unperturbed distribution function is of

constant slope. The second case is for a larger damping rate, which causes the wave energy

to pulsate in time, as shown in Fig. 8a. When we examine the shape of the distribution for

this c_e, we see that distribution function near v = 0, has an appreciable slope just prior

to the explosive onset (see Fig. 8b), and the local distribution is flattened when the wave

energy achieves its maximum level (see Fig. 8c).

St_tdics are continuing for the investigation of the many mode case with the intention

of dem¢mstrating the explosive scenario described above. If this work is successful, the

mlmerical tools we are developing for the bump-on-tail plasma wave problem should be

applicable to the interesting alpha particle problem.

VI Conclusions

\Ve have outlined a "first principle" approach to the problem of alpha particle interaction

with unstable Alfv6n modes. There are important similarities between this problem and

the classical textbook problem of the bump-on-tail instability which suggest that a general

approach to describing an important class of nonlinear self-consistent kinetic problems can be

developed. In particular we have shown how several scenarios can occur in weak turbulence

theory where mode saturation arises due to the interaction with resonant particles. In
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terms of theoretical technique, both problems can be treated within a general concept of

nonlinear resonance in a Hamiltonian system. This approach allows fast numerical simulation

of the system's behavior with the use of mapping techniques. We emphasize that the major

saturation mechanism is the nonlinear flattening of the distribution function of the resonant

particles whereas the nonlinear mode coupling is not ex'pected to contribute significantly to

saturation as long as the wave energy is sufficiently small. The reason that the wave energ3'

can be kept at a relatively low level is that the source of the energetic particles is very

weak so that the fraction of energetic particles is typically small. Two different nonlinear

scenarios are predicted analytically and verified by our numerical simlllations. Depending

on the parameter range, the system either reaches a steady state saturation or exhibits

quasiperiodic pulsations (bursts). The bursting scenario is a very plausible candidate for the

interpretation of the bursts in the wave energy and fast particles losses observed the tokamak

experiments with neutral beam injection.
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fo(v)

Fig. 1 Steady-state distribution function produced by particle source and
annihilation, v_, v2 and v3 refer to the phase velocities of the unstable modes.

I 4V/V,h- 7L/m
f(v)

Vph V

Fig. 2 Flattening of the particle distribution near the resonance due to in-
teraction with an isolated mode. Dashed line shows the unperturbed distribution.



Fig. 3 Effect of resonance overlapping, In (a) modes do not overlap, and
the relaxed distribution just has local flattening, with the general shape of the
inverted equilibrium distribution preserved. When there is mode overlapping as
in (b), the distribution flattens completely over the entire spectrum, with a much
laxger conversion of free energy to wave energy.

f (v) classical steady statA

metastable state_

1oefo.rethe burst _,,

: ti1"..1 . .
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Fig. 4 Quasilinear regime of pulsations with many mode.
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Fig. 5 Steady-state nonlinear satiation of an isolat_ mode (n_en_ re-
sult). (a) Time dependence of the mode energy. (b) Flattened pa,'-ticle distri-
bution near the resonance: solid line -- distribution at mode saturation, dashed

line -- unperturbed distribution.
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Fig. 6 Scaling law for saturation. ---. analytical theory (wb= t.9u=_rc/ud),
• -simulations.
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Fig. 7 Particle distribution at mode saturation with small background damp-
ing (u,_= 0.005, Fig. 6).
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Fig. 8 Nonlinear bursts of an isolated mode (us = 10Vo). (a) Time depen-
dence of the mode energy, (b) particle distribution prior to burst (t = :225). (c)
particle distribution after a burst (t = 250).
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