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Dynamics of the L — H Transition, VH-Mode Evolution, Edge Localized
Modes and R.F. Driven Confinement Control in Tokamaks

Abstract

Several novel theoretical results related to L—H transition physics, VH-mode
evolution, Edge Localized Modes and active confinement control are presented. Critical
issues are identified, results are discussed and important unresolved questions are listed.
The basic physics is discussed in the contexts of current experiments and of ITER.

I.) Introduction

The L—H transition{!] is crucial to ITER[2]. Specifically, the confinement
enhancement of the H-mode is necessary for an adequate ignition margin, and ELMs are
required for efficient ash removal. At the same time, giant ELM Do-bursts severely

challenge divertor technology. The recently discovered VH-mode(3] offers even greater
benefits in confinement enhancement but also presents more formidable challenges vis-a-
vis termination due to a (likely) kink-induced "monster" ELM. Hence, both a sound
scientific understanding of H-mode physics and the ability to actively controll4}
confinement regime transitions are necessary.

In this paper, we summarize recent advances in L—H transition physics. The body
of the paper is organized into four sections which are:

a.) (Section II) Basic L—~H Transition Mechanism Physics,
b.) (Section IIT) VH-Mode Evolution,

c.) (Section IV) Edge Localized Mode (ELM) Dynamics,
d.) (Section V) Active Control of Confinement via RF.

In each section, a statement of the fundamental issues is followed by a summary of the
basic model and results obtained from it. Outstanding technical questions are identified and
a description of planned future work is provided. A discussion of the broader unresolved

issues in this work for L—H transition physics appears in Section VI.

II.) Basic L—>H Transition Mechanism

Virtually all credible models of the L—H transition utilize the paradigm of electric
field shear-induced suppression of turbulence to explain the formation of a transport
barrier(6-9]. Moreover, this theoretical paradigm is strongly supported by experimental

findings(10]. Hence, the central issue of the L—H transition mechanism is the origin of the

electric field shear layer. Specific questions include: Scs- E%




a.) What are the relative contributions of poloidal velocity shear (Vg,) and diamagnetic
velocity (Vd') shearto V E' =—c E,' / B?

b.) How do Vg, and Vd’ evolve in time at and above the L—H transition threshold?
c.) What is the "seed" which triggers the transition?

d.)  What physics determines the L—H power threshold and the empirically determined
scalings?

To answer these questions, a simple dynamical model for fluctuation intensity (E )

poloidal velocity shear (U) and pressure gradient (N) evolution has been derived from
fundamental theoretical principles({11:12). The model equations are:

a—E=FN—Ez—VZE, ¢
ot

a—U=aEV—bU, (2)
T

éﬂ=~AEN—15W+Q‘, (3)
a7

U=V-aN2. 4)

Here Eqn. (1) describes fluctuation intensity evolution in terms of growth (y ~V,P~N )s
nonlinear transfer to dissipation and electric field shear suppression. Eqn. (1) is a
spectrally-integrated wave kinetic equation. Eqn. (2) relates poloidal velocity shear
evolution to the Reynolds stress dynamol!3-15) and magnetic pumping induced dissipation.
Egn. (3) relates pressure gradient evolution to particle and heat sources (Q), and
fluctuation-induced and neoclassical transport. Eqn. (4) is the ion force-balance equation,
which defines the electric field. Here, pressure gradient evolution is taken to be dominated
by particle transport. Finally, the dimensionless fields and parameters are defined

according to:
E = alE = Q\VE>, U= ﬁ\ve), T=70t
Yo \] Yo \} Yo

(5)
a=Bp=t gL
ai Yo YoWr
BE———_on,Q-E_g,a:——Vigi &2
YoL Yo L 7o

The parameters o;,02,0:3 are derived and tabulated (for various turbulence models) in
"~ Table (1) of reference (11).



Eqns. (1-4) correspond to the fluctuation wave kinetic equation, poloidal
momentum equation and particle transport equation radially integrated over one turbulence
spectrum width. They thus constitute a "single spatial scale" model of L~H dynamics,
and are suitable for describing narrow transport barrier evolution characteristic of
"standard" H-mode plasmas. Indeed, the width of the barrier in such plasmas is
comparable to the width of the turbulence correlation length in L-model16]. It should also

be noted that the basic structure of these equations is independent of the L-mode turbulence
model.

The predictions of this model vis-a-vis the dynamics of E ,' and the evolution of the
transition are nicely summarized by Fig. (1), which illustrates the temporal evolution of

E,(Vg) and N, during a "ramp" of power with time (i.e. J ~ ). At the L—H transition

(t ~ 200), a sudden drop in fluctuation intensity is accompanied by rapid growth of (Vg) .
This corresponds to the poloidal velocity dynamo instability, which re-apportions
(pressure) gradient free energy between turbulent fluctuations and the mean flow, thus
improving confinement. At the same time, the reduction in fluctuation level resuits in an
increase in N, corresponding to a steepening of VP due to decreased transport. However,
self-consistency ultimately asserts itself! As the fluctuation intensity continues to drop, the

Reynolds stress dynamo first saturates, and then (Vg) decays rapidly, as the dynamo term
no longer exceeds magnetic pumping damping. At the same time N (~ VP) increases

’ ’ : nges ey 1)
rapidly, so that clearly V4 is the dominant contributor to Vg in the "time-asymptotic” H-
mode state. In this state the fluctuations are quenched.
Several aspects of the evolution described above merit further discussion. First, the

model clearly suggests a "two-stage" paradigm for the L—H transition. In the first stage,

which occurs for P2 Ppresh, the flow dynamo instability is triggered. This results in the
growth of poloidal velocity shear and in a moderate reduction in fluctuation level. Note,
however, that the fluctuation level must be sufficient to drive the Reynolds stress. In this

’ ’ .
stage, Vg is primarily due to Vg, and the ambient transport is reduced, but not

quenched. Hence, there is some constraint upon VP-steepening, so that an ELM-free H-
mode is possible at modest power. In the second stage, for which P> Pyesh, the
fluctuations are quenched. As a consequence, the poloidal flow decays, and the pressure

gradient is the dominant contributor to E, . In this stage, the ambient transport is reduced
to feeble levels, so that the pressure gradient will surely steepen to the ballooning limit,
resulting in the onset of ELMs, which are discussed in Section (IV) of this paper. A
second aspect of the evolution is that the ratio of poloidal flow shear to diamagnetic velocity
shear is given by

V_d,_b/a—f

Vo E

which further illustrates the dominance of Vg near threshold b/a = E, and the dominance

of Vd’ at high power (E - O). A third notable aspect of the evolution is that the temporal

duration of the "flow dynamo" phase is sensitive to the rate at which the external power
input is "ramped." Specifically, a rapid power ramp will compress the time duration of the
flow-dynamo phase, and thus may render it unobservable to diagnostics without sufficient




temporal evolutionl!7). Also, as with any bifurcation, the transition time diverges at the
power threshold. Thus, the detailed transition dynamics are best studied at modest power
levels. A fourth interesting aspect of the model is the fact that the ambient L-mode pressure
gradient serves as the "seed" for the transition, by driving a diamagnetic velocity which is
amplified by the flow dynamo, once the power threshold is exceeded. The sign of the seed

’
VE is determined by the relative magnitudes of L, and Lyy. For L,<Lri, the sign is

consistent with an inward electric field(18]. The L—H bifurcation is subcritical. Finally, it
should be noted that this simple model does not address the phenomenon of "dithering."
An improved version, which incorporates explicit correlation time amplitude dependence,
clearly manifests dithering and is discussed elsewherel19.

Two urgent concerns for ITER are the physics and associated parameter scalings of

the L—H power threshold. In this model, the threshold is defined by the competition

between the flow shear dynamo and magnetic pumping[20l. As the dynamo is fluctuation
driven (and thus tied to input power by transport), a power threshold appears
straightforwardly. For drift-ITG type turbulence, the ratio of {ocal flow shear drive and

damping defines a dimensionless parameter p = (Vrgi/ LT 1)(Lu/Ls)(Ar/ Ln)z. Here A,
refers to the fluctuation correlation length, 4 to magnetic pumping damping and the other
notation is standard. The transition occurs when p>1. The physics of the transition is
thus clearly revealed to be the condition that the edge gradient steepen to the point that the

flow dynamo is triggered. It is interesting to note that p~T ?/n, in accord with

experimental findings[2!). The condition that p>1 may be converted into a power
threshold by imposing power balance and utilizing standard drift-ITG transport models.

The resultis Prpresh ~ (UnT) e @R Ls- Here (unT), dge is to be evaluated using L-mode

edge parameters, just prior to the transition (i.e. i should be evaluated for plateau or
Pfirsch-Schiuter conditions). Note that P..sn Scales with surface area, and is lower
under conditions of strong magnetic shear. Taking T ~ Br yields a scaling in accord with
many experiments.

While this paper is necessarily phenomenological in orientation, two aspects of the
theoretical underpinnings of the model merit further discussion here. First, the flow-shear
dynamo instability is clear a key ingredient for this L—H transition model., Numerical
solution of the primitive equations has verified the existence of the flow dynamo
instability(8b.c], Recent fundamental work(22] on flow shear amplification has adapted
methodology from magnetic dynamo theory to the Reynolds dynamo problem. A mean-
field flow dynamo is indeed predicted for the Hasegawa-Mima system, but requires a finite

(ki %) In particular, for isotropic (but not homogeneous) turbulence spectra, no dynamo

is possible in an ordinary 2D-Euler fluid. This finding, confirmed by recent numerical
studies[23], establishes that the results of Ref. [13c] are not general and largely a
consequence of the specialized initial conditions chosen there. It also suggests that the
formation of large scale flows may b related to the presence of finite time singularities in
the turbulence. A second theoretical .sue is the physics of shear suppression. Clearly, the
shear suppression model used here :s the simplest one consistent with basic parity
symmetry. The model should be extended to include E, curvature, finite amplitude

’
suppression effects and E, -induced wave absorption.

Several rather straightforward extensions to this model should be implemented in
order to resolve ambiguous issues. These include:
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a.) neutral influx effects, especially the impact of charge exchange on flow damping
and thus on the power threshold,
b.) simultaneous evolution of particle and temperature profiles,

c.) the effects of turbulence and E, on magnetic pumping damping,

d.) the impact of ballooning fluctuation structure on E, evolution,
e.) the sensitivity of P esy to ion VB-drift direction.

These issues will be addressed in future publications.

I1I1.) VH-Mode Evolution

The discovery of the VH-mode(24] is of great significance for two reasons. First, it
represents a regime of confinement enhanced beyond H-mode levels. Second, the VH-
mode is of scientific importance since it demonstrates that the transport barrier may be
significantly delocalized from the plasma boundary. Thus, transport barrier formation and -
development are almost certainly not related to orbit lossl23] and related effects. This view
is supported by recent findings from JT-60U, where the enhanced confinement regime
develops in the core and propagates radially outward. Thus, the critical issues related to
VH-mode evolution are:

a.) What is the mechanism of VH-mode build-up? How can the spatio-temporal
evolution of the transport barrier be described?

b.) What roles do Vgl, Vd' and toroidal rotation (V¢) play in the VH-mode electric

field evolution? What controls transport of (V¢>?

c.) What constitutes the "seed" for the VH-mode electric field? What determines the
spatial extent of the enhanced confinement region?

d.) Why are ELMs not observed in VH-mode? What triggers termination of VH-
mode?

Recent progress on these issues is discussed below.
The basic model of the L-H transition (Eqns. (1-4) is local, but may be extended to
include spatial coupling by retaining radial transport of the local order parameters E, U and

N. At the simplest level, this is accomplished by inserting fluctuation-dependent diffusion
into Egns. (1-3). Thus, the transition model is naturally generalized to:

JE d(=0 =\ = = =
— ——V{E—E |= —-V2E-E?
ax(Eax)EN V‘E-E-, (6)
d (=2 =
—_— —g(ng-U)—aEV—bU, (7)
N J(=dN)_ =
with
U=V-an2. ®)




Here, x= X/L\, Do is the L-mode diffusively and L is the gradient scale length in L-
mode. Note that the VH-mode model consists of a set of coupled nonlinear reaction-
diffusion equations, with field-dependent diffusivities. Such systems are known to exhibit
complex evolutionary behavior(26].

Considerable basic insight may be obtained by studying a simplified fluctuation-
flow evolution model, which is obtained from Eqns. (6-9) by setting U=V and ignoring N

evolution. This model is the spatially non-local analogue of the "predator-prey” L—H
transition model advanced in Ref. [11]. This model exhibits a super-critical bifurcation
between L-mode-like and H-mode-like states. As with any super-critical bifurcation, the
transition occurs via an instability of the L-mode root. This instability occurs in the flow-
shear modulation mode, while the fluctuation modulation mode remains heavily damped.
Thus, the fluctuation evolution may be "slaved" to flow evolution, described by a single
Ginzburg-Landau equation of the form:

, . V2 ’
ot x| o Yo | ox
(10)
= '}’OAS VQ, - %203 V:é’
oy

Here Ae=qs/aj— /Yy and Ae>0 is the local super-criticality condition. This

equation{27] is similar to the KPP and Fisher equations used to describe epidemic
propagation. A leading edge analysis reveals that transition front solutions (i.e.

Vgl = Vgl (X -Vys t)) exist and propagate at speed
Ve=2"(yqAr)(A /2 11
=7 ( 0 r)( g)’”. (11)

’ ’
These solutions connect regions with Vg finite (i.e. H-mode) with Vg =0 regions.
Obviously Ag >0 is necessary for propagation, i.e. local super-criticality to the L—H
bifurcation must be achieved. Note that V ¢ is not simply due to radial transport, but rather

a hybrid process of diffusion (70 AZ= DO) and the local L—H bifurcation instability (i.e.

Agtl2~(P/ Pcm—l)”z). Thus the front propagates into locally super-critical regions.
The width of the transition layer(27] (i.e. front width) is given by

2
AXfEi—i(AS)_Uz (12)

This expression is derived assuming AXys>A,. AXjy is analogous to the phase
correlation length in critical phenomena. It should be mentioned that these results are valid
for spatially varying ¢ s, assuming AX < ((1/A€)|dAe/dxl)_1 . A typical front is shown

in Fig. (2). The analytical results are supported by numerical solutions of the model
equations.



In considering the effects of pressure gradient evolution, a qualitative change in the
dynamics of propagating transitions occurs. In contrast to the simpler flow-fluctuation

model, the L—H transition is locally seeded at all radii by the L-mode pressure gradient (if

Ae>0). Thus, the evolution of the transition at a particular point may occur via an L—H
transition front propagating through the region or via a local collapse or quench of the
fluctuations and concomitantly abrupt steepening of VP. The precise route of transition
thus depends on the comparative magnitudes of the poloidal velocity shear and diamagnetic
4 ’ ’ ’
flow shear, with Vg >V, indicating a front, and Vg <V,  corresponding to a
"collapse.” More precisely, the route to transition is determined by T7/T s, where
Tr=L1/Vy is the front transit time and Ty is the fluctuation reduction time. In this
model,

1/2]
12( on1/2
0 0
Tr 11} (Q)“zbmf (aAb “a
—— == - n
T 2 A2 | 1723240

A

L (13)

L — <)

_ 2 —
where o = (csPS/Li)(az/Yo)” ,and A= Dg/¥oA?. Note that the extrema TT << Ty
and T7>>T g will appear as a "spatially propagating local" transition and a "global” or
“non-local transport” transition, respectively. Spatially propagating "front" and "non-local
collapse solutions of Eqns. (6-9) are contrasted in Fig. (3).

Having developed the basic theory of spatio-temporally propagating transition
fronts, it is now possible to address the issues concerning the VH-mode raised earlier.
First, the VH-mode develops by a spatially propagating (i.e. convective) transition
instability. The dynamics of this instability are a hybrid of local transport and the local
phase transition instability. Propagation can occur either slowly (i.e. T <T), in the

form of a localized, but moving, front, or rapidly (i.e. Tz <Tr) in the form of a "non-

local” collapse. Second, both Vgl and Vd' contribute to the spatio-temporally evolving

Vv E,- For T7 < T/, the electric field is primarily due to rotation. For T g >Tr, Vd,
dominates. Also, since the spatially localized transition model indicates that the "finite

Vg’ " stage is usually of limited duration, it follows that the Vg # 0 layer should appear as
an "attached wake," which lags behind (but moves with), the local transition front. In the
case of a "non-local collapse,” the extent of this Vg wake shrinks. Thus, detecting

poloidal rotation associated with VH-mode evolution is most feasible when P2 P, using
a multi-channel (in space) CER system. Note that toroidal rotation (V) is not apriori
necessary for a spatially propagating transition. This is consistent with the fact that a VH-
mode like regime has been achieved on TUMAN II1[28}, Third, the extent of the enhanced
confinement zone is determined by the radial width of the locally super-critical region (i.e.

Ag >0). Note that this criterion naturally favors conditions of modest density and high ion
temperature (to minimize magnetic pumping), as well as peaked profiles (to maximize
drive). Such conditions are typical of VH-mode discharges. It follows that the VH-mode
should develop from the "seed” region to the periphery of the power deposition region.




Regarding the seed, the model predicts that the VH-mode will develop in all regions where

’

Ae >0 and a finite seed E, exists. Thus, "inside-out" development, as recently observed
on JT-60U, is consistent with the model and suggests that in such cases, the local core
plasma VP is the strongest "seed" contributor. Fourth, this mode! does not explain the
absence of ELMs (see Section IV) in VH-mode discharges. This is most likely due to the
effect of triangularity, which yields access to the second stability region for ideal ballooning
modes(29). Finally, the VH-mode evolution phenomena discussed here also serve as
paradigms for more general manifestations of non-local spatio-temporal transport and
propagation phenomena.

To make contact with current experiments, a table of the model predictions for VH-
mode evolution in JET and DIII-D is presented in Table 1. Reasonable semi-quantitative
agreement is found. In evaluating these predictions, keep in mind that neutral friction is
neglected, so that "perfect” wall conditioning is tacitly assumed.

The model discussed above neglects toroidal rotation effects. While V evolution

is not an absolute necessity for a VH-mode model, toroidal rotation undoubtedly makes a
4
significant contribution to E, . Including V¢, the electric-field shearing velocity becomes:

, ’ c dT; Ti 1 ’ ’
VE =Vg - —L-=t|-—IBgVy +Bo Vg| (14
6 Ie‘BTLn( dr LMJ BT[ ¢ ¢]

’ - .
Note that Vy enhances Vg through its own shear and through synergism with the local

Bo(r) and current density. To calculate the toroidal momentum flux

T'p 0= n<f/r f/¢> + Vg Ty, it is necessary to evaluate the toroidal Reynolds stress <f/r f/¢>.
Using standard a fluid model and quasilinear closure yields:

<‘7r‘7¢>=“7f<1>a—,;;g

2

-

e¢k
+ %LkinTi(kG k) Vi— (28 257), (15a)
K 1

where

2
X5= ZLL»<Vr, E> . (15b)
k

The first term on the RHS of Eqn. (15a) corresponds to the (diagonal) momentum
diffusivity, first derived by Mattor and Diamond. The second term, due to ion diamagnetic
drift effects, is an off-diagonal contribution (pinch), requiring spectral symmetry breaking

((kgku)=0). This symmetry breaking may be induced by finite E,. Such a term



represents the toroidal momentum flux induced by acoustic wave coupling. The third and
fourth terms (also pinch contributions) are due to the ion polarization drift and appear

multiplied by Bg/Br. Throughout, Ly is the propagator (including E,') and Xg, and
X st are the susceptibilities for the non-adiabatic ion density and temperature fluctuations.

Thus, a rather detailed theory of V¢ evolution is available and can be added to the L—H

transition model.
The principal outstanding issues concerning the VH-mode model include:

a.) implementation of the V4 evolution model discussed above in the front paradigm.

b.) treating both particle and heat transport in a 1-D model, including neutral fueling
and penetration effects.

c.) including triangularity in the associated ELM model (discussed below).

These issues will be addressed in a future publication.

IV.) Edge Localized Mode (ELM) Dynamics

ELMs(30] are intrinsic constituents of H-mode plasma dynamics. On one hand,
ELMs are essential to ash and impurity control. However, the peak heat loads associated
with giant ELM bursts severely stress and constrain divertor design and technology. Thus,
unraveling the paradoxical nature of ELM:s is crucial to a rational design for ITER.

The basic issues of ELM dynamics may be summarized as:

a.) What physics distinguishes the various types of observed ELMs? Can ELMs be
classified logically?

b.) How do ELM frequency (@g) and ELM-induced energy losses AE scale with input
power and other control parameters? In particular, what are the requirements for
access to grassy ELM regimes?

c.) Is ELM-free operation possible, and how is it achieved? What distinguishes Type
-III ELMs from giant and grassy ELMs, and from "dithering?"

d.) Why and how can the observed edge pressure gradient exceed the ballooning limit
in H-mode? What role does ballooning instability play in ELM dynamics?

e.) Do ELMs exhibit hysteresis behavior?

The issues are addressed using a "minimal" ELM model discussed below, which is a
straightforward extension of the L—H transition model presented earlier in this paper.
The key- ingredients in a model of ELMs are a successful L—H transition theory

and an understanding of ideal ballooning mode stability in H-mode edge plasma
environments. The latter requirement follows from the observation that ELMs seem related
to edge-localized MHD activity due to Vp-proximity to the ballooning threshold(31].
Briefly summarizing, there are four principal effects which enter the determination of
ballooning mode stability in an H-mode edge plasmal32]. These are:

i) electric field shear, which tends to distort fluctuations via differential drifts. This is
the strongest effect,

ii.) poloidal angular momentum stratification (i.e. (rzf)_g) ), which, as in simple
Taylor-Couette flow, may be stabilizing or destabilizing. For the usnal ease of an

inward electric field ( E,' < O), the combination of i.) and ii.) shifts the first stability

RS T SR S v+ 4 S Aot B G AN L A0 T L ) W e A" gt N T S B T e A I T T -



boundary toward higher Vp, consistent with the experimentally observed

exceedance of the (E,=0,Vg = 0) ballooning threshold,

iii.)  radial centrifugal force due to rotation, which enhances interchange and ballooning
drive,

iv)  Kelvin-Helmholtz (shear flow) drive, which couples to ballooning. This effect is
only relevant to regimes of extremely strong velocity shear.

The combined effects (i.)-iv.)) shift and distort the familiar s— ¢ stability diagram.
Indeed, such a diagram must now be interpreted as a two-dimensional “slice” through a 3D

7 ’
s—a -V stability "solid" (V g corresponds to a normalized measure of electric field
shearing velocity). A set of such modified s — o diagrams is shown in Fig. (4). Note that
the magnitude and direction of the shift in the stability boundary is determined by the
normalized shearing parameter.

The ELM mode] may now be straightforwardly constructed. The central idea is that
the turbulence and fluctuations consist of two constituents: £p, which corresponds to the
intensity of ambient drift-ITG modes, and g3y which corresponds to the intensity of MHD
ballooning fluctuations. &y responds to violation of the local ballooning instability
threshold on time scales which are faster than drift wave decorrelation rates. g, "feeds
back” on H-mode dynamics via strongly enhanced heat and particle transport and by

’
enhanced poloidal momentum transport (i.e. turbulent viscosity, which damps Vg ). Note
that the equality of (fluid) kinetic and magnetic fluctuation energies intrinsic to (Alfvenic)
ballooning modes results in a cancellation between fluid and magnetic Reynolds stress

dynamo terms. Thus, the minimal ELM model(33] may be written (in normalized variables)
as:

‘95; =0 p(dep+dpem) (162)
a;te, =epVE —(A+em)Ve (16b)
%SD=)’0(p),sD-—a1e‘})—a2V’% (16¢c)
%gM=igM(p'—1—-bV'25) (16d)
VE'=V9'—Ep'2 (16e)

The notation is discussed in Ref. [33], but the correspondence to the L—H model is

obvious. Note that Vp effects on V E’ may be turned off by ¢=0. Similarly, Vgl
effects are eliminated by g — . In this way, the results (i.e. model ELM history traces)
may be compared to experiment in such a way as to elucidate the relative contributions of

Vgl and Vd, to V E,- Note also that this is a single scale (0-D) model, which treats the
entire enhanced confinement zone as a "lump.”

10



The straightforward numerical solution of Eqns. (16a-e) yields interesting results.
in Fig. (5) a "trace” plot shows an L—H transition followed by an extended ELM-free
period, the duration of which is sensitive to the shape of the power ramp. As Vp steepens
toward V P.,j;, ELMs begin and persist throughout the H-phase. Note that hysteresis of
ELM phenomena is exhibited after "power" is reduced to L-phase levels. This familiar type

of behavior is exhibited by both the Vg'-dominated (¢—0) and Vp -dominated (ﬁ—)oo)

models .in Figs. (6) and (7), respectively. In Fig. (6), the L—H transition occurs at
t> 200, and an extended ELM-free period persists for 200 <t < 600. This is consistent

with vV E, = Vg, saturating Vp-steepening below the ballooning threshold. At r =600, the
power is ramped up further, leading to the onset of ELMs. Here, ELMs appear as Vp
sawtooth oscillations (obviously, Vp ~ AE), bursts of MHD activity, and sawteeth in

Vg,. In Fig. (7), the L—>H transition occurs at ¢~75, and ELMs begin almost

immediately. This is a consequence of the fact that VE’ = Vd', so in this case Vp must
steepen considerably for the transition to occur. A comparison of Figs. (6), (7) then
suggests that extended ELM-free periods, Type-III behavior, etc. are related to the role of

rotation in the transition. Note also that as Pinpy; tises at ¢t ~150 in Fig. (7), evolution
from "giant" to "grassy" behavior occurs, in that @ increases and p’ oscillations drop.
The ELM frequency (@g), MHD fluctuation level, and burst magnitude AE are

plotted vs. Py, for the Ve' = VE’ and Vd’ = VE' models, respectively, in Figs.(8) and
(9), respectively. Note that both models clearly manifest a trend to evolve from giant and

grassy ELMs at high P;,. Specifically, wg ~ Pj, while AE ~ P3! so that wpAE is
roughly constant. This behavior is a simple (but important!) consequence of the

increasingly "tight" marginality to the ballooning limit at high power, and is in excellent

agreement with experimental findings(34.35). However, the Vg ~Vg model predicts a

7 7
"sagging belly" to the wg(Pi,) curve, while the Vg ~V; model predicts an
approximately linear rise of wg with Pj,. The latter is more consistent with experiment,
and confirms our expectation that Vp will dominate E, at high power. The more

interesting contrast between Figs. (8) and (9) appears at low and modest power, and
suggests that plasma mass flow dynamics may play an important role in ELM dynamics,

there. Specifically, while Fig. (9) (VE’ ~ Vd') predicts a simple linear @wg(P), Fig. (8)

(V E, ~ Vgl) indicates that @ g rises more slowly than linear. (The initial rise in @ g is due

to transport-induced oscillations, which are an artifact of the model.) In this regime of
Pin, AE rises and ultimately reaches a maximum. The interval .5 < P;, < .7 of Fig. (8)
thus seems to resemble "Type-III" ELM behavior, followed by a transition to Type I, giant
ELMs. The rather obscure and somewhat elusive Type-III ELM is a flora best identified by
its dwg/d Pin <0 branch. Thus, this sojourn through the botanical garden of ELMs may
be summarized (in terms of a P;,-scan) as:

a.) for Pin 2 Pinresh, dithering may be present, but true ELMs do not occur,

b.)  atslightly higher power, "Type-III" ELMs (with dwg <d P;; <0 appear. The
dynamics of poloidal mass flow appear crucial to the cultivation of Type-IIl ELMs.
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c.) for yet higher power, giant ELMs (Type I) sprout vigorously. A continuous
transition from giant to grassy (Type II) ELMs then tracks further increases in Piy.

In this interval, Vg ~ Vg and @g(Piy,) rises linearly, with wgAEg ~ const..

Sample traces of Type III, I, and II ELMs are given for the V E, ~ Vg, and V E’ ~ Vd,
models, respectively, in Figs. (10-12) and Figs. (13), respectively. Note that the

Vv E’ ~ Vd' model does nat exhibit Type-III ELMs or an extended ELM-free period after the
L—H transition, for the parameters chosen. Finally, it is amusing to note that simple

concepts such as ideal ballooning stability and the L—H model can semi-quantitatively
reproduce the entire botany of ELMs, without the need for a garden of exotic flora such as
resistive ballooning, surface kinks, tearing modes, bootstrap-current driven islands, etc..
While the study of ELM dynamics is necessarily a computational endeavor, two
aspects of the ELM-paradigm described above merit more detailed, analytical investigation.
The first issue concerns "Type-III" ET.M behavior-specifically, why does wg drop with

Pj,, at low powers? This question 1.y be answered by linearizing Eqn. (16) around the
ELMing H-mode state, slaving & D to Vg'. Thus:

d ., .
551) =6V%5p—dm5eM (17a)
sv'g+dey= 0 (17b)
9 sepr=2e05 "+ A(6e,, NOp") (17¢)
S oemM =2, op .0

Here, [1 has been neglected in comparison to the MHD turbulence viscosity. Eqns. (19a-
¢) may then be straightforwardly combined to obtain:

82 ’ 2 ’ ’ a ’
5;5p +a)E5p +A.5p §5p =0 (18)

where w% = (3+3m)ls$3) is the unperturbed ELM frequency. Note that o . is small at

low Pjy, since ssg) is small. More interestingly, the ASp(dp ) term appears as an ELM-

amplitude-dependent “friction” (Y diss“"wp)’ which necessarily forces o to decrease
with increased power. This is characteristic of Type-III ELM behavior. In physical terms,
as power increases, £, increases and exceeds i Thus, Vg' drops more precipitously at

an ELM sawtooth "crash." Since the flow shear decays further, the recovery time must
also increase correspondingly, resulting in a lower ELM frequency. Note that poloidal
flow shear is crucial to this scenario, thus indicating that the "Type-III" phase ends when
Vad >Vg .

A second question, of great practical importance, concerns the accessibility of the

grassy ELM regime. First, it should be noted that Type-1II ELMs are not grassy (ie. AE
is not small), so one must traverse the forest of Type-III and giant ELMs in order to graze

12



peacefully in the high P;, grasslands. Specifically, since Type-III ELMs have large burst
amplitude, exploiting an ELM-free interval above Pjrech seems unfeasible. Indeed, the
existence and relevance of such an interval are quite sensitive to parameters. Such regimes
are quite likely to be polluted by "dithering," as well. Thus, the threshold power for grassy
ELM operation is straightforwardly given by the P;;, level required for "tight" marginality
to ballooning. This in turn implies that (from a standpoint of practical utility) the question

of "What is the L—H power threshold?" should be supplemented by the further question,
"How far above the transition threshold must one go in order to get grassy ELMs?". The

answer to the second question is given by the parameter AP/Pry=(Ppai~Pry)/PLH.
Here Ppqy is the power for ballooning marginality and Py is the L—H transition power.
Straightforward calculations (using plateau regime u) yield AP/Pry ~ ﬁé:_’dge ( 32 /4 e3Tq)

-5
for the Vg ~Vg model and AP/pLH~[ﬁ9e dge(e%/zf)(R/,/psL,,)] , where

2 <6 <4, (depending on modelling assumptions) for the VE’ ~ Vd’ model. In both
cases, AP/Py increases strongly with decreasing edge S, and increasing aspect ratio.
The implied sensitivity of ELM-type to plasma current (at fixed power) is very clearly

observed in experiment(36], In all cases considered by these authors, AP/P;y 2 2.

Several issues related to ELM physics must still be addressed. Most prominent
among these are:

a.) the 1-D structure of ELMs-i.e. how much of the enhanced confinement layer is lost
in a burst? This is likely determined by transport dynamics and by magnetic
structure and topology.

b.) the effects of shaping, most notably triangularity.

c.) the possible role of surface kinks and bootstrap-current-driven modes, particularly
in "second stable" ballooning regimes.

d.) the continued investigation of ELM dynamics near threshold.

V.) Generation of Sheared Plasma Rotation Using Externally Launched
RF Waves

Since the L—H transition is accompanied by the formation of a radial electric field
in the periphery, a natural question arises as to whether the electric field can be controlled
by external means. One potential candidate is the radio frequency wave, which is already
employed in heating and current drive. RF is a natural candidate because of its non-
perturbative nature, easy control of the resonance location, possible synergistic effects with
other uses. We present two related scenarios for electric field generation and discussion of
experimental results. The first is the ion Bernstein wavel37), for which recent PBX-M

results indicate an RF induced transport barrier. The second involves using fast waves[38],

a.) IBW Flow Drive

In previous work(37), ion Bernstein waves were found to be capable of inducing a
radial electric field via poloidal shear flow. The edge localized radial electric field was
found to point inward, independent of any controlling mechanism. Thus, a radial electric




field is always expected during heating. Using a slab model, with magnetic field in the 2
direction, the flow gradient generated by IBW was found to be

2
wQ3, 2 SekR(r—rs)
Rl —2fci_[pR _Lerly 5/ 19
kL(wz_Qgi(kLPs) )XGXP( 2 (19

By

C%zegb
Clg k

(Er)= T

’ 4 . - 3
This flow corresponds to a torque of Tex =/ Vg . We note that this is the dominant
contribution to the poloidal flow, which is due to Reynolds stress, i.e. momentum
transport. Based on the BDT model, the required power to suppress fluctuations is

(Aw)#g T% w%ekl% 5ekf_ Ly

Pabs > — 2
8k rgA 202 Q2 (kR I

(20)

For use below, we define P> P where Py is the right hand side of the equation above.
Using PBX-M parameters, ion Bernstein Waves require relatively low power (~100KW) to
suppress fluctuations.

Still more recent work([39] has suggested that the above power estimate is somewhat
low. Specifically, the RF drive Reynolds stress, proportional to the RF absorbed power,
must exceed a critical parameter, which is in turn dependent on how far one is away from
the L—H power threshold. In addition, the radial electric field (near torque-free threshold)
is proportional to the one third power of the wave-driven Reynolds stress. We note that in
the case of IBW, heating and radial electric field are likely to occur simultaneously. Since
the torque necessary for L—H transition depends on heating power away from threshold,
the IBW case is more involved, with heating playing a role far from threshold and radial
electric field drive playing a role near threshold. Using the results of Newman, et. al.[40},

and letting the non-self-consistent power for suppression be Pg, the RF power necessary
to suppress the turbulence is

2 1 P |3/ 2 P
P,f > Pg 1 th heat .

343 kg Ax Pheatl P

21

where, Phegr is the input (auxiliary) power and Py, is the threshold power (defined above,
without external torque). Here, kg and A are the rms poloidal wave number and radial

correlation length in L-mode, respectively. Typically, for drift waves, kg Ay ~ 1. We
note that the above condition applies to any external torque gradient, where

Tex,I[P0]~ Awu/kgAyx where Pg is the power necessary to drive Tewr - Typically,

7
Pg~ Text - Crude estimates of this [BW power (assuming we are away from spontaneous
threshold) give about 400KW.
Turning to the experiment, PBX-M observed a core transport barrier during IBW
heating. Such a barrier is consistent with the formation of an edge radial electric field.
Evidence to suggest this include the observation of barrier formation when a core resonance

is present and density peaking at this resonance. These results are consistent with the
theory, including the ~ 600KW of IBW power.
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b.) Fast Wave Flow Drive

In this section, we will consider plasma flow drive using externally launched fast
waves. We choose this fast wave as means of flow drive because first of all, as a mature
technology, the fast wave has been used in many tokamaks around the world as a source of
plasma heating and current drive. It is also proposed to be used in ITER. Secondly,

toroidal plasma rotation has been observed in a recent TFTR ICRF experiment!4!). Third,
the fast wave flow drive has the merit that both the flow location and width can be easily
controlled externally.

The theoretical analysis of the poloidal and toroidal flow drive in a tokamak using

the externally launched fast waves has been carried outl42. 43). In the following, the results
from these analysis will be described.

i.) Poloidal Flow Drive

The basic model of plasma poloidal flow drive is that of a poloidal momentum
balance equation:

r{d - = o~ \|l_ /T = 1/r= =
pm{§<ve> +(7-vi 9)} = <pq E9> +Z<(_J><B)e> —v,(Ve) (22)
where (V) is the mean poloidal flow, £ and B are the fluctuating electromagnetic fields

of the fast wave, ¥ and J are the fast wave induced fluctuating plasma flow and current.
From Eqn. (22), we see that the plasma poloidal flow is driven by a nonlinear inertial force
(Reynolds Stress), the electromagnetic force and damped by a poloidal damping (v, ) due
to the poloidal variation of the equilibrium magnetic field in a tokamak. The nonlinear
inertial and the electromagnetic force are determined by spatial variations in the fast wave
electromagnetic field (pondermotive force). In a two component plasma with low minority
ion concentration, rapid spatial variation of the fast wave electromagnetic field occurs
across the minority ion resonance layer.” As a result, localized plasma poloidal flow can be

generated. The flow is localized near the minority ion resonance point Rg (a) =Qn( Ro))
and has a width of the minority ion resonance layer width, i.e. Ax = Rqg (k"v,-/a)). Since

Ax ~ \/T;, the poloidal flow drive is more effective near the edge of a tokamak where the
plasma temperature is lower.

Various forces in Eqn. (22) can be calculated using hot plasma kinetic theory(#4].
For example, the fluctuating plasma flow can be expressed as ¥ = (¢/B)M - E where M is
the hot plasma mobility tensor; the fluctuating plasma current can be expressed as
J =—(iw/47)(K ~1)- E where K is the hot plasma dielectric tensor. At steady state, the
total force is balanced by the poloidal damping term. As an example, we have calculated
the spatial profiles of poloidal flow velocity at steady state Vg and its shear dVg/dr for a
TFTR edge like plasma. The parameters used are: major radius R = 245c¢m, minor radius
a = 85cm, magnetic field By = 47, plasma temperature T = 400eV, plasma (deuterium)

density np=10!3cm™3, minority ion (hydrogen) concentration ny/np=1%, fast wave
frequency f=46.7MHz, parallel wavenumber k) = 0.075. The results are shown in Figs.
(14) and (15) respectively.

Having obtained the spatial profiles of the poloidal velocity and its shear, we can
estimate the power needed for suppression of edge turbulence. The criterion for turbulence
suppression is that the shearing rate of the flow is larger than the turbulent decorrelation
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d .
rate: AxkE(VQ) > Awg. Using edge turbulence parameters, and the results above, we

find that the critical power level is P, =450KW. The fact that this number is substantially
smaller than what is typically used in most of the current ICRF heating experiment indicates
the practical feasibility of using fast wave as a means of flow drive in a tokamak.

ii.) Toroidal Flow Drive

The model for fast wave toroidal flow drive is that of a toroidal momentum balance
equation:

RS G N~ O

where <V¢> is the mean toroidal flow, i, is the anomalous diffusion rate, while the rest of

the terms have the same meaning as th.ey appear in Eqn. (22). Unlike the plasma poloidal
flow, the plasma toroidal flow does not suffer from poloidal damping. Instead, it suffers
from an anomalous diffusion process. As a result, the toroidal flow generated will not be
localized near the spatial position of momentum input (minority ion resonance layer). it
will diffuse out to other parts of a tokamak and has a very broad spatial profile. The
various forces appearing in Eqn. (23) can be calculated in the same way as the forces in
Eqn. (22) are calculated. The steady state toroidal flow profile can be obtained by
balancing the total force with the anomalous diffusion term.

We have calculated the spatial profile of plasma toroidal flow at steady state using
parameters employed in a recent TFTR ICRF experiment, namely, plasma temperature T=

10KeV, plasma density np=1013, magnetic field Bo=4T, wave frequency
f =61MHz, toroidal wavenumber ng=14, hydrogen minority concentration

np/np=3%, a total 2MW of power is deposited on the magnetic axis. and we assume
[ts=10%cm?/s. The result is shown in Fig. (16). The peak magnitude of the toroidal

flow velocity of 30Km/s is close to the 20Km/s which is what has been observed in the
experiment.

VI. TUnresolved Issues

Several unresolved issues cut across the topical boundaries set up in this paper.
These include:

a.) determining the radial width of the enhanced confinement layer and ELM burst
region. Eqn. (12) gives a promising suggestion, but further work is required.

b.) a systematic means for relating edge parameters to "machine variables.” This
requires both core and SOL transport analysis.

c.) further confinement regimes, such as the PBX IBW-driven CH-mode. In
particui.r, such experiments should investigate power scaling requirements,
artificie. ELMs (via external power modulation) and synergisms with the
spontaneous H-mode. Indeed, it may be more effective to operate ITER in an L-
mode supplemented by externally driven and modulated counter-flow shear layers
than in a spontaneous H-mode.

Work on these issues is in progress.
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FIGURE CAPTIONS

Power increasing with time, showing onset and saturation of Reynolds
dynamo followed by fluctuation quench.

Poloidal velocity shear profiles showing transition front propagation.
Comparison of Tr<<T fe front propagation and T7>>T f¢ collapse
limits.

s — ¢ diagram including sheared rotation.

Curve 1. static plasma. Curve 2: Solid body rotation enhances drive.
Curve 3: Sg=-10(Sq= (r/Q)(dQ/dr)) indicates shear suppression.
Curve 4: Sq =-S5 indicates weaker shear suppression.

Curve 5: S =35 indicates enhanced growth due to poloidal angular
momentum stratification. Near origin, Kelvin-Helmholtz modes appear.
ELM model trace indicating L—H transition, ELM-free period, ELMs and
hysteresis. A slow power ramp extends the ELM-free phase.

L—H transition and ELMs for ¢ =0 model.

L—H transition and ELMs for [I — e model.

ELM frequency, MHD fluctuation level and AE vs. P;, for ¢ =0 model.
As above, for [1—> e model. The discontinuity at P=2 is a model
artifact.

¢ =0 model Type III ELMs.

¢ =0 model Giant ELMs

¢ =0 model Giant — Grassy evolution with increased power.

L — e model Giant — Grassy evolution with increased power.

The spatial profile of poloidal flow velocity Vg in arbitrary unit. The dotted
line indicates the spatial position of minority ion resonance.

The spatial profile of poloidal flow velocity shear d Vg/dr in arbitrary unit.
The dotted line indicates the spatial position of minority ion resonance.

The spatial profile of the toroidal flow velocity V. The dotted line

indicates the spatial position of magnetic axis.
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TABLE 1

Input data:

DIII-D: Ip=10MA, Br=12T
(Ti)edge =120 eV (ne)edge =1x103em™3 Lp/edge =2.7 cm
X./edge = 2x10% cm?/sec. W=1cm Power =3 MW
Ls=180cm
JET: (Ti)edge =400 eV (”e)edge =1x10!3 Lp/edge = 2.7 cm
Ls =360 cm X ./edge =4x10% W=1cm Power=3MW
Transition Time* Power threshold Front propagation velocity
DOI-D 4.7ms 2.6Mw 25 m/sec.
JET 2.6ms 2.3Mw ' 47 m/sec.

*Transition time is the rise time of shear flow, not the fluctuation quench time.
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