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ABSTRACT

After a hiatus of 3 years, CDF is again taking data. Many of the upgrades
made to the detector during this period are described here, along with some prelim-
inary indications of their performance. A brief survey of the new data is presented.
Prospects for the current run are discussed.

1. Introduction

The CDF detector has begun to col]ect data again ste.rting in the summer
oi" 1992, after a shutdown of 3 years. The current run is proceeding weil, and
will be briefly discussed in section 2. Durin 8 the 3 years since the last run (1988-
9), there have been a large number of upgrades, which enhance the performance
of the detector in acceptance, triggering, and event information. We describe in
section 3 the important upgrades, as well as some preliminary indication of their

performances from data collected in this run. We show in section 4 preliminary
physics results from this current run, and compare some of them with results from

last run. In addition, we include a few new results from more thorough analysis of
the data from the 88-89 run. Finally, we give some indications of the prospects for
various physics go._Is that might be achievable in this run.

2. Operations

The Fermilab Tevatron collider resumed operation on May 12, 1992, when it
started delivering pp collisions to the CDF detector, as well as the new DO detector.
The time period between May 12 and August 26 1992 was taken to comission the
CDF detector, including those components of the detector that were added for the
1992 run.

The performances oi"the Tevatron collider and CDF had sui_ciently matured

by August 26 1992 that good quaUt) data begun to be recorded. As of this date

(November 1992), the Fermilab Tevatron achieved a peak luminosity of 4.5.10 s°,
thr_ times higher than the peak luminosity oi"the last run. In the period August
26, 1992 to November 12, 1992, the Tevatron has delivered an integrated luminosity
of 3.2 pb-t , with CDF recording 2.3 pb-l on tape, more than 1/2 of the data sample
from the last run; this was achieved with an average initial luminosity of around
2. 108°; thus, the recent factor of 3 increase in initial luminosity bodes well for the
Published Proceedings Divisien of Particles and Fields (DFF'92) Meeting,
Fermi National Accelerator Laboratory, Batavia, IL, November I0-14, 1992.



future. Figure 1 shows the delivered and recorded integrated luminosity versus time.
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Figure I: The integrated luminosity (pb -l ) versus time. The boxes are delivered luminosity, and
the dismonds are the luminosity CDF wrote to tape.

3. Upgrades

3. I Oengral Muon Upgrade (OMP)

The origins/CDF Central Muon detector (CMU), which covers the pseudo-
rapidity region Ira < 0.6, has been complemented by the addition of four layers of
drift tubes behind 2 feet of steel. As a result, hadronic punch-through backgrounds
to the muon signal have been considerably reduced. This is illustrated in Figure
2 where we compare the energy deposited in the calorimeter by muon candi'dates
with and without a requirement of hits in the CMP system. The minimum ionizing

component is greatly enhanced. The addition of the CMP improves the muon
identification capabilities of CDF.

$.1_ Central Muon EztenJion (OMX)

We have also added layers of drift tubes outside the calorimeter in the pseudo-

rapidity region of 0.8 < I'fl < 1.0. This increases the muon coverage in CDF by 50%.
Figure 3 illustrates the increased acceptance to J/¢ -. _,+_,- events using the CMX

system.

$.$ Central PreRadiator (OPR)

The Central PreRadiator (CPR) system consists of a set of MWPCs mounted

between the solenoid's coil (m 1.1 radiation lengths) and the central Electro-Magnetic
o
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calorimeter. The CPR gives an additional factor of 2-3 in pion-electron separation.
lt will also reduce the systematic uncertainties in the prompt-photon cross section

measurement by a factor of 5 due to the enhanced 7/x ° separation. The performance

of the CPR is illustrated in Figure 4.
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Figure 4: A compsrison of the observed chsrge in the Centrsl PreRsdistor between electrons ,rod
pions is shown for: s) Testbesm and b) collider data.

3.4 Slicon Verte: Detector (SVX)

Four layers of DC coupled, single sided, silicon detectors with R- _ readout
and _ 00_ pitch have been added around the beam-pipe. The SVX covers the

region of I=l< 2ocm around the interaction point (the luminous region has a width
of _ 30 cre). The impact parameter resolution is better than 40t_ (15.) for tracks
with Pr > I OeV/c (Pr > l00eV/e). Despite the large number of channels (46K),
the readout is feat due to the sp_sificstion performed on the readout chips. For
tracks within the SVX fiducial volume the reconstruction efficiency is > 92%. The

performance of the device is illustrated in Figure S.
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$.5 dE/dz in the Central Tracker

The outermost 54 (out of 84) layers of the Central Tracking Chamber (CTC)
have been instrumented to measure charge deposition on the wires. The goals
of the dE/dx system are to improve the e/_r separation for Pr < 4 GeV/c and to
assist in identifying kaons below 700 MeV/c. The expected resolution in the dE/dx
measurement is _ 10%; calibration of this system is still underway, and a 13-15%
resolution has already been achieved (see Figure 6).

< Charge > vs. Momentum

44" Momentum ronQe I-3CIV/c

,o .:. ,o ,,,ilnjl
36 p :'.,: i:..•'.-.• 60 ::

, %

32 , i'-,_.. r. :
• ::..,:;... : : electrons• ..'--,,h:" 50

28 " "" ":'_'''." ", • • .. , _, _._, °• .. • .. • ,._} :-._.. :
..o - ' ' . .'_'J%'.. t' ' " .K ,.'," .... ..,_a;l-,...,24 _-.'.'-... ...... :,:,...,,_,,_., ... / 40 .'

L .'_r,".'_.",. ". ,-.t.'-r._.f,!_F't'_':, "..... I

E ....., .......... i

20 ,:-" r. :..,-'.:___..... ",-'.-.¢,:...' .• ."l',.t"_ .,"_,.... _.. • _.;,'," ,,",'..:'..:• , , • _. _l_.}t' . _._ ..... "__....

12 20 - _:
8 10 " tj,,,o _ ,... .... j

0.4 0.8 1.2 (eev/c) 5 10 15 20 25 30
Momentum < Charge > counts
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3.6 Trigger

A number of changes to the trigger were implemented for the 1992 run,
resulting in improved purity of the data written to tape and lower trigger thresholds

for electrons and muons (see Figure 7). Hardware improvements included new
triggezs for the CMP and CMX systems, a better plug electromagnetic trigger,
addition of a second processor to reduce the L2 decision time, a neural net (NN)

based isolated photon trigger, as well ss a NN electron trigger. In addition, a
completely new software level 3 system using SiG computers replaced the old ACP
based system.

3.70_filne

Between 1989 and 1992, Ali of CDF's reconstruction code was ported to
'.

UNIX (both SiC and IBM), enabling us to run the ofltine code as part of the level
3 trigger.

Large fraction of the 1992 codi_ is new (for new detectors: VTX, SVX, CPR.,
CMP and CMX). Many changes to the reconstruction code for existing detectors
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were made based on the data collected in the 88/89 run. A new data compression
scheme is being used, to accomodate the expected large size of the data set.

Full reconstruction of all CDF data is complete within two days of data
taking, using 1000 MIPS from s SiG farm, while approximatley 5-10% of the data,
including the most interesting events, are reconstructed and available within a few
hours of data taking.

Utilities have been developed to distribute and maintaic code across three
hardware platforms (SiG, IBM and VAX) as well as computer systems at remote
institutions.

4. Data

We will now turn to a discussion of the physics capabilities of CDF, as well
as a brief review of selected resu/ts from the 1988/89 run.

QcD

In the past five years we have performed several tests of QCD 11singCDF
data. The main goals for the 1992 run are to exploit the increase in statistics to
improve the sensitivity to quark compositness and to combine our data on direct
photons, Drell-Yan and jets in order to better constrain the understanding of parton
distribution functions. In addition, the new CPR (see section 3.3) in conjunction
with a lower photon-trigger threshold will allow us to greatly improve on our pre-
vious measurement of the direct photon cross section. In Figures 8 and 9, we show
comparisons of 1992 and 1988/89 jet data. Figure I0 provides a demonstration of
the capabilities of the CDF detector in photon physics.

!
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_.2 E,zotic Phy_icJ

Since the Tevatron collider provide antiproton-proton collisions with an un-
precedented high ce'nter-of-m_s energy of 1.8 TeV, it has open up a new mass
window where exotic physics beyond the Minimal Standard Model could manifest
themselves. Wi-'.h every substantiel increase in integrated luminosity, additional
regions of the mass windows are reached. Thus, one of the most important goals of
CDF is to se_ch for new physics, perhaps even in those topologies that theorists
have not mentioned.

In previous runs, CDF have searched for Squarks and Gluinos, _ well as for
heavy stable charged particles. Results from a se_ch for a 1st generation Lepto-
Quark is close to publication. Many other topics are under study, including the
search for r's from the decay of charged Higgs, which itself could come from the
decay of a top quark.

_.3 Electro- Weak Ph!/_icJ

In the field of Electro-Weak physics, the main goal of CDF is to increase
the accuracy of the W mass measurement. This is a very important topic since
within the framework of the standard model there is a well defined relationship
between the masses of the W, the top quark and the Higgs boson. In addition, we
plan to improve our previous measurements of W/Z production cross sections, W/Z
tr_sverse momenta, W asymmetry and DreU-Yan. Arewill also be searching for
diboson production (w'r, z,-r,W'N, wz, Zz,) as well _ new her_vyintermediate vector



and W -, _v candidates and the invariant mass of Z candidates using 1.43 pb-t Of'
1992 data.

Figure II: W Transverse HMs: a). W ---, eu, the shaded area is centr_l electrons and the open
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_._ B PhyaicJ

b-quarks are copiously produced in pp collisions. Over the last few years,
much interest has emerged within the HEP community at the prospect of exploiting
this large cross section to study b production and decay at the Tevatron.

Using the data from the 1988/89 run, we have measured the b-quark produc-
tion cross section with electron, muon and J/¢ data (see Figure 13). We have also
reconstructed exclusive final states (B --. CK,CK'), and have mesured B_ mixing.

With the addition of the SVX, the b-physics capabilities of CDF will be
greatly enhanced. We expect to search for, end measure the mass of the B,, A, and
possibly B,. We will also measure the lifetime for inclusive b-hadrons from electron,
muon and .r/,# data, as weil as the individual lifetimes of B,, B_ and B,. We plan to
improve our measurement of the mixing parameter, to search for rare B decays, to
study/g correlations, and to perform engineering studies aimed at an eventual CP
violation experiment.

In Figure 14, we show the improvement in mass resolution achieved with
the us_,.geof _he SVX information. In Figure 15 we demonstrate the power of the
SVX in reducing combinatorial backgrounds in a spectroscopy-type analysis, and
in Figure 16 we illustrate the cleanliness of a b-lifetime measurement from inclusive
2/¢ --._+_,- .
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,4.5 Top Sea-rh

At Tevatron energies, Standard Model top quarks are expected to be pair
produced, through quark annihilation and gluon fusion. The decay of a Standard
Model top quark "s expected to proceed via _ -, w + b. The W can then decay into
quarks or lepton-neutrino. Decay modes wit_ no leptons have the highest branching
ratio, but are very hard to distinguish from muiti-jet QCD backgrounds. Final states
with one W decaying into lepton-neutrino sad the other W decaying into quarks
also have a large branching ratio, sad have to be separated from the I_ -" w + jetm
background by tagging the b-quarks in top events. This can be achieved either by
using the SVX to reconstruct a displaced vertex.or by searching for an additional
(soft) lepton (e or S,) from semileptonic b-decays (see figures 17 and 18).

The cleanest ii"events, with the least amount of backgrounds but the smallest
branching ratio, are those with both W's decaying into electons or muons. The
(small) backgrounds in this channel arise from the decay of Z -. fT, as well as WZ
sad WW production. Once again, b-tagging can provide the required background
rejection.

With a 25 pb -t de,ta set, we expect to be able to claim a top discovery up to

Mr., < 1.10GeV/c=.

, i , ,,_ .... , , i _, t,, lt , td, i PqLI , tt _g ' l 11 , , , 11 ' II l lt
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5. Conclusion and Prospects

CDF is begining to accumulate a large sample of data. During the last 2-
I/2 months, we have already accumulated data which corresponds to more than
I/2 of the data sample of the last run. With the recent improvement in Tevatron
luminosity, the Tevatron's goal of delivering 25 pb-1 appears I/kely to be met.

Based on a first look at the data, the performance of the CDF detector and
its various upgrades appears to be very good. The agreement of the preliminary
physics results from the new data with those from the 1988/89 run is encouraging.
While many further studies need to be carried out, the indications are that CDF is
able to study a variety of i_portant physics goals with improved acceptance, more
information on the event properties (such _s the ability to provide secondary vertex
tagging for b jets), and other improvements in triggering, event selection and data
handling.

We are optimistic that with the data sample that we expect to accumulate,
CDF will be able to address some of the most critical issues in High Energy physics.
Along with the possibility of the discovery of top, we would be able to make much
progress in understanding B-mesons and hadrons, precisely meuuring the W mass,
searching for exotic physics, and many other areas.
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