A PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,

I UNDER CONTRACT DE-AC02-76-CHO-3073

PPPL-2824 PPPL-2824

UC-420,427

ANOMALOUS ENERGY EXCHANGE IN THE gBL
AND QUASILINEAR THEORIES

BY

H.E. MYNICK

February 1992

. [ 3 D) !

l pLASMA PHYSICS

-

T &Ilé‘ N

(R R A D
A 2] i T -
— e m.uummufﬂ b W| "

"“'""]“'-'3“ " ,,,mmm . Lo
! ! : AN Ce
2 o

__ PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

I



NOTICE

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefuiness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial
produce, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

NOTICE

This report has been reproduced directly from the best availabie copy.

Available to DOE and DOE contractors from the:

Office of Scientific and Technical Information
P.O. Box 62 ,
Oak Ridge, TN 37831;
Prices available from (615) 576-8401.

Available to the public from the:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
703-487-4650



PPPL--2824

DE92 008504

Anomalous Energy Exchange in the gBL and

Quasilinear Theories

H.E.Mynick
Plasma Physics Laboratory, Princeton University
P.O. Box 451
Princeton, New Jersey 08543-0451, U.S.A.

Abstract

i

The rate of turbulence-induced energy exchange Wo between species is
computed in the framework of the quasilinear and gBL transport theories.
and the relationship between these two similar theories is thereby eluci-
dated. For both theories, general formal expressions for Wé are developed,
and then applied to the trapped electron mode for illustration. The general
expressions for Wo in the two theories are formally closely related, but can
yield predictions of very different magnitude in concrete applications. The
fact that quasilinear theory is not valid for saturated steady-state turbulence
gives rise to certain peculiarities in its predictions for this normal experimen-
tal situation, such as permitting energy to flow from the rooler to the hotter
species, even in the limit of thermal equilibrium, where real-space gradients
vanish. The gBL theory may be viewed as a modification of quasilinear
theory to be valid for steady-state turbulence, keeping extra terms due to
the self-consistent back reaction of particles on the fluctuations, which are

just such as to eliminate these peculiarities.



I. Introduction

This paper investigates the relationship between quasilinear (ql) the-
ory!~3 and the more recent ‘generalized Balescu-Lenard’ (gBL) transport
theory,®7 two philosophically and formally similar theories with, however,
significantly differing physical content. We focus chiefly on the prediction
from the two theories of the rate Wy of turbulent energy exchange between
species. This calculation, of potential significance in its own right,®® also
serves as a useful vehicle by which to show new features of the gBL theory.
both over gl theory, as well as beyond thoée applications of the gBL theory
already made.

Quasilinear theory forms an important element in the overall structure
of plasma theory — the simplest statistical theory describing the self-
consistent interaction of plasma particles and waves, possessing the appro-
priate set of conservation laws, and an H-theorem (for the particles). As
such, the theory consists of two portions, one describing the time evolution
of the particle phase-averaged distribution, and the other the evolution of
the waves. In its numerous applications to problems of turbulent transport,
it is the gl equation for the particle evolution which is focussed upon, pro-
viding a simple, explicit prescription for computing the particle transport
coeflicients for any given spectrum of waves, which are implicitly assumed
to evolve according to the ql wave equation.

This ’imph'cit assumption presents a difficulty for the relevance of ql the-
ory to experimental plasmas, however, since it is valid only either during the
early, linear growth stage, or for very particular, ‘quasilinearly flattened’

distributions, for which all the mcdes have been linearly stabilized. The



t

first case does not pertain to the normal experimental situation, however,
in which the wave spectrum may usually be characterized as near a quasi-
steady ‘saturated’ state, in which nonlinear effects neglected in ql theory are
large enough to balance the linear ones. And the second case does not nor-
mally pertain either, since these nonlinear effects, rather than gl flattening,
probably play a crucial role in establishing the saturation. Schematically,
writing the distribution function f = fo + 6 f as the sum of an ensemble«
averaged plus a fluctuating part, the averaged and fluctuating parts of the

Vlasov equation are

dfo/ 0t
gléf

~9-(fESf) = -0 T (1)

~6E-8fo - 8(6E-86f) =g (69 +46f), (2

where g is the propagator along unperturbed trajectories, and d is a momentum-
space gradient. For an unmagnetized plasma, ¢~! — 8/t + v - V, and
8 — ed/Jdp, with e and p = Mv the particle charge and momentum, re-
spectively. 6f(<) is the phase coherent part of 6 f, coming from the linear
term on the right side of Eq.(2), and 6f() is the ‘incoherent noise’ portion,*
arising from the nonlinear term there. Transport is described by T', the aver-
aged flux in momentum space, and is evaluated by solving Eq.(2) for § f, and
inserting it into the definition of I' in Eq.(1). This yields two parts for the
flux, I' = I'p+TI'p. Quasilinear theory neglects the nonlinear term & f(*) and
so drops the corresponding contribution I'p to I, keeping only the diffusive
portion I'p = =D - 8f, arising from 6§ f(¢). However, for fully-developed
turbulence, this nonlinearly-derived term is in general comparable with the
coherent term kept, and moreover, its structure is just such as to permit it

to assume the role in maintaining conservation laws for steady-state turbu-



lence performed by the time-varying wave amplitudes in ql theory.*® Now,
instead of energy (for example) being transferred to or from a given species
s (abbreviated to simply 1 hereafter) from each plasma mode a as in ql
theory, for a steady-state spectrum, mode a only mediates the exchange of
energy from species 1 to some other species 2, but does not change in am-
plitude, similar to the usual picture for the standard Balescu-Lenard (BL)
operator. ‘

The gBL theory®” may be viewed, on the one hand, as a modification
of ql theory to be valid for steady-state spectra, and, on the other, as an
analytically manageable theory obtained from fully turbulent forms*!? for
I by making a simplifying approximation (the ‘pseudothermal ansatz’®) on
the exact form for g, which retains all the appropriate conservation laws
and the H-theorem. In this approximation, I'p has the form (F fy), with
F the ‘dynamic friction,’ representing, analogous to the BL operator, the
effects on test particles (or ‘macroparticles,’ i.e., phase-space granulations)
of the self-consistent (turbulent) fluctuations which they themselves drive.

Certain important results of this work can be given and discussed without
getting into the formal details of the action-angle formalism, in terms of
which the gBL theory is conveniently described, but which is a somewhat
nonstandard formal framework. Such results are presented in Sec. II. There.
it will be seen that the gBL expression WSEL for Wy is formally closely
related to the gl expression ng, but the retention of I'g yields an additional
antisymmetrizing term [cf.Eq.(7)], which can make the predictions for the
actual size of Wy from the two theories very different. To proceed further, in
Sec. III we introduce the necessary formalism, and then prove and expand

upon the general results stated in Secs. I and II. The focus of this paper



is interspecies energy exchange, and energy conservation. Formally parallel
. to the energy conservation theorems in both theories, also introduced in
Sec. II, are theorems for conservation of angular momentum p;. Because
the time rate of change of p¢ governs the radial particle fluxes I', statements
on the relation between the fluxes I'? and T'98L analogous to those between
ng and Wga L can be made. For example, as discussed in Sec. IV, the
neglect of I'p by gl theory results in a test-particle expression for I', where
the collision operator is non-momentum-conserving. As is well known in
the special case of neoclassical transport of ions, this flux is much larger
than that from t]ae self-consistent calculation, which uses the momentum-
conserving (gBLj operator in which I'p is retained.

Earlier applications®” of the gBL theory to turbulent transport have
made use of fairly crude, generic models for the turbulent spectrum. This
has made less clear the comparison between predictions from that theory and
ql theory, whose normal application to transport problems considers some
specific set of plasma modes of potential significance for turbulent transport.
To remedy this deficiency, in Sec. IV, explicit forms are obtained for Wo
for both the ql and gBL theories, for the (collisionless) trapped electron
mode (TEM). From this ‘template’ problem, the further application of the
gBL theory to other modes of interest should be as direct as for ql theory.
Within the context of this application, it will be concretely shown that while
formally similar, the gBL prediction for Wy can be smaller than, comparable
to, or larger than the gl prediction, depending upon plasma parameters.

The fact that gl theory is not really applicable to the saturated phase of
spectral development results in certain oddities in the gl prediction for Wg’.

One of these is that contrary to what one might expect intuitively, and finds



for classical (collisional) interspecies exchange, ql theory does not predict
that energy “runs downhill,” i.e., that it is transferred from the hotter to
the cooler species, even for a uniform Maxwellian distribution fo = far,
but rather work is done on species 1 in proportion to its contribution to
the growth rate (or to the dissipative part AZ(w|1) of its susceptibility) of
the fluctuations [cf.Eq.(10)]. As will be seen in Sec. IV, the additional
antisymmetrizing term on the right side of Eq.(7) present in the gBL theory
causes that theory to predict turbulently as well as collisionally-exchanged
energy to run downhill, in the equilibrium limit fo — far.

A rela.téd oddity of gl theory, sufficiently independent of formal details
that it can be discussed in Sec. Il, concerns the nature of its H~theorem.
While the gl conservation laws for momentum and energy both involve a
sum over contributions from both the particles and the waves, the ql H-
theorem involves only the particle contribution 5,, to the rate of change S
of entropy for the total system, and, ‘moreover, the gl expression for the
wave contribution $,, in general is of indefinite sign. In contrasy, while the
gBL theory also possesses the conservation laws, H~theorem, and Onsager
relations®® there are only particle contributions to any of these.

In Sec. V, we conclude with some discussion summarizing what has been
accomplished in the foregoing sections, indicating some of the limitations of
the gl and the gBL theories, and pointing to possible directions for improve-

ment of the gBL theory.



II. Some General Results

The general relationship between the rates W(1) = (6E - 6j(1)) of tur-
bulent energy exchange in the gBL and ql theories is sufficiently simple
[cf.Eq.(7)] that one can write it out at the outset, and prove and clarify it
in the later more detailed development. The total energy in species 1 is
given by W(1) = [ d®% 1 H(z1)f(z1), with H(z) = Ho(z) + h(z) the particle
Hamiltonian at phase point z, and f(z) the distribution function. f may
be solved for in powers of the field amplitude ¢, f = fo + fi + f2, plus
higher-order terms, which are neglected. Hp is the unperturbed, and h is
the perturbing, part of H. In the gBL theory as well as gl theory, one has
W = Wy + W,, where changes in Wo(1) = [ d°%; Ho(21)fo(21) represent ir-
reversible (resonant) work done on species 1, while W», defined analogously
to W,, describes the nonresonant particle ‘sloshing’ energy, and is normally
grouped with the total wave energy Wy The gl expression for Wy for

species 1 may be written

Wl _Qs" MW( ) (3)

where |¢| (a) is the fluctuation spectrum, labelled by mode index a. (For
definiteness, one useful model® for the parameters characterizing the plasma
modes is a — (k, r,), with wavevector k, and mode localization radius r,.
The precise definition of mode amplitude 3 will be specified in Sec. IV.]
A”(w|1) is the contribution from species 1 to the dissipative part Aj(w) of
the dielectric function A,(w) = A! (w)+iA”(w) =143, As(wll), evaluated
for mode a. Similar to Ref. 6, = [dx|Eq(x)|? is 2 normalizing factor,

with Eg(x) the (normalized) electric field for mode a.



From the gBL theory, one may decompose the total fluctuation spectrum
|#|?(a) into a sum over the portions |¢|?(a,2) driven by each species 2, [cf.
Eq.(24)]

#(@) = 3190 (a,2) | @
Using Eq.(4) in Eq.(3), we may correspondingly decompose ng(l):
wi'(1) = o W(1)2), (5)
2
where )
Wwe'(12) = 2;wGN—°A—%‘i°—'1—)|$P(a,2) (6)

The gBL expression for the work done on species 1 may then be expressed
analogously to Eq.(5), with the relation between Wy(1|2) in the two theories

simply given by
WEPh(112) = W' (1]2) - W' (210). (7)

The difference between the gBL and ql predictions for energy exchange is
seen to come from the second term on the right side of Eq.(7), which arises
from the dynamic friction F, absent in ql theory. From the antisymmetry of
WEPL in Eq.(7) it is apparent that WZBL(1]2) + WIBL(21) = 0, i.e., that
work done by species 2 on species 1 is minus that done by 1 on 2, and that
therefore in the gBL theory interspecies energy exchange conserves particle
energy:

SoWwgPt (1) = S wgBk1)2) = 0. (8)
1 1,2

In ql theory, under the quasineutrality approximation, one finds an ex-
pression which looks analogous,® but whose physical content is rather differ-

ent, since in that theory there is an additional subsystem which may gain



or lose energy, namely the waves:
S W)= Y W)+ W) =o. ()
1 1 1

The term 3", W;l(l) here is the time derivative of the wave energy W, =
>, Wa. (If quasineutrality is not assumed, the field contribution to W,
must also appear here, making more explicit that wave energy is necessary
for energy conservation in ql theory.) Using W"’ = Y u27.Wa, the stan-
dard expressions for the mode growth rate v, = —vy = ~AY/A, (where

A, = 0A,/0w|,,), and the energy in mode a, W, = wel,, with [; =
N,Aq|$|%(a)/(47) the wave action, one finds

Wil = sz )—~2Z NA(“"‘)lasl() (10)

Using this and Eq.(3) yields Eq.(9).
On the other hand, in the gBL theory W, = 0 = W,, since the wave
spectrum is at steady state. However, summing Eq.(7) over species 2 to

assess the significance of the second, dynamic—friction term on the right

side tlere, one finds
. . A” .
weBky - wil(1) = ~22ua——(£-—|¢| (11)

Summing this over species 1 yields just W% in the quasilinear equation
Eq.(10). That is, as indicated in Sec. I, the dynamic friction term in the
gBL theory assumes the role played by the wave subsystem in preserving
the conservation laws.

Eq.(9) may be written W3 + W¢' = ¥, W§'(1) + =, W¢ = 0. Thus,
as noted in the Introduction, as opposed to the gBL law (8) for energy

conservation, the gl law must include the rate of change W, of wave energy

9



in order to conserve energy. As may be readily shown from the expressions
introduced in Sec. III, a similar statement holds for conservation of angular

momentum p¢. For the gBL theory one has, analogous to Eq.(8),
PSBL =5 peBL(1y = 5" P§PE(112) = o, (12) .
1 1,2
from which follows the property of intrinsic ambipolarity®
Y el(1) = 12e11"(1|2) =0,
1 i

where Py(1) = [d®p0;ifo(1) is the irreversible rate of change of angular
momentum of species 1, and ['(1) is the corresponding radial particle flux.
In contrast, in ql theory, while total particle angular momentum is conserved
within the quasineutral approximation, PI(1) = v [ @®21pc 0 f(1) = 0,
the reversible part of this is the wave momentum P, = T P,, with P, =

nl,. Thus:
P+ Pl =Y A1)+ B =0, (13)
1 73

analogous to Eq.(9). Thus, ambipolarity of the irreversible particle fluxes
(which are what are the usual quantity of interest in transport calculations)
does not hold within ql theory, unless all modes have v, = 0.

For the corresponding H-theorems in the two theories, however, the same
structural comparison does not hold. Using Eq.(16), and Eq.(17) or Eq.(18)
in the usual definitions §, = ¥, 5(1) = = ¥, d/dt [ d%; fo(1)In fo(1) for
the particle contribution to S, and §,, = > Se = d/dl Yq In I, for the wave
contribution, 5,, in both the gBL®® and ql theories are positive definite
expressions, S, = 0 in the gBL theory, but Sy = Y a 274 in ql theory has

indefinite sign. Thus, while the gBL H-theorem has a form parallelling that

10




of the gBL conservation laws, a ql H-theorem exists only if §¥ is dropped.
As indicated in Sec. I, this peculiarity of the form of the gl H-theorem
arises from the fact that the waves in gl theory are not in equilibrium, and
moreover that their time evolution involves no statistical mixing, so that

one should not expect their entropy to increase, in general.

III. Formal Calculation

We now introduce the necessary formal machinery, and develop the the-
oretical basis for the reiations quoted in the previous section. and further
results yet to be obtained. Our discussion of the action—a.hgle formalism
and the expressions for the ql and gBL theory within it is intended mainly
to adequately define quantities in the formalism. The reader is referred to
earlier work for elaboration in the development of the action- yngle formal-
ism and gl theory,!! the gBL collision operator,®!? and for the development
from this operator of the gBL transport theary.®’

The essence of the action-angle formalism as originated in Ref. 11 is
choosing a coardinate system to make the mathematical manipulations needed
in solving the Vlasov-Maxwell system as simple and general as possible.
For particles, this means the reparametrization of the phase point z of
a particle from the more directly physical set (r,p) of real-space posi-
tion r and its conjugate momentum p to the set J = (Ji,Jz,J3) of the
invariant actions of the unperturbed moticn, and their conjugate angles
0 = (61,03, 63). (For unmagnetized plasmas, this transformation is just the

identity map.) The unperturbed Hamiltonian Hj is then independent of 6,

11



H(z,t) = Ho(J) + h(8,],t), simplifying Hamilton’s equations:
] 3 H = Q(J) + 9y h, (14)

-8gh(z,t) = —iz;lh(l,.l,t)exp(il-e), (15)

J

where 97 = 9/01 denctes a gradient in J space (and similarly for dg),
QJ) = 81Hg = (R4,02,Q3) is the unperturbed rate of change of 8, and
1 = (l1,15,03) is a three-component vector index, specifying the Fourier
harmonic. The Fourier amplitudes h(1,J) of the perturbing Hamiltonian
h(z,t) are the “coupling coefficients,” which play a central role in the tl'\xeory.
As exemplified in Eq.(13), Fourier transforming with respect to @ converts
dg into the algebraic il, and so makes derivatives 95" (or integrations) along
unperturbed particle orbits simple, ggl — i(1- @ -~ w), permitting a ready
perturbative solution of the Vlasov equation, just as in the unmagnetized
case.

For waves, the ‘right’ choice of representation employed in Ref 11 is
expressing fields as a sum over the plasma normal modes a. This permits a
formal solution of the Maxwell equations, making the results of the formal-
ism valid for fields in fully inhomogeneous geometries. In the simplest case.
viz., 2 homogeneous, unmagnetized plasma, the spatial dependence of the
natural basis set for both particles and waves is the same, ~ exp tk-r. This
degeneracy makes the coupling coefficients A(l;,J;|a) of eigenmode a — k
especially simple, A(l,J|a — k) x §(1 — k), causing the gBL operator [given

by the right side of Eq.(16) and Eq.(18)] to reduce to the standard BL

operator.’

With these definitions. the equation for the evolution of fp(l) within

12



both the gl and gBL theories is

8efo(1) = =03, -T(1). (16)

For ql theory one has!!
-I(1) = D%(1)- 3y, fo(1) (17)
= Y 3 2mé(ly - Q1 — wa)lA(hle) iy - B, fo(1),

T 1
where Q; = Q(J,), and we denote A(l,J|a) by the shorthand A(l|a). In the
gBL theory, one finds instead I'(1) = —D(1) - 03, fo(1) + F(1) fo(1), where
both D(1) and F(1) individually, and so I'(1) as a whole, may be written as
a sum over contributions from interactions of species 1 with species 2, e.g..
(1) = 3, T(1]2). (Henceforth, unless unclear from context, we suppress
the superscript on gBt quantities.) I'(1|2) is given by

~T01R) = 3 [ #2001, D25, =l 05D, (1)

1l

with kornel
Q(1,2) = Q(2,1) = Y _2mé(l; - Q, — I - Qy)|4re(1,2la)|?, (19)

and‘with a(l,2lae) = il(ll‘G.)i‘l.-(lg|a)/[lVaAa(w)]|u=1l,Ql measuring the effec-
tiveness of mode a in coupling particles 1 and 2. Here. iz(..|a) is the coupling
coefficient due to the normalized fields E,(x), so that a(1,2]a) as defined
is independent of the particular normalization chosen. Consistent with the
results quoted in Sec. I, we choose h so that the mode amplitudes 5 appear
explicitly, A(L|) = &(a)h(Li]a) = (a)erd(li|a). The diffusive portion is
the term in L;1; in Eq.(18), and the frictional portion is the term in 1,1;. [In

Egs.(17) and (19), a factor of 2, accompanying the 7é() there, was omitted

13



in Refs.5 and 6.] The general formalism is fully electromagnetic. As sug-
gested by the forms chosen abbve for h, henceforth, for simplicity, we shall
restrict ourselves to electrostatic fluctuations, h(z;,t) = e1@[r(z),1].

Comparing D% (1) in (17) with the gBL expression for D(1]|2) or D(1)
read from Eqgs.(18) and (19), one notes the replacements w, by wy =12 - Q,
in the §-function, 3, — 3,1, J 4°%22f0(2) in the summations, and A(l|a) —
4ra(l,2]a) for the coipling amplitudes. Thus, in the gBL theory, each
increment d%:, of phase space of species 2 contributes to the overall spectrum
appearing in D%, driving fluctuations over a range of frequencies ws (1, J7).
We make this more explicit in Eq.(24).

Finally, from the action-angle expression for the nonlocal susceptibility

tensor!! A(x,x’,w|l) for species 1, one has®

NaAY(w]1)

/dxdx’fl;(x) CA"(x, %', w|1) - Eg(x) (20)

—ax 3 [ @ns(le - 20 - )lhla)Ph -0, fo(1)
L .

I

Having assembled these earlier results, we now turn to consideration of
Wy. Using Eq.(16) and integrating by parts with respect to J;, one finds,

for both theories,
vmnzfﬂmmmﬁm=f&mpmu (21)
Using the gl expression (17) in Eq.(21), one finds
(1) =23 waldr) " [~4r ‘1:‘ / &2y m8(wn — wa)A(Ly]a)|2y - Dy, fol L),
a 1

where w; = |; - ;. Noting from Eq.(20) that the term in square brackets

here is NV,A(w,|l) = NQAZ(UQII)Ir;l?(a), demonstrates expression (3).

14



Similarly, for the gBL counterpart, using Eqs.(18) and (19) in Eq.(21),

we obtain
Wo(1l2) = -222/d621/d622w]1r6(w1—u2)|47ra(1 2/a)f?
a 1,15
%(l; -8, = 1o - 83,) fo(1) fo(2) (22)
_ 47!"1(12‘(1) A” U'zll) -
= 222/&@ O fars| e - (-2,

where Eq.(20) has again been used, and we have made use of the fact that
the 6-function sets w; equal to wp. The second term (1 ~ 2) in the final
form here arises from I'p.

Comparing Eq.(22) with the gl form (3), one notes that the result (7) has
almost been reached, but not quite yet, because the w, dependence in Eq.(3)
has been replaced, as noted following Eq.(19), by a sum 3, [ d®; over
contributions to fluctuations driven at frequency w, = l, - Q. If one further
assumes that the dielectric response in the denominator in (22) produces a
spectrum sharply peaked about w; = w,, as one expects for a weakly coupled

thermal plasma, or one supporting weak turbulence, writing
|84 (w)]72 = 1/(|A,*|va|)T8(w2 — wa), (23)

Eq.(22) yields (7), with the identification

/d6.

Z/dezzfo(Q)

47rh(12|a.)

Bg(w )

4rh( vlgla
N, A,

16%(a,2)

(24)

1

6(“.:."2 — Wy )

val

With the same identification, D98L(1) from Eq.(18) and (19) reduces to
D%(1) from Eq.(17). Neither the ql nor gBL theories specify the magni-

tude |<;)(a)|2 of the overall spectrum, which may be chosen to correspond to

15



experimental observations. In conjunction with Eq.(4), Eq.(24) provides a
prescription for computing the relative sizes of the contributions |¢(a,2)|?
to |$(a)|2, thus leaving only the single set of amplitudes |<?>(a.)|2 as external
to the theory.

With the narrow-width approximation (23) for the spectrum made in the
second form of Eq.(24), Wo(1|2) in Eq.(22) acquires a noteworthy symmetric
character, reflecting the symmetry between the emittor and absorber of
fluctuations in the gBL (or BL) collision operator:

: w

W) = 2 T A
X ((—=m6(wy — wa)dr|h(li]a)?ly - 83, In fo(1)})1 ~ (1 = 2),

((m6(wa — wa)dr|h(la]a)|?))2 (25)

-

where ((..)) = ) [ d®% f5 ... In the factor {(..)); = N,A”(|1) here one recog-
nizes the response of the scattered species in (20), while in the quite similar
factor ((..))2 = ¥(a, 2) one sees the spectrum |$|2(a,2) = dn /(| N AL 2w )y

from the scattering species, given in Eq.(24).

IV. Application of the General Formalism

A. Specialization to Toroidal Geometry

In the abstract forms we have dealt with thus far, the formalism applies
equally well to any geometry whére the unperturbed motiou is integrable,
including uniform, unmagnetized plasmas, magnetized slabs, and axisyvm-
metric tori. In the last case, of principal interest here, the specialization
is (J1,J2,J3) — (Jg:Jb,J¢ = p¢), with J, the gyroaction (equal to Mc/e
times the usual magnetic moment u), Jy the bounce-action, and p¢, the

toroidal angular momentum. (¢ is the toroidal azimuth, which, along with

16



poloidal azimuth 8 and a minor-radial variable r, constant on a flux surface,
parametrize real space.) The transformation from the mathematically con-
venient variables J to a more physical set is discussed in Refs. 11,6,13 and
14. Briefly, for magnetized plasmas and tori in particular, certain combina-
tions of the J; retain a velocity-like character, while others acquire a spatial
one, specifying the particle ‘banana center’ r3(J), the average minor radial
value about which a particle moves in the course of a bounce (or transit)
time. For example, for trapped particles, ry is a function of p¢ alone, while
Jy is vy-like, and Jy is v, -like.

For definiteness, we choose for a model of the mode structure the eikonal
form®

d(x|a) = §(r|a) expify(x), (26)

with wave phase 8,(x) = [[7 d' k.(r') + m6 + n(], and with modulating
envelope #(r|a), localizing the mode about r = r,, with mode width w,.
For &(r|a) we take the simplified form ¢(r|a) = g(a)s(wa/Q,r — Tg), where

s(z,y) is a step-like localizing function, defined as

S(z,7) = L (=2 1yl) (27)

0 (z<lyl)-
While obviously simplified, this model captures features one expects for a
set of modes comprising plasma turbulence, including a locally wavelike
character, radially localized, and constituting a complete, orthogonal basis
set. Within this model, one has N, = k*V,, with V, ~ (2rr,)(2rR)w,

the volume of the shell around r = r, within which mode a is localized.

Assuming the banana width p, of the particles is less than localization width
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w,, the coupling coefficients for the model are given by®

h(lla) = ¢(a)h(lla),
h(lla) = eg(lla) = es(wa/2, s — 74)G(1]a), (28)
G(lla) = 6(1¢—n)J,y(zg)J,L(zb)exp—ixa.

Here, the G(lja) are the “orbit-averaging” factors, measuring the fraction
of time along its orbit a particle sees a contribution from mode a oscilla-
tory at expil- 6. Since G(1) appears only as |G(1)|? in quantities of interest
here, the phase factor x4 is irrelevant. And because the G(1) are the Fourier
components of the eikonal factor exp i6, in Eq.(26), by Parseval’s theorem
they satisfy the important relation 1 = 3"}|G(1)|?, generalizing the much-
used identity for Bessel functions 1 = ¥, J?(z). In Eq.(28), l} = l, — om,
Ji, arises from the integration over gyrophase 6,, and Ji; comes {rom the
analogous integration over bounce phase 6. o is a trapping-state index.
equal to 0(1) for trapped(passing) particles, and z; = k, p,. The full ex-
pression'®® for z; is slightly more complicated than that for z,, and defining
it fully introduces extra notation not needed here. For turbulent modes.
characterized by k) ~ 1/qR,k; ~ pg'i‘, the essential physics is captured by
approximating it as zy =~ k, py.

We now use the model of Egs. (26)-(28) in evaluating the earlier formal
expressions. For example, we consider the factors ({..)) in Eq.(25). In the
summation over 1 there, the factor 6(/¢ — n) in G(l), a consequence of
axisymmetry, fixes ¢ to I¢ = n. Ji(z) is appreciable only for |{| < z, and
falls off rapidly for larger {. Thus, if we in addition restrict ourselves to
modes in having frequency w, small compared with the ion gyrofrequency

Q,:, the resonance condition w, = w, imposed by the delta-function in
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((..))2 is satisfied for nonnegligible values of J;;(2), hence of G(1), only for
l = I; = 0. This reduces the triple sum over 1 to a single sum over /, or
l;. Additionally, for - sulent modes, the range Aly ~ z, over which Ju is
appreciable is small compared with m. Thus, one may approximate l, by
Iy = om in the factor in (({..)) accompanying 6()]A(1|a)|?, thus replacing 1 by
1= (Iy,,1¢) there.

Now adopting the local Maxwellian form for fo,

fm(3) = WGXP[*(% — €®)/T), (20)

where density n, radial potential ®, and temperature T are functfons of
r5(J), and M is the particle mass, the factor I; -85, In fo(1) in ({.))1 is given
by®

1-93In fr = (! -1.Q)/T, (30)

where wi = w.[l + n(uv? — 3)/2], with w, = —kycT/(eBL,) the diamagnetic
drift frequency, n = dInT/dInn, u = v/v, the particle velocity, normalized
to the thermal speed v;, ky = bx 7k, L7! = =81nng/dr, and wy = nQ (o =
0) is the toroidal drift frequency.

Using Eqs. (28) and (30), one finds

P(a,2) = ((.))2 = VadmednaBy(w,|2), (31)
Ba(wl2) = D (m8(wa - w)|G(Lla)*)r,, 1y
ls2

where (..) = (Van)~! [}, d®z fo is the average over the shell V,, with [, %=

the phase-space integration confined to V,. Similarly,

NaA%(we]l) = ((- )N = Vadredny /Ti[—aq(wall)), (32)

S (ré(wr — w)G(hla)Hwy ~w! )i 1

lgrdrt
{y)

—a,(w]l)

i
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and therefore, Eq.(25) yields

Wo(1]2) = "Z

r6(wy — 1wg)T6(ws - wa)IG(lxla)|’lG(lzia)l’[wa(%~ - %) - (L

47\’8182

Ly /“dezl J,, Pran(D)fn(2) %

val |57

where use has been made of the fact that W) = Wy = wW,, due to the §-
functions.

In the homogeneous limit where f,; becomes a true Maxwellian fyy, w!
~ becomes negligible, and Eq.(33) reduces to Wo(1]2) = ¥, w 2T =T,
where (..) is positive definite, and may be read off from Eq.(33). Thus, for
T, < T, the gBL theory predicts Wy(1]2) > 0, i.e., that energy will flow
‘downhill,’ from species 2 to species 1, as indicated in Sec. II. As noted there,
the ql prediction, obtained from Eq.(33) by dropping the two terms involving
T, possesses no such property. We note that a similar, more general proof
of this may be given, without making the narrow-width approximation (23)
or the assumption of the mode model in Eqs. (26)-(28) made in this section.
The more specialized version has been given to make the forms appearing
more immediately resemble more conventional expressions occurring outside

the action-angle formalism, for example, expression (32) for AY.

B. Application to the Trapped Electron Mode

We now further specialize expression Eq.(25) or (33) to considering the
collisionless TEM (CTEM). This introduces additional simplifications in the
expressions going into W, serving as a illustrative example by which one
may more concretely compare the predictions of the gl and gBL theories.

Expression (25) thus far explicitly involves AZ(]1), through the factor
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((..))1, and also implicitly calls for the full susceptibility Aq4(|1), through
wa. Ag(|1) is given simply by!!® making the replacement —m6(w — w) —

(w—w;)~! in expression (20) for AZ(|1):
. 1 .
NoAa(wll) = 41rZ/d°zlm|h(h|a)|2h 9y, fo(1). . (34)
1
Following the same specializing steps leading from Eq.(20) to NaA§ = ((-:))y

in Eq.(32), one finds Ag(w|1) = (kAD1)"2ga(w|1), with Ap; = (Ty/drnied)!/?
the Debye length of species 1, and

/
W - Wy
ga(w|l)=1- Z(w ok~ (1= c;)wal T Jg(zg)J,‘i(zb)). (35)

N

Here, we have converted to the more familiaz, physical variables using wy >

okyty + (1 = o)war + 1}Q1, with 9 the bounce-averaged parallel velocity,
and wq = nQ¢(o = 0) the toroidal drift frequency.

We adopt the standard treatment for electrons. One has z5, — 0, so
that J2J2 — 6(1}) in Eq.(35). Taking the usual ordering £, = w/|kjve| < 1,
the nonadiabatic portion of the electron response is dominated by trapped
particles:

w — wl,

ga(wle) ~ 1 = Fi(

Ye = 1 — iag(wle), (36)

W — Wee
where F; ~ €'/2 is the fraction of trapped particles, (..); is the average over

the trapped portion of the distribution, and

aq(wle) = —Fg((u—-w{c)vré(w—ud,)), (37)

W W =
o WFR(l - — )= EV2e B
\/F l( Wee ) |‘Ddc-| € IE—-W/Wd¢

Here, E = u?/2 = E/T,wq. = Oge E, and for simplicity we have taken . =0

in the second form. Similarly, 8,(|e) in Eq.(31) becomes
f3u(‘“’|e) = Ft(wé(w - wd!!))f } (38)
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For ions, the standard analytic ordering is that € = & = w/|kjvi| ~
w/% » 1, and in this case, the denominator in Eq.(35) does not change
greatly over the l, range over which Ji; is appreciable, allowing one to per-
form the summation over {} using the identity 1 = 3", J?(z). This eliminates
the factor Jf,b, leaving only J2(z;). The dominant contribution for ions comes

from passing particles:

-ul
da(wli) = 1-ﬂ&j_q%ﬂa%»p (39)
= 1= Fy(1- 2 (1= W(E)Aolby)

with F, =~ 1 the fraction of passing particles, (..), the average over the
passing portion of the distribution, by = k23 p%;, Ao = (J3(z,)) = o(bg)eb,
and [1 - W(€)] = €((€ — w)™!). In the second form, we have assumed
ni = 0 for simplicity. One has the limit [1 - W(§ > 1)) ~ 1 + €72 -
iW(€), with W (€) = /m/2€ exp —£2/2. The term €72, important for the
ion temperature gradient mode, to which most of the formulae developed

here also apply, may be neglected for the TEM. This yields

galwli) = 1 = Fyp(1 = =)Ao — ig(wla), (40)
where
og(wli) = —ﬂ«w—wﬂhﬂw—ﬁﬂﬂﬁb”h (41)
2 \Jr/2F (5 - Dhggexp —€1/2,

quite similar in form to a4(|e), but, roughly speaking, with £2/2 replacing

E there. Similarly, 8,(|i) is given by
Ba(wli) = Fp(mé(w ~ kyvjj)J3(29))y (42)
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F, ]'1{7-'1\0 exp —£2/2.

From quasineutrality, the TEM dispersion relation is then

0

a(wle) + 7a(eli) (43)

w

(1= ica) + (1 = Ao) - o=,

i

where 7 = T./Ti,aq = ag(le) + Taq(]i), we have set F, to 1, and used
Wee = —TwW,i. Solving this for the real and imaginary parts of w = w, + i7,,

one finds
Wa = WaeAo/[1 + 7(1 = A0)], Ya = awaeAo/[L + 7(1 = Ag)]2.  (44)

With explicit expressions for all necessary quantities, we can now write
out Wy for both the gBL and ql theories, for the TEM mode. Reinstating
the ‘gBL’ and ‘ql’ superscripts, for a 2-species plasma, for which WgBL(l) =
WEBL(1]2), Eq.(25) or (33) yields

wgBL) = W"‘(1|2)—v' ’(2|1) (45)

2
47!'6162 ~ Wel Wy — Wy
| alnlnzﬁa(ll)ﬂu(lz ( T, - T; )

where we have used Egs. (31),(32), and —ag() =~ (wq — w)Ba(), following
from the final forms in Egs. (37),(38),(41), and (42). This may be compared

with the ql form,

waly = walae)+ waan) (46)
_ l¢| a,2) " |<?>|2(a,1) YN
= 22w Na&(11) + === Naag(11)
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One notes that W¢Z" and W' share a common first term, to which we refer
by its argument (1]|2), and each has a different second term, (2|1) for the
Wg“, and (1|1) for ng. Thus, which theory predicts a larger Wy depends
upon the relative sizes of these three terms. From Egs. (37),(38),(41), and
(42), these stand in the proportion

) Ba(1) . T) wy ~ wap

(1|2):(1|1):(2|1)::1.ﬁa(z).-1-,;%_%1 (47)

The two ratios represented here are independent, so that W(‘,’B[‘ in general
may be larger than, comparable to, or smaller than Wg‘, depending upon
parameters. As one sees from Eqs: (38) and (42), the factors 3, in Eq.(45)
are essentially a measure c¢f how many particles of that species resonate
with mode a, thus controlling how large the fluctuations of @ driven by that
species are, as well as (through the close relation of a, to 3,) how readily
that species absorbs those fluctuations. Thus, for example, if parameters
were such that many electrons could resonate with the TEM spectrum, but
very few ions [B.(le) > B,(]1)], one would have the ordering "Vc‘,’l(e) ~
Willele) > WBL(e) = ~WEBL() ~ W' (eli) ~ W (ile) ~ WE'(i). For
similar reasons, an analogous situation holds for the orderings of particle
fluxes T'(1]2) in neoclassical (‘nc') theory (or its gBL extension to turbulent
transport®7), in which the momentum-preserving dynamic friction term in
~ the BL collision operator is kept, versus a similar, but cruder test-particle
(‘tp’) calculation, where F is dropped. The corresponding ordering there is
T(i) ~ T'P(i|i) » ["¢(i) = I¢(e) ~ TtP(ile) ~ T'P(e]i) ~ T'P(e). Noting
that the neoclassical heat flux Q™¢(1)/T) is given by I''?(1) up to 2 factor of
order unity, this ordering contains some of the well-known important featﬁres

of neoclassical theory, including the property of intrinsic ambipolarity.
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V. Discussion

In the foregoing sections, we have attempted ‘o clarify the relationship
between the gl and gBL transport theories, by focussing chiefly on the calcu-
lation of turbulently-induced rate Wy of interspecies energy exchange. The
ql theory is a useful and much-used theory, but possesses certain serious lim-
itations when applied to making statements about plasmas in their normal
experimental state, supporting nearly-steady-state turbulence. The gBL
theory is a formally quite similar theory, preserving the gl virtue of analytic
tractability, but which applies precisely foristea.dy-sta.t‘e turbulence. It has
been shown that Wy in the two theories are formally very similar, but that
when evaluated in specific applications, can have very different magnitudes,
for the same reasons as the particle and heat fluxes in neoclassical theory
can differ greatly from the corresponding test-particle predictions. Using the
CTEM for illustration, explicit expressions have been developed for o in
the two theories, making these features concrete, as well as showing how the
extra phase-space flux I'p restores to the gBL theory important prcperties
lost in ql theory.

From the considerations presented in Sec. I, it is clear that ql theory
applied to steady-state turbulence is deficient, dropping the flux I'p, which
is of comparable size to the flux I'p kept. It is not clear that the ‘pseu-
dothermal’ form for I'p used by the gBL theory is a good representation of
the form of I'g which would result from a fully turbulent theory. However,
the pseudothermal form used does preserve important properties which the

fully turbulent I'p must, and which gl theory sacrifices.

Assuming a thermal structure for the phase-space fluxes due to a tur-
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bulent spectrum occurs in the present work in two stages. First, in the
original pseudothermal ansatz giving rise to the form for I'p in Eqs. (18)
and (19), and further, in the ‘narrow-line-width’ approximation adopted in
Eq.(?3), to which much, though not all, of the subsequent development has
been specialized. These pseudothermal assumptions have been used because
they facilitate analytic progress, while preserving important features (such
as conservation laws, the H-theorem, and the ‘downhill’ flow of energy) one
knows a complete theory must possess. However, they also display further
properties, such as Onsager symmetries,® which intuition developed from
past experience inclines one to expect should be true, but which may turn

out not to be true for turbulent (as opposed to thermal) transport.!%16

One particular place where the current pseudothermal form of the gBL
operator is likely to need improvement is in the dependence of the spectrum
on the distribution f(2) of driving species 2. In the current form of the gBL
operator, the spectrum is computed, as for the standard BL operator, by
superposing the uncorrelated contributions from individual test particles of
species 2. This yields the undifferentiated fy in both terms in the gBL form
(18), and leads to the relation ¥(a,2) x ny in Eq.(31). Fully-turbulent,
but more abstract, collision operators*!® which have been developed dis-
play an analogous form, but with this discreteness-driven structure replaced
by a turbulent correlation function which appears formally, and the cal-
culation of which entails a formidable nonlinear calculation. Defining the
field operator ® by ¢ = ®6f for any 6f, one may formally express the
spectrum appearing in the turbulent operator as (|6¢[2) = |A|72&C&! (su-
perscript ¢ here denotes transpose), where C(1,2) = (6f((1)6£0)(2)) is

the correlation of the incoherent, ‘unshielded’ portion of § f introduced in
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Sec. I. The discreteness—driven form for C, from which the proportionality
of (|6¢|*) or ¥ to fo arises, and whose adoption encapsulates the pseu-
dothermal ansatz, is Cq(1,2) = gfo(1)6(1 — 2)g*. Using this form in the
turbulent operator yields the standard BL cperator ‘for a uniform, unmag-
netized plasma,* and the gBL operator (18) for‘the more general range
of configurations which it covers. Arguing heuristically that in the turbu-
lent case, rather than the spectrum being driven predomina.ntl}" by uncor-
related test particles, (|6¢|?)(2) « fo(2), the spectrum is instead driven
by the density Fp(2) of ‘macroparticles’ of species 2, suggests the replace-
ment fo — Fy in C4 above. (Of course, the explicit calculation of Fp
would again entail the same difficult turbulence problem.) Adopting this
new form yields an operator as in Eq.(18), but making the replacement
(b -9y, = la - 93,) fo(1) fo(2) — L1 - O3, fo(1)Fo(2) — 1z - O3, Fo(1) fo(2) there.
Following the same manipulations as used for the current gBL operator,’
it is easily shown that the new operator again conserves particles, angular
momentum, and energy. However, it no longer possesses an H-theorem.
Thus, it would appear that this particular prescription for improving on the

current pseudothermal form of the gBL operator is insufficiently refined.
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